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Clinical background

Central airway obstructions are generally defined as luminal 
obstructions of more than 50% in the trachea, mainstem 
bronchi, bronchus intermedius, or a lobar bronchus (1,2). 
Further, not only can these obstructions be categorized 
by the location in the central airway, but also by the 
type of tumor seen. Therefore, malignant central airway 
obstructions (MCAO) are further classified into intraluminal 
tumor growth (intrinsic), extraluminal tumor compression 
(extrinsic), or a combination of both (mixed) (3).

Locally advanced primary lung cancer is the most 
common etiology of MCAO (4). Of the roughly 200,000 
new cases of primary lung cancer per year in the United 
States (5), an estimated 30% will develop clinically evident 
endoluminal disease (5-7). Other primary malignancies 
of the lung or airway that lead to MCAO include adenoid 
cystic carcinoma, mucoepidermoid carcinoma, and 

carcinoid tumors (8-10). Structures adjacent to the lungs 
including esophageal, thyroid, and primary mediastinal 
tumors have also been described as causes of MCAO (11). 
Although locally advanced lung cancer remains the most 
likely etiology of MCAO, airway metastases from virtually 
any malignancy have been reported as well, particularly 
thyroid, breast, colon, renal cancer, and melanoma (11).

Presentation

The aggressiveness and location of the tumor will cause 
variation in patient presentation. Expiratory wheezing 
suggests intrathoracic airway obstruction, often distal 
to the carina. Stridor is generally a sign of extrathoracic 
obstruction (8). Mild symptoms of MCAO include cough, 
wheezing and exertional dyspnea (12). These symptoms 
may often be mistaken for obstructive airways disease such 
as asthma or chronic obstructive pulmonary disease (COPD) 
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and may lead to a delay in diagnosis. 
Most often, MCAO presents with clear signs and 

symptoms. In addition to wheeze or stridor, patients may 
have resting dyspnea, hemoptysis, or a history of post 
obstructive infections (13,14). However, CAO can be 
asymptomatic and occasionally found incidentally on chest 
imaging (8,15,16).

Non-bronchoscopic management techniques

Non-bronchoscopic management of MCAO includes 
chemotherapy, external radiation, and surgical resection. 
Both chemotherapy and radiation are frequently employed 
to manage central airway obstructions, but have limitations 
in the acute setting. Both modalities attempt to achieve 
the goal of tumor size reduction, but also require an ample 
amount of time to observe any symptom relief, if at all. 
Therefore, these modalities alone are often not feasible 
due to the severe progression of patients’ symptoms and 
most likely obstruction during inspection of the airway. 
Furthermore, chemo- and radio-therapy alone seldom 
can alleviate airway obstruction due to non-small cell lung 
cancer (NSCLC) (17).

Surgery may play a role in curative intent, although most 
malignant airway lesions are surgically inoperable due to 
advanced disease stage and therefore, require multimodality 
palliation (18).

Introduction to bronchoscopic techniques 

Patients with MCAO may present with various symptoms 
that require emergent (e.g., in cases of hemorrhage or 
acute respiratory failure) or non-emergent (e.g., ongoing or 
worsening dyspnea) intervention. Bronchoscopic techniques 
offer an ability to allow restoration of airway patency and 
improve palliative outcomes, regardless of the level of 
urgency (19). These options are often safer, cost effective, 
and pose less risk than benefit compared to invasive surgical 
options (20). 

In patients that may tentatively undergo surgical 
intervention, these techniques may also provide great 
benefit through providing better visualization of the 
airways, resolution of atelectasis, and subsequent ability 
to treat post obstruction infections, eventually optimizing 
candidacy and decreasing risk of failure (21,22).

Direct mechanical modalities

Bronchoscopy

Both rigid and flexible bronchoscopy are able to provide 
diagnostic and therapeutic interventions. The preference of 
scope may depend on many factors such as better control 
of the airway or larger size of working channel. These 
scopes are often combined during a procedure with flexible 
bronchoscopy performed through the rigid barrel to allow 
distal airway access or more nuanced articulation.

