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A multi-omic view of the liver

Liver physiology can be understood as a continuum 
involving a plethora of processes and regulatory mechanisms 
at different scales. In this scenario, genes are at the lowest 
scale and the organ as a whole at the highest scale. The 
intermediate scales are occupied by RNAs, proteins, 
metabolites, biological networks, cellular organelles and 
different cell types. The interplay between the organization 
scales occurs through multidirectional relations of causation 
(1,2), whereas, the environment influences processes at 
lower scales, including the activation of protein networks 
and gene expression (Figure 1). Ultimately, liver physiology 
is the result of the tight balance of this complex system 
characterized by the multiplicity of interactions. Thus, 
perturbations in any level of organization or in their 
interaction, usually lead to liver diseases. 

The traditional way by which scientists investigate either 
physiology or diseases of the liver involves the simplification 
of this biological system and its byproducts to a single or 
small group of the constituents at each scale. Although the 
classical methods allow logical conclusions regarding the 
role of specific target(s) of interest in any given process, 
they are not considering the hepatic system as a whole and, 
therefore, have limited clinical outcomes. 

More recently however, hepatology research has shifted 
from this reductionist view towards more holistic and 
integrated approaches. The development of new omics 
technologies (i.e., genomic, proteomic, metabolomic) has 
allowed scientists to collect more information regarding 
molecular events in biological systems by addressing large 
ensembles of components such as genes, proteins, and 
metabolites. Moreover, these technologies are in constant 
development and optimization, resulting in increased data 
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Figure 1 Biological scales in the liver and the application of multi-omics technologies. The high throughput technologies discussed in the 
text generate data important for the characterization of each scale; however, it is the integration of information in networks (green arrows) 
that reveal the complexity of liver physiology and diseases (purple arrows).
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output per run at lower cost, which make them far more 
accessible for researchers, clinicians and their patients (3-5).  
Finally, the introduction of new bioinformatics tools has 
increased our ability to integrate information obtained by 
different omics and empower the application of systems 
biology in research and clinical practice. Indeed, as will be 
discussed below, it is the combination of these different 
technologies that will contribute significantly to the 
understanding, diagnosis and treatment of liver diseases. 

Genomics

A great advance in the hepatology field was the use of 
genome wide association studies (GWAS), also known as 
whole genome association studies, that focus on identifying 
genetic variants predisposing a patient to certain diseases. 
GWAS has been used in different study designs (family-
based, population-based or case-control studies) to screen 
the frequency of more than 1 million known single 
nucleotide polymorphisms (SNPs) and have resulted in 
the discovery of risk loci associated with common and rare 
liver diseases such as gallstone disease, non-alcoholic fatty 
liver disease (NAFLD), drug-induced liver injury (DILI), 
chronic hepatitis C after treatment, cystic fibrosis associated 
liver disease, Alagille syndrome, Biliary Atresia, auto-
imune hepatitis (AIH), primary biliary cholangitis (PBC) 

and PSC primary sclerosing cholangitis (6-8). Up to date 
of this manuscript preparation, the NHGRI-EBI catalog of 
published GWAS studies (www.genome.gov/gwastudies/) 
reports, under the search term “liver disease”, a total of 
about 4,493 studies, 120,219 SNPs and 179,364 associations 
identified. GWAS were shown to have an accuracy ranging 
between 21% and 51% in the identification of disease-
causing SNPs depending on the disease, study design and 
availability of premade panels of SNPs (9). An important 
limitation of GWAS studies is that, in many cases, the 
identified loci might contain several genes that equally 
contribute to but not necessarily cause the disease. Overall, 
GWAS studies have been instrumental as a starting point to 
identify biological pathways associated with multifactorial 
diseases to be further investigated, but in large part have 
hampered our expectation to apply this information into 
clinical practice. This particularly relates to GWAS studies 
focused on complex diseases. Examples in the liver context 
are PBC (115 associations and 8 studies) and PSC (308 
associations and 17 studies), in which most of the identified 
disease variants appeared at a very low effect size, suggesting 
a marginal genetic contribution in respect to other risk 
factors (i.e., environmental) at play (10,11). 

