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Introduction

Among all lung primary pulmonary carcinomas, non-small 
cell lung cancer (NSCLC) accounts for about 75–80% 
of all cases of pulmonary malignancies (1) and radical 
surgery still remains the only treatment with curative 
intent. Different factors influence the best management 
of patients with NSCLC, including those associated 
with the patient (respiratory functions, performance 
status, past medical history) and/or related to the tumour 
characteristics (stage, molecular predictive biomarkers), 
including histology (or histological type) (2,3). Of note, 
epidemiologic works revealed a significant increase in the 
incidence of adenocarcinomas, particularly in women, from 
1979 to 1998 (4,5), possibly due to smoking habit and a 

different cigarettes composition leading to greater exposure 
of cigarette carcinogens in the peripheral alveolar regions of 
the lungs (6).

In regards with histological tumour definition, clinicians 
generally subdivide lung cancer into two major groups: 
small cell lung cancer (SCLC) and NSCLC (7). This 
dichotomic classification has been considered sufficiently 
exhaustive for the management of patients with lung 
cancer up to the introduction of chemotherapy regimen 
with pemetrexed and/or bevacizumab, requiring the 
NSCLC subcategorization at least into squamous versus 
non-squamous cell carcinoma (8-11). In the meantime, 
the huge amount of molecular information derived from 
gene expression profiling and next generation sequencing 
studies evidenced several genetic alterations in lung cancer 
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oncogenic drivers predicting efficacy using specific targeted 
molecules (small inhibitors and monoclonal antibodies), 
somehow limiting the role of tumour histotype (12-16).

Indeed, in the last decade the most important and 
effective changes in the therapeutic approach of patients 
with lung cancer are related to the discovery of molecular 
impairments  in druggable oncogenic drivers  and 
immunotherapy using humanized monoclonal antibodies 
blocking the programmed death (PD)-1/PD-ligand  
(PD-L)-1 checkpoint (12). In addition, the advent of liquid 

biopsy already permits to evidence key genetic alterations 
using highly sensitive methods to sequence DNA and  
RNA (13), preventing to obtain tissue samples using 
invasive procedures and facilitating the introduction 
of ongoing drugs against histology-agnostic genetic 
alterations (e.g., NTRKs) (Figure 1) (14-16). All these 
features are deeply challenging the role of classic lung 
tumor histologic definition and enrich the meaning 
of histology with additional molecular information  
(Figure 2).

Figure 1 A summarized landscape of lung cancer integrating predictive biomarkers, conventional histology and new available drugs from 
1970 to 2020.
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Figure 2 The ongoing multidisciplinary approach to lung cancer is deeply influenced by the introduction of liquid biopsy and NGS, 
somehow limiting the role of pathologists, bronchoscopists and radiologists. NGS, next-generation sequencing.
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Table 1 Immunohistochemical expression of the most common primary antibodies used in primary lung cancer

Antibody ADC SQC SCLC/LCNEC Carcinoid tumors Metastasis

TTF-1 ~80% Never  
(clone 8G7G3/3)

60–80% Peripheral type Endometrial cancer#

Napsin ~80% Never Never Never some renal cancer

CK7 Almost all 30–60% >50% >50% several other primaries

p63 30% Almost all Almost never Never SQC from other sites urothelial carcinoma

p40 Almost never° Almost all Almost never Never SQC from other sites urothelial carcinoma

CK5/6 10% Almost all Almost never Never SQC from other sites urothelial carcinoma

CDX2 Enteric, colloid Never 10–20% Never Colo-rectal ADC, ADC with enteric differentiation

CK20 Enteric, colloid, mucinous Never Never Never ADC with intestinal differentiation

ER/PgR 10–20%* Never Almost never Sometimes Breast, GYN tract
#, TTF-1 clones SPT24 and SP141 may be expressed in several extra-pulmonary tumors (e.g., breast and gastric cancer, mesothelioma); 
*, ER/PgR are mainly expressed at low intensity in well-differentiated adenocarcinoma arising in women; °, p40 is focally expressed in a 
small subset of lung adenocarcinoma. ADC, adenocarcinoma; SQC, squamous cell carcinoma; SCLC/LCNEC, small cell lung cancer/large 
cell neuroendocrine carcinoma; TTF-1, thyroid transcription factor 1; CK, cytokeratin; CDX2, caudal type homeobox 2; GYN, gynaecologic 
tract; GI, gastrointestinal tract; CK, cytokeratin; ER, estrogen receptor; PgR, progesterone receptor.