Rigid bronchoscopy has historically served as an 
important mechanical modality for dealing with MCAO. 
The use of rigid bronchoscopy has especially been useful 
in patients with an acute, unstable, airway (8). We often 
find that this tool serves to provide immediate relief and 
stabilization through the ability of securing the airway. 
A clear advantage of its use is the large channel allowing 
for entry of different therapeutic tools, ease of airway 
stenting, suctioning through the tube, all while providing 
ventilation throughout the procedure (23). The bevel of the 
bronchoscope itself can be used for debulking or “coring 
out” of an obstruction (24). Furthermore, the barrel of 
the bronchoscope in itself can be utilized to tamponade 
bleeding central lesions seen in malignant obstructions (25).

Cryorecanalization

While the cryoprobe may be used for standard probe 
cryotherapy with freeze-thaw cycles that serves as an 
indirect or delayed therapy, it may also be utilized for 
cryorecanalization (26). Contrary to the mechanism of freeze-
thaw cycles used in standard cryotherapy, cryorecanalization 
involves application of the cryoprobe directly applied to 
the tumor continuously for approximately 3–20 seconds, 
allowing freezing and adherence (26-30) (Figure 1).  
Quick  r emova l  o f  the  c ryoprobe  then  removes 
any frozen tissue still  adherent to the probe (31). 
Cryorecanalization allows for retrieval of the frozen 
tumor for pathology while simultaneously debulking the 
obstruction with rapid withdrawal of the cryoprobe (26).  
The main advantage of this approach is immediate 
debulking of the tumor, with a lower risk of perforation or 
residual stenosis (26,29). The maneuver is most often done 
with flexible cryoprobes via flexible bronchoscopy. 

The main disadvantage is removal of the specimen 
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en bloc with the bronchoscope as the frozen tumor is too 
large to pull through the working channel of the flexible 
bronchoscope. This leads to temporary loss of airway 
visualization and limited ability to inspect for hemorrhage 
and stop bleeding until the specimen is thawed in saline 
and the bronchoscope is re-introduced (28). This limitation 
can be mitigated with the use of suction via a rigid 
bronchoscope or alternating with a second bronchoscope, 
when available. Serious bleeding can occur using this 
technique and should be used with caution at centers 
without experience managing pulmonary hemorrhage. 

Microdebrider

This instrument is passed under direct telescopic guidance 
through rigid a bronchoscope or laryngoscope into the 
airway (3). Airway debulking is purely mechanical and 
performed by a rotating blade at the distal tip of the 
instrument (8). No pathologic specimen is obtained during 
the debulking process. The benefits of the microdebrider 
are the ability to rapidly and efficiently debulk while 
maintaining direct visualization through suctioning 
(8,27,32,33). Contrary to thermal modalities, the device 
does not pose a risk of airway fire and thus does not require 
a fraction of inspired oxygen (FiO2) less than 40% (24,32). 
As the microdebrider is a relatively new tool for debulking, 
further studies are required to evaluate safety and long-term 
outcomes. 

Stents

Airway stenting for MCAO is indicated in patients with 
pure extrinsic compression or a mixed obstruction where 

there is still significant obstruction after endoluminal 
debulking (34). Metallic and silicone are the two main 
types of airway stents currently available (35). Compared to 
silicone stents, metallic stents have better internal-external 
diameter ratio and therefore lead to larger airway lumens, 
are radio-opaque, making them easy to spot in imaging, 
and lower incidence of migration (36,37). However, silicone 
stent offer more choices in shape and size, including the 
ability to stent multiple airways with a single stent.