A possible outcome of GWAS has been the establishment 
of targeted gene panels associated with a certain liver 
disease. These panels can improve the coverage of the genes 

http://www.genome.gov/gwastudies/
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of interest and be cost and time effective, finding their 
application in diagnostic processes including next generation 
sequencing (NGS) (12). Targeted gene sequencing 
(TGS) allows early diagnosis and the identification of the 
specific genetic causes of a disease even within a group of 
disorders. This approach has been advantageous in pediatric 
hepatology to identify specific subtypes of cholestatic 
disorders. Pediatric cholestasis includes a group of disorders 
with different etiologies (genetic and metabolic) that result 
in the impairment of bile acid transport and lead to liver 
failure. Among the inherited conditions, for example, 
patients with progressive familial intrahepatic cholestasis 
(PFIC) caused by different genes, present low serum 
concentrations of gamma-glutamyl transpeptidase (GGT) 
and are clinically undistinguishable. However, each specific 
PFIC subtype is associated with different risk factors that 
determine their clinical management and post-transplant 
complications (12). In a recent study Nicastro et al., showed 
the use of a specific NGS panel for genetic liver diseases in 
pediatric cholestasis, as a time and cost effective diagnostic 
tool compared to traditional diagnostic, in a transplant 
center in Italy (13).

Another important genomic tool is whole exome 
sequencing (WES), an exploratory technique that consists 
in the sequencing of the protein coding regions of genes—
known as exome. The exome consists of approximately 1% 
of the human genome but harbors 85% of the mutations 
with effects on disease traits (14). The cost of sequencing in 
WES is lower than in whole genome sequencing (WGS), 
making the former technology a promising tool for early 
diagnosis in clinic. A recent study in a small number of 
patients showed the applicability and cost-effectiveness of 
WES in clinical practice to identify disease-related variants 
in adults with unexplained liver disease (15). Hakim et al. 
applied WES for the diagnosis and the identification of 
molecular causes in 19 adult patients with chronic liver 
disease of unknown etiology. The genomic analysis brought 
to the identification of the disease diagnosis and predict the 
correct treatment in 5 of these cases (15).

Although the use of genomic techniques, such as 
TGS, WES and WGS awaits further validation for larger 
population studies, it certainly shows promise as a useful 
tool for early and precise diagnosis and better clinical 
management of genetic liver diseases. This highlights the 
importance of genome sequencing in research and clinical 
practice and how NGS technologies can revolutionize 
medicine. On the other hand, studies that carefully 
analyze the real cost effectiveness of NGS technologies 

are necessary before they can be fully integrated into 
clinical practice (16). Moreover, the applicability of 
these technologies remains limited in the diagnosis of 
pathologies in which the genetic factor is less prominent 
and even in the determination of which identified variant(s) 
contribute(s) more to the trait or disease of interest (6). To 
overcome these limitations, GWAS can be associated with 
transcriptomics to inform on risk variants, gene expression 
profiling and altered pathways associated with the disease 
(17-19).

The transcriptome can be defined as the complete 
set, and quantity, of transcripts within a cell, tissue or 
organ in physiological or pathological conditions (20) 
and transcriptomics are the set of technologies used to 
profile the transcriptome. Since its development, RNA 
sequencing (RNAseq) technology has become the most 
widely used technology to investigate the transcriptome 
of a target sample. In general terms, a cDNA library is 
assembled from the extracted RNA and then sequenced 
starting from one end (single ended sequencing) or both 
ends (paired ended sequencing). The result is a high-
throughput dataset of sequences (reads), whose number 
and length depend on the sequencing strategy used. 
Then, reads are processed to remove poor quality regions, 
sequencing adapters or any other technical sequences to 
optimize downstream analysis (21). Following this step, 
the trimmed reads are aligned against a reference (indexed) 
genome, which allows the accurate counting of expressed 
genes (22). Importantly, there are many bioinformatics 
tools freely available to the scientific community that 
can be used in each of these steps; as well as up-to-date 
and curated sequence and annotation for the genomes of 
human and common experimental animal models such as 
mouse (Mus musculus) and rat (Rattus norvegicus). Finally, 
the investigator will perform a series of statistical analysis 
to detect differentially expressed genes among groups 
and the overrepresented terms or signaling pathways 
associated with those genes. Ultimately, the result is a 
picture of the expression landscape between 2 or more 
conditions that can provide important information on the 
role of individual genes or gene clusters to the phenotype 
of interest (20-22). 