Histology is no more limited to morphology 

Histologic definition of lung cancer is based on criteria 
posed by the most recent 2015 WHO classification (17). 
Since more than two third of NSCLC are not resectable 
at diagnosis, histologic features derived from examination 
of surgically-excised tumors are not always translatable in 
cytology/small biopsy. In addition, limitation of histology-
based therapies relies in the simple distinction between 
squamous cell versus non-squamous cell carcinoma as the 
mainstay for clinical management of patients with NSCLC.

Although recommended for NSCLC subtyping, the 
helpful role of immunohistochemistry in supporting 
morphology is somehow limited by the “aberrant” 
expression of some biomarkers (e.g., p63 reactivity in 
adenocarcinoma or CK7 in squamous cell carcinoma) 
(Table 1). In this setting, the best single marker for 
adenocarcinoma is TTF1 (clone 8G7G3/1) and the best 
single marker for squamous cell carcinoma is p40, realizing 
a two-hit, sparing material algorithm suitable for both 
cytology and small biopsy specimens (Figure 3) (Table 2)  
(18-24).

The list of primary lung cancers identified in the WHO 
classification comprises 3 main categories (adenocarcinoma, 
squamous cell carcinoma, neuroendocrine tumours) and 
poorly-differentiated or undifferentiated tumours lacking 
any differentiation at light microscope analysis or extensive 

immunostaining [e.g., large cell carcinoma (LCC) and 
sarcomatoid carcinoma].

Limitations of conventional histologic examination 
to disclose the original cell differentiation in poorly-
differentiated/undifferentiated carcinomas are well-
demonstrated by recent molecular studies in large cell 
neuroendocrine carcinoma (LCNEC), undifferentiated 
LCC [namely NSCLC, not otherwise specified (n.o.s.) on 
cytology and small biopsy] and sarcomatoid carcinoma.

LCNEC has been considered a variant of LCC in the 
previous 2004 WHO classification (2) of lung cancer 
and then included as poorly-differentiated carcinoma 
into the rubric of neuroendocrine tumours in the last 
classification (17). The diagnosis requires a clear-cut 
neuroendocrine differentiation at morphology and at the 
immunohistochemistry level. The prognosis is quite similar 
to that of SCLC (17). However, the overall survival at  
5 years reported in literature is ranging from 13% to 51% 
in stage I, consistently suggesting that this challenging 
diagnosis depends on the application of rigorous pathologic 
criteria (25).

Indeed, next-generation sequencing (NGS) molecular 
analysis demonstrates that LCNEC is a biologically 
heterogeneous basket of tumours segregated in at 
least 3 main subgroups: SCLC-like (TP53+RB1 and 
MYCL amplification), NSCLC-like (lack of co-altered 
TP53+RB1 and mutations of STK11, KRAS, KEAP1) 
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Table 2 Immunohistochemical primary antibodies indicating cell differentiation in lung cancer

Histology First choice Second choice

Adenocarcinoma TTF-1 (clone 8G7G3/1) Napsin; CK7

Squamous cell carcinoma p40 p63; CK5/6; desmocollin 

NE tumors chromogranin; synaptophysin CD56

Others NUT (NUT-carcinoma)

CDX2 (adenocarcinoma, enteric and colloid variants)

SMARCA4 (undifferentiated SMARCA4-deficient carcinoma)

NE, neuroendocrine. 

Figure 3 A concise scheme illustrating the two-hits immunohistochemical algorithm in subtyping NSCLC using TTF-1 and p40  
(magnification ×200). NSCLC, non-small cell lung cancer.
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and carcinoid-like (MEN1 mutations and low mutation 
burden). SCLC-like showed higher proliferative activity 
than NSCLC-like tumours (P<0.0001), while NSCLC-
like LCNEC harboured distinctive genomic alterations, 
including mutations of NOTCH family genes regulating 
neuroendocrine differentiation (26).