Metallic stents can be divided into covered and 
uncovered, as well as self-expandable metallic stents 
(SEMS) or fixed-diameter stents requiring balloon dilation. 
Although uncovered stents in theory do not interrupt the 
mucociliary clearance, they can be difficult to remove due 
to tumor or granulation tissue overgrowth through the 
stent fenestrations. SEMS can be placed using prepackaged 
deployment catheters through existing airways such as 
by laryngeal mask airway or rigid bronchoscope with 
real time guidance using a small flexible bronchoscope 
or by fluoroscopy (36,38-45). Smaller stent deployment 
catheters can now fit through the 2.8 mm working channel 
of a therapeutic bronchoscope, allowing for easy direct 
visualization of stent deployment. 

The main pitfalls of all stents are due to the rate of 
complications. Common complications include granulation 
tissue at the stent edges, epithelialization with incorporation 
into the mucosa, obstruction of the stent with mucous, stent 
migration with potential airway obstruction, airway injury 
with hemoptysis or perforation (37,46-50). Complications 
from stenting, including stent migration and stent 
obstruction by granulation tissue or secretions vary from 
approximately 20% to 50% (23,49). Regardless of the rates 
of complications, the overall mortality from stent placement 
is very low (38,51).

Direct thermal therapies

Similar to mechanical interventions, thermal techniques 
can provide immediate therapeutic relief through direct 
tissue destruction and relief of stenosis. Laser therapy, 
contact electrocautery, argon plasma coagulation (APC), 
and Corecath (Medtronic) have all been noted to be viable 
options for direct thermal intervention. 

Laser therapy

Light amplification of stimulated emission of radiation 
(LASER), uses its properties to deliver a precise beam 

Figure 1 Cryorecanalization with 2.4 mm cryo probe (Erbe).
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of thermal energy through a thin fiber to coagulate and 
vaporize tissue (4,52-54). The coagulative properties of 
laser can be helpful in providing hemostasis with superficial 
hemorrhagic lesions while the ablative properties of the 
laser are beneficial in debulking endoluminal masses (24). 
Flexible laser fibers can be positioned within the airway 
through the use of a flexible or rigid bronchoscope.

Tissue coagulation can be provided by a shallow 
laser effect at low power settings whereas high power 
settings allow for more penetration with more resultant 
carbonization and vaporization (24). Position of the laser 
fiber further (1 cm or greater) cause superficial penetration 
and better coagulation whereas closer distances (3–4 mm) 
cause deeper penetration and more efficient vaporization 
(24,52).

Several large studies have demonstrated the utility 
and effectiveness of neodymium-yttrium-aluminum-
garnet (Nd:YAG) laser photoradiation in airway tumor 
debulking. The technique involves a flexible fiber inserted 
through either rigid or flexible bronchoscope to emit 
the light beam (4). As the tissue penetration of Nd:YAG 
laser is approximately 10 mm, comparatively deeper than 
electrocautery and APC, the laser is directed parallel to 
the airway wall to reduce perforation and bronchovascular 
fistula (4,7,52) (Figure 2). Drawbacks included the inability 
to use this modality with higher oxygen requirements (FiO2 
>40%), similar to other thermal ablative techniques (55).

The use of Nd:YAG laser in the treatment of MCAO 
provides immediate palliation of symptoms (24,56-59), 
while allowing for minimal bleeding during debulking (55). 
If done with proper precautions, NDYAG has an excellent 
safety record (57,60-66).

Electrocautery

The utility of electrocautery devices is their simplicity, rapid 
palliation, and immediate tumor debulking (67). Through 
the use of a probe or device targeting tissue, electrocautery 
permits high-frequency electrical currents to be converted 
to heat energy for tissue coagulation or dissection of tumor 
tissue (68). The effects of thermal heat delivered through 
the use of electrocautery are dependent on the power and 
voltage of the electrocautery, tissue resistance, temperature 
at the tissue, and duration (52). Those factors will delineate 
if coagulation, hemostasis, carbonization, or vaporization 
will occur (69). 