An advance in the analysis of transcriptome is the 
single cell RNAseq (scRNAseq). As the name implies, 
scRNAseq increases the resolution of information, as now 
it is possible to perform differential expression analysis in 
individual cells isolated from an organ such as the liver; as 
well as clustering, classification and dynamics of different 
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cell types in different conditions or timepoints (23,24). 
By using this approach, researchers are now providing 
detailed maps of the cellular transcriptional landscape 
and heterogeneity in the liver during development and in 
adulthood under physiological conditions (25,26) or during 
different liver diseases, as exemplified by hepatocellular 
carcinoma, non-alcoholic steatohepatitis (NASH) and 
fibrosis (27-29). These approaches will surely contribute 
to the understanding of liver physiology and pathologies, 
in particular for rare diseases, where the limited number 
of patients prevents the use of other genomic tools. In 
line with this, transcriptomics can be used to unravel the 
mechanisms of current treatments (30), or as a tool for 
drug repositioning (31) or identification of new therapeutic 
targets (32,33).

Proteomics

Ideally the data of gene variants or altered gene expression 
obtained from genomics or transcriptomics analysis should 
be correlated to differences in protein abundance. Indeed, 
a recent example of this correlation has been demonstrated 
for the mannose phosphate isomerase (MPI) gene in a 
pediatric population. Transcriptomic data from three human 
liver cohorts showed that in children with mutations in the 
MPI gene, a rare monogenic disorder, the MPI expression 
level is proportional to liver fibrosis (30). 

Although gene-protein correlations are useful in many 
instances, they are by no means linear. Posttranscriptional 
and posttranslational mechanisms alter this correlation 
by influencing the abundance, function, and networks of 
proteins. It is known that these mechanisms contribute to 
the greater complexity and larger diversity of proteins when 
compared to genes (34). Therefore, a more comprehensive 
approach to studying the whole set of proteins within a 
biological system, or proteome, is through its large-scale 
analysis, or proteomics. Currently, mass spectrometry 
(MS)-based proteomics is the most commonly used 
technology to address the proteome (35). This technique 
comprises the isolation of proteins from the sample, 
its downstream processing and the analysis in a high-
resolution mass spectrometer. The result is a mass-charge 
(m/z) spectrum that is used in protein identification and 
quantification. There are different strategies for proteomics 
(bottom-up and top-down proteomics), which result in 
distinct outcomes as global protein abundance and/or 
posttranslational modifications, including phosphorylation, 
glycosylation, and others. In this exploratory approach, in 

which the whole ensemble of proteins is the background, 
the investigator may submit the results to downstream 
analysis to detect differentially abundant proteins, 
interaction networks, up or downstream signaling pathways, 
enriched terms or pathways and visualization of the proteins 
in the context of overrepresented biologically-significant 
terms. Thus, the analyses will depend on the biological 
question to be addressed. 

The application of proteomics in hepatology thus far 
has been limited to physiological studies. For example, 
a detailed characterization of the proteome and protein 
networks from different hepatic cell types was performed 
and revealed the complementarity and the crosstalk of 
these networks among different cell types (36), which is a 
noteworthy feature of liver organization. Using a similar 
approach, another study established that a large proportion 
of the hepatocyte proteome is involved in fatty acid and 
xenobiotic metabolism. It also revealed that different 
populations of hepatocytes play distinct roles in cholesterol 
flux and hormone/growth factors signaling (37). 

In the context of liver diseases, MS-based proteomics 
is an important tool for the identification of putative 
pathogenic proteins. Analyses of serum from patients with 
autoimmune hepatitis (AIH) identified antigenic proteins 
associated with the disease, including phosphoglycerate 
mutase isozyme B, liver arginase, cytokeratins 8 and 18, 
heat shock proteins and valosin-containing protein (38). 
Furthermore, proteomics revealed overrepresented targets 
related to Th1 and Th2 type responses through analysis of 
the immune response signatures in this disease (39). These 
key findings identified new candidate antigens, molecular 
pathways, biomarkers and even diagnostic models with high 
sensitivity and specificity for liver autoimmune diseases  
(40-42). 