In addition, Derks et al. (27) showed that LCNEC 
carrying a wild-type RB1 gene or expressing the RB1 
protein do better with NSCLC-like treatment (gemcitabine/
Taxol) than with SCLC-chemotherapy (etoposide), 

confirming previous experiences (28).
Karlsson et al. (29) investigated LCCs with (n=32) or 

without (n=41) neuroendocrine features using massive 
parallel sequencing for mutations in 26 cancer-related 
genes and gene fusions in ALK, RET, and ROS1. Based 
on immunostains, LCC without NE differentiation were 
subdivided in adenocarcinoma-like (TTF1/napsin +), 
squamous-like (CK5/p40) and “null” type. The most 
common alterations in LCC lacking NE features were TP53 
(83%), KRAS (22%), MET (12%) mutations, while TP53 
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(88%), STK11 (16%), and PTEN (13%) mutations were 
significantly higher in LCNEC, demonstrating that LCC 
with and without NE features follow different molecular 
pathways impacting in therapeutic decisions.

LCC is a non-small-cell carcinoma lacking morphologic 
differentiation of either adenocarcinoma or squamous cell 
carcinoma, basically representing a highly aggressive tumour 
with an end-stage cell differentiation (30,31). Rekhtman 
et al. (32) analysed 102 LCC with immunostaining (TTF-
1 versus p40) and molecular gene alterations (EGFR, 
KRAS, BRAF, MAP2K1/MEK1, NRAS, ERBB2/HER2 
mutations and ALK rearrangements versus PIK3CA and 
AKT1 mutations) for adenocarcinoma and squamous cell 
carcinoma, respectively. Of note, molecular alterations 
characteristic of adenocarcinoma occurred in tumours with 
immunoprofiles of adenocarcinoma or marker-null, but 
not in tumours with squamous immunoprofile (combined 
mutation rate 50% vs. 30% vs. 0%, respectively; P<0.001), 
whereas the sole PIK3CA mutation occurred in a tumor 
with squamous profile (5%). Then, the majority (80%) 
of LCC did represent poorly-differentiated forms of 
adenocarcinoma or squamous cell carcinoma.

Similarly, Driver et al. (33) reclassified 17 LCC as 
adenocarcinoma (9 cases with mutations in KRAS, EGFR, 
BRAF) and 8 as squamous cell carcinoma (PIK3CA, 
CDKN2A mutations) using NGS technology. Pelosi  
et al. (34) dissected 30 LCC by unsupervised targeted 
next generation sequencing analysis demonstrating that 3 
cases showing TTF1-/p40+ phenotype harboured TP53 
only in keeping with a squamous cell lineage, while the 
others 90% featuring various phenotypical combinations 
of TTF1 and p40 comprised ATM, BRAF, CDKN2A, 
EGFR, ERBB4, FBXW7, FLT3, KRAS, NRAS, PIK3CA, 
PTPN11, RET, SMAD4, SMO, STK11, or TP53 mutations 
in keeping with adenocarcinoma lineage. Another study 
investigating lineage-specific immunomarkers, EGFR and 
KRAS mutations and ALK rearrangement in 121 LCC 
along the spectrum of variants provided by the 2004 
WHO classification evidenced that all 47 LCNEC had a 
true neuroendocrine cell lineage without gene alterations, 
whereas all 24 basaloid and 2 lymphoepithelioma-like 
carcinomas showed squamous cell markers (35). Eighteen 
out of 22 clear cell carcinomas had glandular differentiation, 
with KRAS mutations in 39% of cases. Eighteen out of 20 
undifferentiated LCC showed glandular differentiation 
upon immunohistochemistry, with exon 21 L858R EGFR 
mutation in one (5%) tumour, exon 2 KRAS mutation in 
eight (40%) tumours, and ALK translocation in one (5%). 

All 6 LCC of rhabdoid type expressed TTF-1 and/or CK7, 
50% of which also harboured KRAS mutations (35). At the 
end, molecular alterations were restricted to LCC having 
an adenocarcinoma cell differentiation and stratification of 
LCC using immunohistochemistry and molecular analysis 
revealed a direct correlation between phenotypic and 
genotypic arrangements.