Electrocautery can be performed with either flexible 
bronchoscope or rigid bronchoscopy (55). Soft or forced 
coagulation is used at 20 to 40 Watts in short bursts of 
>5 seconds with the blunt probe (70). This facilitates 
coagulation, at which point tissue can be removed through 
mechanical debridement. Increasing the activation and 
therefore contact time may also lead to tissue carbonization 
and vaporization (52). For lesions resting on a “stalk”, 
a snare may be utilized around the stalk to cut and 
subsequently coagulate the stalk, remove the tumor en 
mass. An electrocautery knife allows for more precise 
debulking of tumor (69). Electrocautery forceps allow for 
simultaneous tissue biopsy and subsequent cauterization 
though care must be taken to minimize thermal damage to 
sampled tissues (4,71). 

Potential complications include hemorrhage, airway 
perforation, airway fire, and scarring/stenosis (72). Care 
should be taken maintain an FiO2 level of less than 40%, 
and a power setting of less than 80 W, and application times 
greater than 5 seconds (54,69).

The Corecath (Medtronic) is a new electrocautery 
device that can be used with a flexible bronchoscope 
for therapeutic debulking of MCAOs. Through the use 
of flexible bronchoscopy, the Corecath allows for an 
electrosurgical means to debulk obstructions, provide 
hemostasis, and surgical smoke and blood evacuation 
through its integrated suction (73) (Figure 3). 

Overall, electrocautery is a cost friendly, efficacious, 
and safe modality in management of MCAO (20,74-76), 
with a success rate comparable to Nd:YAG laser, APC, and 
cryotherapy (69,77). 

APC

The use of APC began fairly recently within the realm of 

Figure 2 Neodynmium-Yttrium-Aluminum-Garnet (Nd:YAG) 
laser tumor cautery and vaporization.
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interventional pulmonology. The technique utilizes argon, 
a colorless, odorless, and chemically inert gas to pass down 
the probe (4). An ionized monopolar current is formed 
with argon gas and a high-voltage electrical field, targeting 
tissue and subsequently causing tissue coagulation or 
hemostasis (69) (Figure 4). 

A variety of probe styles exist to optimize energy delivery 
depending on the anatomy of the MCAO and position of 
the bronchoscope that best achieves visualization (52). As 
with electrocautery, the power setting, during of activation, 
and probe distance will delineate the type of tissue effect 
APC will have.

As penetration is relatively minimal, this modality 
provides coagulation and good control of hemorrhage 
(4,70,78,79). APC has the ability for hemostasis even if the 

precise origin of bleed is not known (23,70,78,80). 
Although highly effective in coagulation or granulation 

tissue debridement, the superficial penetration does 
not allow for effective vaporization or large scale tumor 
debulking (53). A risk unique to APC is argon gas embolism 
into the systemic circulation due to high gas pressure 
(69,81-83). Keeping flow to less than 0.80 L/minute has 
been shown to minimize the risk of gas embolism (84). Akin 
to other thermal modalities, other risks include airway fire 
and airway perforation. 

Indirect therapeutic modalities

Probe cryotherapy

Cryotherapy, a cold ablative therapy, is able to destroy 
tumor tissues through the use of cryogenic liquid gas 
(N2O, N2, CO2) utilizing a pattern of freeze-thaw cycles 
(41,85-88). A cryogen is defined as a substance used to 
produce very low temperatures. As gas is released from high 
pressure to the tip of a flexible or rigid probe, it expands 
and thus creates rapid cooling of the distal tip by the Joule-
Thompson effect (26). The degrees of temperature variation 
depend on the cryogen gas utilized. Low temperatures 
result in the immediate effect of dehydration and cellular 
crystallization as well as delayed effects of apoptosis and 
ischemia due to microthrombi formation (8,41,89-92).