Proteomics can also be useful to identify biomarkers 
for the diagnosis and the progression of a specific diseases. 
For example, saliva proteome analysis using an integrated 
top-down/bottom-up platform was used in a population of 
patients with Wilson’s disease, a rare inherited disorder of 
copper metabolism that include liver symptoms (43). This 
analysis showed that the proteins present in the saliva of 
these patients are representative of the oxidative stress and 
inflammatory condition typical of the disease and could 
potentially be a marker of exacerbation of the disease (43).

In another interesting study, Metzger et al. used urine 
proteomics to differentiate cholangiocarcinoma (CC) 
from PSC and other benign biliary diseases (BBD) (44). 
Knowing from a previous study that bile proteomic can 
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distinguish CC from PSC, the urine was compared with 
that of the bile of the same patients collected in the same 
day. The study identified urine proteins that are able to 
distinguish CC from PSC and BBD suggesting that urine 
proteomic analysis (compared to bile) can be used as a 
non-invasive diagnostic tool for PSC patients at risk of 
developing CC (44). 

A related technique known as targeted proteomics 
involves the investigation of a specific set of proteins of 
interest known to be associated with certain phenotypes 
or diseases. In this approach, the background is composed 
of sets of hundreds of proteins rather than the thousands 
that comprise the whole proteome. Because of its lower 
complexity (vs. “non-targeted” proteomics), as well as 
better scalability, sensitivity, precision, accuracy and 
reproducibility (45), targeted-proteomics can be useful not 
only in research, but also in precision and personalized 
medicine (46). It can be used, for example, in the diagnosis, 
as well as in the clinical management of complex or rare 
liver diseases.

Metabolomics

Although powerful, transcriptomics and proteomics are 
only a surrogate picture of the physiological outcomes 
of a certain cluster of differentially expressed targets or 
overrepresented pathways. A complete and more robust 
physiological snapshot can be achieved by the application 
of metabolomics: the high-throughput identification and 
analysis of the set of small molecule metabolites (<1,500 
Da), known as the metabolome. As a result of metabolomics 
studies, the metabolic signature has been associated with 
not only common liver diseases such as NAFLD and 
liver toxicity (47-51) but also with liver regeneration (52)  
and in the identification of novel biomarkers (53). As 
proteomics, metabolomics has also contributed to the 
identification of novel biomarkers in autoimmune liver 
diseases and improvements in diagnosis. The main 
results of these studies showed that metabolites such 
as glycochenodeoxycholic acid and the free-fatty acids 
(FFA): LPC-16:0, PC-16:0/16:0 and SM could be used to 
diagnose autoimmune liver diseases (i.e., AIH and PBC) 
and PBC, whereas the bile salts LCA-S, TDCA, and 
GDCA could be used in the differential diagnose of PBC 
and primary sclerosing cholangitis (PSC), a rare chronic 
inflammatory cholangiopathy of unknown etiology (54,55). 
Another study identified citrate, glutamine, acetone, 
pyruvate, β-hydroxyisobutyrate, acetoacetate, histidine, 

dimethylamine, and creatinine as metabolites with a high 
diagnostic accuracy for the discrimination of AIH and  
PBC (56). Although promising, the results are still 
preliminary because of the limited number of studies and 
differences in methodology (57).

Because of the recent advances in the technologies used 
for non-targeted or targeted identification of metabolites, 
alongside the development of novel computational analysis 
protocols, the metabolic phenotyping is now a promising 
tool in the understanding of liver diseases, in their diagnosis 
and clinical management, including disease staging and 
individual monitoring of patient response to available 
treatments.