Sarcomatoid carcinoma is an umbrella term to indicate 
a group of poorly-differentiated/undifferentiated NSCLC 
showing sarcoma-like (giant and/or spindle cell component) 
or true sarcomatous (mainly chondrosarcoma, osteosarcoma 
and rhabdomyosarcoma) differentiation with or without a 
component of conventional NSCLC (17,36), then including 
different variants (pleomorphic, spindle cell, giant cell 
carcinomas, carcinosarcoma and pulmonary blastoma). 
Previous studies on relatively large series demonstrated that 
at immunohistochemistry thyroid transcription factor-1 
(TTF-1) and cytokeratin 7 were positive in 55% and 70% 
of spindle and/or giant cell carcinomas and 43% and 63% 
in pleomorphic carcinomas, supporting the metaplastic 
histogenetic theory for these tumours, ancestrally starting 
from a conventional histology possessing a genetic EMT 
program (37). Even at molecular level, sarcomatoid 
carcinomas harbour mutations involving oncogenic drivers 
of adenocarcinoma or squamous cell carcinomas, including 
KRAS, EGFR, TP53, STK11, NOTCH1, NRAS, PI3KCA 
and BRAF (38-40). A significantly higher rate of c-MET 
skipping mutations in exon 14 and MET amplification have 
been reported in this rare histology (41,42).

Finally, histology has also a role in explaining primary 
or secondary resistance to tyrosine kinase inhibitors (TKI) 
in tumours harbouring mutations or rearrangements in the 
most common oncogenic drivers, but also in chemotherapy 
and immunotherapy (43-67). Indeed, a histologic change 
from adenocarcinoma to small cell or squamous cell 
carcinoma have been well-demonstrated in about 10% of 
EGFR mutated or ALK rearranged lung cancer (68,69).

More rarely, a sarcomatoid “transformation” due to 
activation of EMT has been described by Hsieh et al. (48) 
in 6 cases of adenocarcinoma (5 EGFR mutated, 1 ROS1 
rearranged). Histologic change to sarcomatoid carcinoma in 
TKI resistant adenocarcinomas is accompanied by PD-L1 
over-expression and c-MET gene alterations.

The pass to sarcomatoid histology has been previously 
demonstrated in EGFR-mutated cell  l ines of lung 
adenocarcinoma, and concurrent acquisition of other gene 
alterations (i.e., T790M EGFR or NKx2-4 mutation) was 
recently observed (49-52).
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Histologic “transformation” has clearly a key therapeutic 
impact in predicting the urgent need for alternative 
therapies in NSCLC progressing on TKI.

Histology-based chemotherapy

While multivariate analyses on large cooperative groups on 
chemotherapy in advanced NSCLC stated that histotype is 
not a determinant factor of efficacy and have a little, if none, 
prognostic significance (7), alternative chemotherapeutic 
protocols have reported a different response rate in regards 
with lung cancer histology.

Tegafur-uracil in adjuvant setting improved overall 
survival of Japanese patients with stage I adenocarcinoma 
subtype (70). Again, Georgoulias et al. (71) revealed that the 
regimen including gemcitabine + docetaxel was significantly 
more effective in patients with adenocarcinoma histology 
than in non-adenocarcinomatous NSCLC. On the other 
hand, patients with non-adenocarcinoma NSCLC had 
a significant better response to cisplatinum + docetaxel 
than those with adenocarcinoma histology, then stating 
that histological type had an important predictive role at 
univariate and multivariate statistical analysis (71).

Another controversial lung tumour entity lacking 
standard chemotherapeutic protocols is LCNEC. As 
originally described by Travis et al. (72), LCNEC seems 
to have a very poor outcome, quite similar to SCLC 
with which LCNEC shares various genetic alterations 
(17,73). Recent retrospective studies have demonstrated a 
significant higher survival in patients receiving a SCLC-like 
chemotherapy protocol (platinum + etoposide/VP16) either 
in adjuvant and metastatic settings (28,74,75). In addition, a 
prospective study of adjuvant chemotherapy for pulmonary 
LCNEC by Iyoda et al. (75) confirmed that patients 
(n=15) undergoing cisplatin and VP16 after surgery had a 
significant survival improvement at 2 and 5 years. These 
results were subsequently confirmed in other works (26-
28), particularly when LCNEC had SCLC-type alterations, 
namely TP53+RB1 co-mutation/loss (26).