The cryoprobe can be used either through flexible or 
rigid bronchoscopy (8). It is recommended to have at least 
3 to 5 repeated 60-second freeze-thaw cycles to the lesion 
to facilitate increased cellular damage (8,93,94). After 
the last completed cycle, the probe is retracted from the 
tissue, and placed several millimeters adjacent to the site 
for another three cycles, creating an overlap of treated area 
(86,95). Necrotic tissue can be removed on a subsequent 
bronchoscopy (86,96). 

Advantages of cryotherapy include the relatively low cost, 
virtually no risk of delayed stenosis, and positive hemostatic 
effect (88,92,97). Cartilage-like tissue, collagen, and poorly 
vascularized tissue are cryoresistant, and in turn decrease 
the risk of airway perforation, making cryotherapy one of 
the safest ablation techniques (8). Disadvantages include its 
delayed effects as stated previously, as well as limited depth 
of its cytotoxic action (8). The safety and efficacy of the 
therapy, incorporating factors such as successful removal 
of the obstruction, symptomatic improvement, and level 
of complications, indicate a highly effective therapeutic 
modality in MCAOs (26,96,98-104). 

Figure 3 Corecath (Medtronic) electrocautery and tumor 
debulking.

Figure 4 Argon plasma coagulation (APC) cautery using a straight 
fire probe (Erbe USA).
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Cryospray is a related technology where liquid nitrogen 
(N2) is rapidly forced through a disposable catheter that fits 
down the working channel of a flexible bronchoscope. The 
cryogen will spray directly on the tissue to cause an extreme 
cooling effect with passive thawing. The rapid expansion 
of such compressed gas requires an open ventilator circuit 
to avoid pneumothorax or other barotrauma. Preliminary 
studies are promising but the technique has not been widely 
described in large cohorts (26).

Photodynamic therapy (PDT)

Since 1911, porphyrin-based photosensitizers have been 
extensively researched for its utility in providing non-
thermal laser light to cause a phototoxic reaction which 
leads to cell death (23,89,105,106). This process is called 
PDT, with porfirmer sodium (Photofrin) currently being 
the most widely used agent (8,53,107,108). The mechanism 
involves direct cell damage by singlet oxygen, apoptosis, 
and indirect effect due to vascular stasis, inflammation, and 
immune response (8,89). 

Intravenous photosensitizer is injected in the systemic 
circulation that is the absorbed mostly by metabolically 
active cells including malignant cells, skin, liver, and 
spleen (109). A light probe is inserted through a flexible 
bronchoscope, activated at the target lesion to a specific 
wavelength to achieve a penetration depth of 5–10 mm 
(24,110). A repeat bronchoscopy is required to clean 
debris and necrotic tissue 72 hours after light therapy, with 
repeat PDT cycles performed if needed (23,24,54,111). 
To limit toxicity, light therapy is performed approximately  
48–72 hours after administration of photosensitizer to 
ensure clearance out of most normal tissue. Patients are 
advised to avoid light exposure due to partial retention of 
the compound for approximately 6 weeks (112). 

As PDT is a non-thermal ablative therapy, its use 
is advantageous in patients requiring higher oxygen 
demands, as the risk of airway fire is negligible compared 
to thermal therapies. Disadvantages of the therapy consist 
of photosensitivity, mucosal sloughing causing subsequent 
respiratory failure, repeated bronchoscopies to evacuate 
debris, as well as hemoptysis, bronchitis, pneumonias, and 
severe endotracheal candidiasis (113,114). Our practice 
is to observe patients for 48 hours post treatment with a 
repeat bronchoscopy to clear debris before discharge. An 
additional disadvantage is its high cost (23,85,111). The 
delayed effect of the therapy essentially rules out the ability 

of immediate support in imminent respiratory failure.

Brachytherapy

Brachytherapy is an indirect therapeutic option using 
ir idium-192 beads to provide local ized radiat ion 
therapy within or alongside a tumor in the airway 
with the assistance of graduated radiopaque catheter 
and bronchoscope (8,23,53). The gamma radiation 
emitted through brachytherapy does not cause direct 
killing of cells, but rather causes breaks within DNA 
and therefore lead to apoptosis and decreased cell 
proliferation (89,91).