Microbiome

Thus far, we have discussed the application of high-
throughput-omics approaches in the study of molecular 
events at different scales of organization focusing in the liver, 
from genes (lowest scale) to RNA, proteins, and metabolites 
(intermediate scales) towards a phenotype (Figure 1). 
Another scaling-up level is to consider exchangeable 
metabolites and factors produced outside of the liver that 
can impact its functioning. In line with this interpretation, 
an important source of exchangeable metabolites to the liver 
is the large population of microorganisms, the microbiota, 
that reside in the gastrointestinal tract. This community 
has its own genome, proteome and metabolites (collectively 
known as microbiome) that can be greater in extent 
and diversity than the host’s (58,59). Products from the 
microbiota can be absorbed into the bloodstream and reach 
the hepatic tissue through the portal circulation or simply 
stimulate neuroendocrine signaling pathways to the liver. 
Therefore, the microbiome may have direct or indirect 
impact on liver physiology. A correlate term with -omics is 
the meta-omics (metagenomics, metaproteomics and so on), 
which refers to the large-scale studies of the microbiome (2).  
Microbiota and microbiome studies identified a high 
producing alcohol strain of Klebsiella pneumonia in 60% of 
patients with NAFLD in a Chinese cohort. Moreover, this 
strain was able to induce disease in mice (60). Similarly, 
alterations in dietary fat content resulted in dysbiosis, with 
consequent alterations in nutrient-microbiota interaction, 
a scenario in which the production of a specific short-chain 
fatty acid was associated with liver steatosis and metabolic 
syndrome (61). Intestinal dysbiosis characterized by a 
reduced bacterial diversity was also described in patients 
with PSC (62-64). Recent studies have shown that the 
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dysbiosis is not limited to the fecal and colonic mucosa, 
but it is also extended to the bile of these patients, showing 
an increased presence of the phylum Proteobacteria (65). 
Interestingly, microbiota has been suggested to act as the 
driver of the increased Th17 differentiation often seen 
in PSC patients, suggesting that the gut microbiome 
could be the trigger of adaptive immune reactions  
(immunobiome) (66).

Panomics

In face of the great amount of data that we now can collect 
from an organism and the availability of public repositories 
for such data, a striking challenge is the integration of all 
this information. The Human Cell Atlas (https://www.
humancellatlas.org/), human microbiome project (https://
hmpdacc.org/hmp/) and human metabolome database 
(http://www.hmdb.ca/) are initiatives that exemplify the 
effort of the scientific community in integrating multi-
omics data and improving accessibility to the cumulative 
knowledge (67,68). The ultimate goal is, with help from 
machine learning and other computational tools, to 
integrate high-throughput datasets with other relevant 
clinical information, including anamnesis and routine 
biochemical laboratory tests into an algorithm that can 
accurately predict disease progress, patient response to 
treatments (69), and prognosis (70).

Disease modeling

The integration of multi-omics data allows the identification 
of specific molecular targets associated with a disease. 
However, these targets should ideally be functionally 
validated using reliable models of the cell or tissue affected 
by the disease, to specifically address the disease mechanism 
and potential therapies. 

Our current knowledge of altered mechanisms in 
liver diseases mainly derives from studies using in vivo 
animal models, in vitro primary cell culture systems and 
cancer-derived or immortalized cell lines. However, these 
approaches have several limitations. Studies in rodents 
suffer very often from a lack of phenotype reproducibility 
due to inter-species differences (71), whereas the use of  
in vitro human primary cultures is hampered by the scarce 
availability of human liver tissues, and in particular for 
rare liver diseases. An additional limitation is the technical 
difficulties in handling primary cells cultures. Conversely, 
immortalized cell lines do not always recapitulate normal 

physiological functions of the tissue that they are isolated 
from (72,73). These collective shortcomings of traditional 
tools to model liver diseases in culture are being addressed 
by recent advances in stem cell-based in vitro models (i.e., 
iPSC and 3D organoid cultures) (Figure 2) (74). 

Induced pluripotent stem cells (iPSCs) and 
applications

The discovery of iPSCs dates back to 2006 when Takahashi 
and Yamanaka were able to induce a state of pluripotency 
in skin fibroblasts by exogenous expression of four 
pluripotency transcription factors (i.e., Klf6, Oct4, Sox2 
and c-Myc) (75). The resulting iPSCs were characterized 
by indefinite self-renewal and by the ability to differentiate 
into a variety of cell types. More recently, iPSCs have 
been obtained from other sources such as peripheral blood 
cells and urine, further decreasing the invasiveness of the 
procedure (76,77).

In the context of modern medicine, iPSCs find many 
applications: they can be derived from a patient and 
used to study the mechanism of a known disease to find 
specific targets for therapy; or to identify the function of 
genes associated with a novel disease; and finally to screen 
compounds in a large scale and to derive specific treatments. 
This approach would particularly benefit those rare diseases 
for which clinical trials could not be designed due to a very 
limited number of patients (78). 