The key role of histologic subtyping in the best choice 
of chemotherapeutic protocols has recently merged from a 
planned subgroup analysis of the JMEN phase III clinical 
trial comparing pemetrexed and gemcitabine in association 
with platinum. More in details, Scagliotti et al. (11) reported 
a survival advantage for cisplatin + pemetrexed over 
cisplatin + gemcitabine (11.8 versus 10.4 months) in patients 
with non-squamous NSCLC, with a more impressive 
result in patients with adenocarcinoma (12.6 versus 10.9 

months; P=0.03). Of note, the analysis in the population 
with NSCLC n.o.s. failed to reveal a significant difference 
in survival. Based on this trial, histological subtyping was 
considered mandatory in planning a regimen with cisplatin 
+ pemetrexed in chemonaive patients with non-squamous 
NSCLC, lacking targetable genetic alterations and/or not 
amenable to immunotherapy.

Nevertheless, another phase III study enrolling 436 
patients did not demonstrate significant differences for 
quality of life and in overall survival between the two 
treatment arms (pemetrexed/carboplatin, 7.3 months versus 
gemcitabine/carboplatin, 7.0 months; P=0.63) with less 
hematologic toxicity and less need for supportive care (76).

In a phase II trial (10), 99 patients randomly assigned 
to bevacizumab or plus carboplatin and paclitaxel or 
carboplatin and paclitaxel alone, treatment with carboplatin 
and paclitaxel plus bevacizumab resulted in a higher 
response rate (31.5% vs. 18.8%), longer median time to 
progression (7.4 vs. 4.2 months) and a modest increase 
in survival (17.7 vs. 14.9 months). Bleeding was the most 
prominent adverse event and was major haemoptysis was 
associated with squamous cell histology, tumor necrosis 
and cavitation, and disease location close to major blood 
vessels. Then, patients with non-squamous cell histology 
appeared to represent a subset with improved outcome 
and acceptable safety risks. Based on this previous study, a 
randomized study by the Eastern Cooperative Oncology 
Group (ECOG) including 878 patients with recurrent or 
advanced non-small-cell lung cancer (stage IIIB or IV) 
compared chemotherapy with paclitaxel and carboplatin 
alone versus paclitaxel and carboplatin plus bevacizumab 
was designed, but squamous-cell carcinoma histology was a 
major parameter in excluding patients for enrolment (77). 

So, non-squamous carcinoma histology has become a 
selective factor when using chemotherapeutic regimens 
comprising pemetrexed or bevacizumab (78) (Table 3).

Histology, molecular biology and targeted 
therapy

Several lung cancer oncogenic drivers acting even as targetable 
genes are specifically related to adenocarcinoma histology, 
namely EGFR, KRAS, BRAF, HER2, c-MET mutations and 
ALK, ROS1, RET or NTRKs rearrangements (79).

In some way, these molecular alterations intrinsically 
possess a diagnostic value. In other words, the finding of the 
aforementioned genetic abnormalities consistently indicates 
that the analysed tumour has an adenocarcinoma histology, 
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although not in an absolute meaning (80-84) (Figure 4).
Indeed, sporadic reports have described cases of 

squamous cell carcinoma, SCLC/LCNEC, sarcomatoid 
carcinoma harbouring EGFR mutations or ALK and 
ROS1 rearrangements (85-87). Interestingly, clinical 
response to TKI in non-adenocarcinoma lung cancer 
with EGFR sensitive mutations is significantly lower than 
that observed in mutated adenocarcinomas and similar to 

chemotherapy (87).
Never the le s s ,  Coopera t i ve  Groups  (88 )  have 

prospectively performed a genome-based diagnosis testing 
5,145 lung cancer of different histology, successfully 
assigning a histopathologic type in 75% of cases. EGFR, 
KRAS, ERBB2, BRAF, STK11, ALK gene alterations 
and NKX2-1 amplification were significantly restricted 
to adenocarcinoma, whereas DDR2, FGFR3, NFE2L2 
mutations and SOX2 or FGFR1 amplification in squamous 
cell carcinoma. MYCN amplification and RB deletion 
occurred in SCLC. These important results open to a 
molecular diagnosis providing a genetic diagnosis/histology 
and oncogenic driver alterations permitting specific tailored 
therapies.