Unfortunately, at this time, patient selection remains 
ambiguous, as there is lack of evidence to support dose-rate 
methods or prediction of tumor response (4). 

Clinical evidence of efficacy

Bronchoscopic interventions are often safer, promote 
superior cost effectiveness, and pose a better benefit to 
risk profile compared to open surgical options (20). These 
therapies are known to be effective in MCAO with further 
evidence showing it is the preferred method of palliative 
relief (27,59,68,115-117).

Studies have indicated significant improvement of 
6-minute walk test, FEV1, and FVC, dyspnea, and 
Quality of Life (QoL) by day 30 of post-intervention 
(17,59,118). Technical success rate has been recorded 
to be approximately 88–100%, while procedural related 
complications were recorded to be 3% to 20.4% and 
mortality of 1–3.1% (17,68,115,116,119-123). Stenting was 
in fact, recorded to have better success rates compared to 
ablative techniques (115). 

While complications and mortality rates vary, the 
patient population receiving interventions are frequently 
those with late-stage cancer and no further options 
for targeted treatment (123). The type of obstruction, 
extent, location, mechanism, symptoms, and stability of 
the patient need to be accounted for prior to choosing 
intervention (1,2,115,124). Utilizing rigid bronchoscopy 
for airway stabilization, followed by direct therapies such 
as mechanical debulking, thermal tools, cryorecanalization, 
and cryotherapy to combat endoluminal obstruction, 
with airway stenting to maintain airway patency when 
feasible, are an accepted approach for rapid restoration of 
the airway (8). Delayed bronchoscopic measures such as 
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PDT and brachytherapy in addition to therapies used for 
rapid restoration, can also be utilized in non-emergent 
obstructions (4). Overall, evidence supports the use of 
multimodality and multidisciplinary approach that focuses 
on a combination of interventions rather than just one in 
order to produce successful results (125,126).

 

Future directions

As we move into the future, new modalities give hope to 
additional effective and precise options while aiming to 
decrease risks and complications. New directions include 
but not limited to intratumoral chemotherapy (ITC) and 
transbronchial needle injection (TBNI), drug eluting and 
biodegradable stents.

ITC and TBNI are two new modalities that are 
showing promise in reducing tumor size, and improving 
airway lumen (127). Through the use of endobronchial 
ultrasonography (EBUS), needle catheters are used for drug 
delivery directly into luminal tumors or lymph nodes (128).  
Currently, a new micro-infusion device, Blowfish™ 
(Mercator MedSystems, Emeryville, CA, USA) is being 
investigated for its utility (128). Drugs being examined 
include, but are not limited to, cisplatin, 5-fluorouracil, 
bleomycin, carboplatin, para-toluenesulfonamide, and 
paclitaxel (128-131). Advantages of these modalities 
include better precision of drug delivery and higher tumor 
concentration (132). There remains mixed evidence on 
systemic effects and toxicity such as neutropenia in patients 
exposed to the intratumoral injection at this time (133). No 
other major side effects have been noted (128). Evidence 
demonstrates ITC and TBNI as a feasible therapeutic 
option in a multimodal approach of restoring airway 
patency in MCAO, although further studies on drug of 
choice and modality are warranted (133-136). 

Thus far, endeavors towards drug eluting airway stents 
remains suboptimal and may in part be due to other 
bronchoscopic modalities already available for palliation 
in patients with MCAO and concurrent low performance 
status (137). Therefore, as we approach the idea of airway 
drug eluting stents, prerequisites should be met in order 
to make the most ideal drug eluting airway stent. The 
stent should provide sufficient strength to maintain airway 
patency, be biocompatible so mucosal irritation will be 
negligible, have the ability to be biodegradable in order 
to prevent necessity of removal, and finally, provide drug 
therapy that in an effective manner (137). 
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