In liver research specifically, iPSCs have been mainly 
used for the generation of hepatocytes and cholangiocytes. 
Most of the protocols for the differentiation of iPSC 
into l iver cells  recapitulate the different steps of 
liver embryogenesis, characterized by the sequential 
progression of the pluripotent stem cells into a stage of 
definitive endoderm, hepatic endoderm and ultimately 
the hepatoblast, the common bipotent progenitor for 
hepatocytes and cholangiocytes. This process is mediated by 
the addition in the culture media of specific factors aimed at 
activating the different molecular pathways that take place 
during liver development (79). 

Hepatocytes have been the first liver cells to be 
generated from iPSC (80-82). However, despite many 
efforts, as of today, iPSC-derived hepatocyte-like cells lack 
full maturation and present a more fetal phenotype (83)  
in comparison to primary hepatocytes. Despite this 
limitation, many researchers have been able to use iPSC-
derived hepatocytes to reproduce and model in vitro liver 
diseases (Table 1)  such as A1AT deficiency (84-87), familial 

https://hmpdacc.org/hmp/
https://hmpdacc.org/hmp/
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Figure 2 Generation of iPSC and organoids and their application for the study of liver diseases. iPSCs are generated from the 
reprogramming of adult somatic cells (i.e., peripheral mononuclear cells and skin fibroblasts) of a patient or a healthy donor in pluripotent 
stem cells. iPSC can be differentiated in liver parenchymal cells (i.e., hepatocytes and cholangiocytes) by recapitulating in culture the steps 
of liver development. Liver organoids are established from stem cells derived from bile fluid or from liver biopsy or liver explant tissues, 
embedded in Matrigel and be supplied with specific factors. Liver organoids can also be generated by iPSC-derived liver cells cultured in 
similar conditions. Multicellular liver organoids were recently generated directly by differentiation of iPSC and from iPSC derived liver 
organoids (see text for details). These technologies have shown to be useful to study and model liver development and disease mechanisms, 
to discover new gene functions, to test existing and new drugs and to potentially be applied to regenerative medicine.

hypercholesterolemia (FH) (97), Glycogen Storage Disease 
Type 1 (88), Wilson’s disease (89) and mitochondrial DNA 
depletion syndrome type 3 (90), suggesting that the less 
mature phenotype is not affecting the disease mechanism 
itself. 

More recent studies demonstrated that iPSC can also 
be made to differentiate into biliary cell (91-93,98,99). 
Compared to hepatocytes, the biliary lineage appears to 
constitute a more default pathway of differentiation as 
iPSC-derived biliary cells more closely resemble adult 
cholangiocytes with preserved secretory functions. iPSC-
derived cholangiocytes have been used to model rare 
diseases of the biliary epithelium or cholangiopathies such 

as cystic fibrosis related liver disease (CFLD), Alagille 
syndrome and autosomal dominant polycystic liver disease 
(91-93) (Table 1). 

iPSCs provide a virtually unlimited source of disease cells 
and therefore they have been used for drug discovery or 
repurposing to target specific pathways or, on a larger scale, 
for the discovery of new compounds in a platform of high 
throughput screening. Using iPSC-derived hepatocytes, 5 
new drugs from a library of clinical compounds have been 
identified for A1AT deficiency (87). In a similar way, cardiac 
glycosides, currently approved for heart failure, were shown 
to be a potential candidate to treat hypercholesterolemia, at 
least in those patients that develop resistance to statins (100). 
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Another study, using iPSC-derived cholangiocytes from 
a CF patient carrying the common CFTR mutation DF508, 
identified a pathogenic mechanism that links a constitutive 
activation of Src kinase in CFTR defective cholangiocytes, 
with an aberrant activation of TLR-mediated innate 
immunity pathways. Interestingly, the study also showed 
that inhibition of the kinase could increase the efficacy 
of currently approved potentiator/correctors used in CF 
patients with this mutation (91). 

iPSC can also be genetically modified using CRISPR-
Cas9 technology. Using this approach, it is possible to 
introduce a specific disease-causing mutation in control 
iPSC or to correct specific mutations in patient-derived 

iPSC, thus providing isogenic matching controls to 
characterize the disease phenotype related to a specific 
mutation (101). This tool is especially important for rare 
diseases that affect only a few individuals or a monogenic 
disease with several rare variants (i.e., CF) since it will 
accelerate their molecular characterization and will create 
valid platforms for cost effective preclinical drug testing. 