In  this  revolut ionary  landscape dominated by 
identification of molecular gene alterations and specifically-
related pharmaceutical agents using multigene panel by 
NGS broadly covering all types of lung cancer in routine 
practice, histology is losing its importance even in selecting 
molecular tests (89,90).

Indeed,  molecular  determinat ions  can a lready 
override histology in poorly-differentiated NSCLC 
resulting particularly challenging at light microscopy 
and immunohistochemistry (e.g., adenocarcinomas 

Table 3 Therapeutic agents requiring predictive determinations in 
NSCLC

Agent Predictive factor

Bevacizumab Histology (non-squamous)

Pemetrexed Histology (non-squamous)

EGFR inhibitors EGFR mutation

ALK inhibitors ALK rearrangement

ROS1 inhibitors ROS1 rearrangement

BRAF inhibitors BRAF (V600E) mutation

PD-1/PD-L1 blockers PD-L1 ≥50% (first line with pembrolizumab)

NTRK inhibitors NTRKs rearrangements

NSCLC, non-small cell lung cancer.

Figure 4 A real-life case of a 51-non-smoker woman with lung cancer diagnosed on plasma-NGS after a negative transbronchial biopsy. 
The finding of EGFR mutation (or other targetable oncogenic drivers) has a double meaning, permitting a diagnosis of adenocarcinoma and 
targeted therapy with an EGFR inhibitor. NGS, next-generation sequencing.

51-yr-old woman, non-smoker

Liquid biopsy:
EGFR del E746—A750

1. Therapy: EGFR TKI
2. Diagnosis: adenocarcinomaTransbronchial biopsy: no tumor cells
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with “squamoid” pattern, adenosquamous carcinoma 
or squamous cell carcinoma with pseudoglandular 
differentiation), finally revealing gene alterations specifically 
characterizing lung cancer histotypes (e.g., EGFR or 
KRAS mutations in adenocarcinoma or PI3KCA and miR-
205 in squamous cell carcinoma) concomitantly having a 
therapeutic significance (91,92).

Several studies investigating gene expression profiles 
and massively sequencing tumor DNA have proposed 
a molecular classification of lung cancer secondary to 
evidence of histology-specific genetic alterations, then 
improving the diagnosis and treatments particularly in 
adenocarcinoma. 

The seminal study by Bhattacharjee et al. (93) analyzed 
mRNA expression levels in 139 resected adenocarcinomas 
clustering expression data in distinct subclasses, evidencing 
1 subset with high relative expression of neuroendocrine 
genes and poor prognosis and demonstrating the ability to 
discriminate primary lung adenocarcinomas from metastases 
of extra-pulmonary origin. 

In comparison to conventional histologic classification, 
the added value of these studies is in highlighting the 
genetic complexity of lung cancer. In other words, dealing 
with a common squamous cell carcinoma, molecular 
analysis may reveal the hidden heterogeneity stratifying the 
tumor in different biologic entities. Wilkerson et al. (94) 
clustered squamous cell carcinomas at mRNA expression 
in at least 4 subtypes, named primitive, classical, secretory, 
and basal demonstrating the worst survival outcome of 
the primitive type (P<0.05) and the relationship between 
the different profiles and biological processes (primitive: 
proliferation; classical: xenobiotic metabolism; secretory: 
immune response; basal: cell adhesion).

Despite the literature clearly indicates that molecular 
alterations involving EGFR, KRAS, BRAF, HER2 and 
ALK or ROS1 rearrangements are basically detected in 
adenocarcinoma only or in combined adenocarcinoma 
(80,95-105), no study has been finalized at demonstrating 
the diagnostic role of mutational analysis in differentiating 
lung cancer histologic types. 

Several studies have identified genomic alterations 
and actionable mutations in lung adenocarcinoma and 
even in squamous cell carcinoma and SCLC (106-109) 
demonstrating that just a limited number of somatically 
mutated genes overlap all three subtypes and possibly 
permitting the use of a set of genes to address lung cancer 
diagnosis.

The increase incidence of adenocarcinoma histotype 

among all primary lung cancers may more likely lead to 
multiple lesions in the lungs. The distinction between 
different primary tumors or intrapulmonary metastases 
has a fundamental clinical value influencing the diagnosis, 
the tumor stage and then the patient management. Since 
it is not always reliable to distinguish separate primary 
lung cancers from intrapulmonary metastasis on histology 
and immunostains, Chang et al. (110) investigated the 
value of molecular analysis by NGS in 76 tumor pairs 
from 60 patients. NGS classified tumor pairs into 51 
definite separate primary cancers and 25 metastatic tumors 
evidencing discordant results with histology in 17 cases 
(22%), particularly in metastatic cancers (44% discordant). 
These results robustly support the diagnostic role of NGS 
to assist conventional histology and immunohistochemistry 
in defining primary versus metastatic multiple lung cancer 
in clinical practice.

Molecular histology in liquid biopsy

The diagnosis of lung cancer is generally based on 
identi f icat ion of  tumor cel ls  at  l ight microscope 
examination, but the ever increasing need to acquire tumor 
tissue to deeply investigate molecular profile in naïve 
NSCLC, the mechanisms underlying secondary resistance 
to TKI during disease progression and intratumor 
heterogeneity is partially hampered by the minimal 
availability of re-biopsy (111-117).

In the era of targeted treatments guided by recognition 
of “druggable” oncogenic drivers, the advent of liquid biopsy 
providing a comprehensive genetic profile of lung cancer 
through analysis of circulating tumor DNA (ctDNA), 
circulating tumor cells or exosomes is a revolutionary 
approach over conventional sampling procedures (118,119). 
Liquid biopsy is recommended in the new College of 
American Pathologists (CAP)/International Association 
for the Study of Lung Cancer (IASLC)/Association for 
Molecular Pathology (AMP) guideline for molecular testing 
of patients with NSCLC (113).

According to the statement paper from the IASLC, Rolfo 
et al. (120) proposed the use of liquid biopsy (circulating 
cell-free tumor DNA in plasma) in case of biopsy containing 
insufficient tumor tissue or when tissue specimens are not 
obtainable by traditional procedures (suboptimal clinical 
condition of the patients, unfavorable tumor site, high risk 
of major complications). Tissue biopsy is generally more 
expensive than a blood draw, particularly when repeated 
analyses are required during disease progression on targeted 
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therapy. In addition, liquid biopsy has a shorter turnaround 
time and is more representative of the entire biology of 
metastatic NSCLC. 

Zhang et al. (121) analyzed genetic alterations of 48 
tissue biopsy and matched liquid biopsy from early-
stage NSCLC using 546 genes capture-based NGS assay 
demonstrating a concordant setup, particularly in squamous 
cell carcinoma. Then, a model of 14 gene mutations (TP53, 
SLIT2, NOTCH3, MTOR, LIFR, MRE11A, AID2, ERCC3, 
KCNH2, CDC25C, RB1, ALK, NFE2L2, FBXW7) showed 
an overall accuracy of 90% in the training and testing set 
aimed at histologic subtyping. 

In previous studies, plasma NGS (probe set including 
KRAS, EGFR, ALK, HER2, BRAF, NRAS, PI3K3CA, 
MET, MEK1, TP53 mutations and ALK, ROS1, RET 
rearrangements) performed in progressive NSCLC 
was able to identify gene mutations, amplification and 
rearrangements with a specificity of 100% and a sensitivity 
of 77% when compared with tumor tissue genotype (122).  
In addition, plasma NGS permitted to recognized 
actionable gene alterations (EGFR mutation and MET 
amplification) in patients with incomplete tissue genotyping 
without false positive results. 

In another study, Müller et al. (123) investigated a 
cohort of 82 patients with non-squamous NSCLC by a 
massively parallel sequencing liquid biopsy assay covering 
39 genes (NEOliquid) matching plasma and tissue samples. 
The concordance was 98%, the sensitivity 70% and the 
specificity 100%. Among discordant cases, some cases 
had a driver mutation only in plasma (IDH1, RET, MET 
mutations).