Liver organoids and applications

Another important advance of stem cell technology has 
been the establishment of 3D organotypic culture systems 
that resemble the architecture and the function of a 

Table 1 Summary of selected studies in rare liver diseases using iPSC and organoids

Liver disease Cell model Findings References

A1AT iPSC • Patient-derived iPSCs differentiated to hepatocyte reproduce key features 
of the disease

• Gene correction of AAT mutant prevented abnormal accumulation of 
misfolded ATT protein in iPSC-derived hepatocytes

• iPSC-derived hepatocytes model variation of liver diseases associated 
with AAT mutations

• Identification of drugs that reduce AAT accumulation

(84-87)

Glycogen storage 
disease type 1

iPSC • Patient-derived iPSCs differentiated to hepatocyte reproduce the cellular 
phenotype

(88)

Wilson’s disease iPSC • Patient-derived iPSCs differentiated to hepatocyte recapitulate the 
copper-export defect that was reversed by gene correction.

(89)

Mitochondrial DNA 
depletion syndrome 
type 3

iPSC • Generation of iPSC carrying the disease mutation using CRISPR-Cas9 
gene editing and identification of drugs that increase ATP.

(90)

Cystic fibrosis liver 
disease (CFLD)

iPSC/iPSC-derived  
organoids

• Patient-derived iPSCs differentiated to cholangiocytes reproduce 
the secretory defect that is improved by mutation correctors/channel 
potentiator

• Identification of a pathogenic mechanism linking Src-TLR4 innate 
immunity-inflammation in patient derived iPSCs differentiated to 
cholangiocytes

(91-93)  
(94-96)

Alagille syndrome iPSC/iPSC-derived 
organoids

• Chemical inhibition of Notch signaling prevent the differentiation of iPSC 
in cholangiocytes 

(92,93) 

Autosomal dominant 
polycystic kidney 
disease

iPSC/iPSC-derived 
organoids

• Patient-derived iPSCs differentiated to cholangiocytes reproduce key 
features of the disease. Validation of octreotide for reduction of cyst 
volume

(93)

Biliary Atresia 3D cholangiocyte 
spheroids

• Cholangiocyte spheroids show signs of toxic injury after treatment with 
the flavonoid biliatresone

(94)

PSC Bile organoids • Bile organoids isolated from PSC patients show an immune-reactive 
phenotype

(95)

Wolman disease Multicellular 
organoids

• Organoids derived from patients with Wolman disease show features of 
steatohepatitis that are reduced by treatment with FXR agonists

(96)
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specific tissue. Compared to traditional 2D cultures (i.e., 
monolayers), organoids are more physiologically relevant. 
Organoids have the ability to self-organize in structures 
that resembles the organ of origin and therefore they 
reproduce the in vivo cell-cell and cell-matrix interactions. 
This allows them to better preserve key functional features 
than in traditional 2D culture. It is well known that primary 
cells drastically decrease their proliferative capability when 
in 2D culture while they rapidly de-differentiate, therefore 
precluding their propagation for multiple passages. 
Conversely, organoids have shown to be self-renewing 
and therefore can be propagated for long-term in culture 
without loss of functionality while maintaining their genetic 
stability for several passages (74,102,103).

Liver organoids can be derived from different sources 
of stem cells, including iPSC (104), adult or embryonic 
tissue-resident stem cells and more recently (105), from 
bile fluid collected during ERCP (endoscopic retrograde 
cholangiopancreatography) procedures (95). In order to 
self-organize in 3D structures, stem cells from any origin 
need to be embedded in an extracellular matrix (i.e., 
Matrigel) and be supplied with specific media that contain 
factors able to recapitulate the in vivo environment of the 
stem cell niche both in normal conditions (i.e., self-renewal) 
or during repair/regeneration (103).

To date, liver organoids derived from tissue resident stem 
cells or from bile samples are more committed to a default 
biliary phenotype, but more recently mature hepatocyte 
organoids have been successfully derived from adult primary 
hepatocytes (106).

Liver organoids, in particular those obtained from 
patient-derived iPSC, have been used to model specific 
functional defects representative of monogenic rare liver 
diseases such as Alagille syndrome, polycystic liver disease, 
cystic fibrosis, Wilson disease and AAT1 (92,93,105,107) 
(Table 1) in an attempt to generate specific platforms for 
drug screening. 

More recently, liver organoids have been applied to 
the study of complex or acquired liver diseases. Using 
mouse 3D cholangiocyte spheroids exposed to the 
flavonoid toxin biliatresone, Lorent et al. modeled Biliary 
Atresia. The treatment with the toxin caused loss of the 
primary cilia and disruption of the biliary cell polarity, 
providing evidence of a toxic environmental injury as a 
potential initiator of the disease (94). In another study, 
bile organoids have been derived from PSC patients that 
undergo ERCP as part of their diagnostic and clinical 
management (95). Further characterization of these 

organoids showed that they retain key characteristics 
associated with the disease, such as an immune-reactive 
phenotype and the ability to secrete inflammatory 
mediators in response to inflammatory stimuli (95). 
Finally, liver organoids have also been used to mimic 
virus-host interaction and study the process of HCV entry 
into polarized hepatocytes and to create an in vitro HBV 
infection model (108,109). 

It is tempting to speculate that liver organoids will have 
a major impact on personalized medicine because they 
can be cryopreserved and bio-banked for later use in drug 
screening and possibly for regenerative medicine purposes, 
such as autologous cell therapy transplantation (102,103). 
Indeed, Schneeberger et al. described in a recent study, a 
new method based on spinner flasks for the expansion of a 
large number of liver organoids (110). Using this system, 
the organoids were able to proliferate at a high rate and to 
repopulate and reconstitute the liver tissue in decellularized 
liver discs. The possibility to scale-up the production of 
liver organoids, together with the application of CRISPR/
Cas9 gene editing for the correction of specific mutations 
will pave the way for the use of regenerative medicine in the 
treatment of rare diseases.

As promising as stem cell technologies are, some 
limitations still remain. One is the homogeneous cell 
composition of liver organoids that do not completely 
recapitulate the multiple cell types of the liver. To that 
end, Takebe’s group has made important steps toward the 
realization of more complex systems. In an initial study, they 
showed the association of iPSC-derived hepatoblasts with 
human umbilical endothelial cells (HUVECs) and human 
bone marrow-derived mesenchymal cells that generated 
foetal liver buds, which are able to engraft and vascularize 
in NOD/SCID mice (111). In a follow-up study, they 
showed the capability of liver bud formation by combining 
endodermal, endothelial and mesenchymal cells entirely 
derived from iPSC (112). In a more recent study, they 
were able to generate multi-cellular human liver organoids 
(HLOs) starting from foregut spheroids in a single protocol. 
The generated organoids contained epithelial cells (i.e., 
expressing hepatocyte and cholangiocyte markers) but also 
cells of mesenchymal origin (i.e., expressing stellate and 
Kupffer cell markers). Interestingly, in organoids derived 
from iPSC of patients with Wolman disease, a rare genetic 
condition characterized by a defective activity of lysosomal 
acid lipase, they found features of steatohepatitis that 
could be rescued by treatment with FXR agonists (96). 
A limitation of the study is that the functional activity of 
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each cell type was not fully characterized. Finally, the same 
group modeled a multi-organ (hepato-biliary-pancreatic) 
integrated system starting from iPSC spheroids, for 
the study of human organogenesis (113). Overall, these 
models are ways from having a clinical application and 
many challenges need to be overcome. However, they 
demonstrate how stem cell technology is fast evolving and 
how it might contribute to translational medicine.

Another limitation not yet completely solved is the 
need of ECMs, whose composition is not well defined, to 
initiate the 3D aggregation. In that regard, bioengineers 
are making a remarkable effort to develop new hydrogels 
with defined composition that support organoids 
formation and growth (114). 

Concluding remarks

With the rapid evolution of omics technologies, the 
acquisition of new tools for data analysis and integration 
and the continued reduction of costs for such a large-
scale approach, we will witness their introduction in the 
clinical practice in the near future. When combined, multi-
omics analysis will provide a useful snapshot of the disease 
mechanism and eventually be applied for the prediction 
of disease risk, for early diagnosis and the development 
of potential therapeutic targets. In this context, stem cell-
derived human models (i.e., iPSC and organoids) will help 
to tailor these approaches into biomedical applications for 
personalized medicine. 
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