More recently, Aggarwal et al. (13) prospectively enrolled 
323 patients with metastatic NSCLC routinely tested with 
plasma NGS using a 73-gene commercial platform. Among 
94 patients with plasma NGS alone there were 31 targetable 
mutations (33%), while the 229 patients with plasma and 
tissue NGS, an actionable mutation was disclosed in 47 
tissue biopsy (20.5%) and in 82 liquid biopsies (35.8%). 
The authors recommended an integration of plasma 
NGS testing into the routine practice, possibly increasing 
the spectrum of targetable mutations if compared with 
conventional tissue biopsy.

Finally, Zhou et al. (124) compared tumor DNA and 
cell-free DNA in 63 patients diagnosed as LCNEC 
by target-capture sequencing demonstrating that the 
mutation concordance was 90% and patients with LCNEC 
presenting a SCLC-like genomic subtyping (mutations or 
copy number loss in both RB1 and TP53) have a shorter 

overall survival and a superior response to etoposide-
platinum chemotherapy. 

Although liquid biopsy is still questionable in terms of 
sensitivity and not recommended to replace a diagnostic 
tissue biopsy, the aforementioned works consistently 
challenge this dogma (Figure 5).

Histology-agnostic therapy

Recently, the U.S. Food and Drug Administration has 
approved 2 drugs, pembrolizumab and larotrectinib, in 
a histology-agnostic setting. In other words, innovative 
clinical trials seem to favor the identification of targetable 
molecular alterations over conventional histology 
determining the tumor primary and histological tumor 
subtype (14,15,125).

Pembrolizumab, an anti-programmed cell death-1  
(PD-1) monoclonal antibody (mAb),  has received 
accelerated approval for the treatment of adult and pediatric 
patients with unresectable or metastatic solid tumors 
harboring microsatellite instability-high or deficient DNA 
mismatch repair. Similarly, nivolumab, another anti-
PD-1 mAb, experienced an accelerated approval for adult 
and pediatric patients with microsatellite instability-high 
or deficient DNA mismatch repair metastatic colorectal 
cancer progressed after standard chemotherapy. Finally, 
larotrectinib, an oral and selective inhibitor of tropomyosin 
receptor kinases (TRK), demonstrated unprecedented 
efficacy on unresectable or metastatic solid tumors with 
neurotrophic tropomyosin receptor kinase (NTRK)-fusion 
proteins in adult and pediatric patients (14,15,125).

All these data represent a novel and revolutionary 
approach to cancer treatment based on biomarker 
biomarker-selected patients and characterized by high 
clinical efficacy, durable response and unselected patients’ 
population. 

In other words, agnostic-histology development model 
of clinical trials together with the increasing accessibility 
to high-throughput genetic analysis (e.g., NGS) (126) and 
minimally invasive liquid biopsy could re-design the future 
role of conventional tissue biopsy and pathologists involved 
in oncology.

Conclusions

Despite the great efforts by an international panel of expert 
pulmonary pathologists of the WHO/IASLC in periodically 
developing new classification of lung tumours characterized 
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Figure 5 A modern management to lung cancer should take in consideration the simultaneously detection of diagnosis and actionable 
biomarkers performing liquid biopsy together with tissue biopsy.

Figure 6 The changing concept of histology in lung cancer, passing 
from a morphologic diagnosis at hematoxylin-eosin staining in the 
2004 WHO, through the introduction of immunohistochemistry 
in 2015 up to the possible addition of genetic information in the 
future WHO classification.

SUSPECTED ADVANCED L UNG CANCER

Liquid Biopsy Tissue Biopsy (if possible)

NGS (+/- PDL1)

No oncogenic driverOncogenic driver

Target Therapy Chemo/lmmunotherapy Target Therapy

Chemo/lmmunotherapy

HISTOLOGY in LUNG CANCER

Morphology on
H ematoxylin-Eosin

(WHO 2004)

TTF1

p40

TTF1

Morphology on
H ematoxylin-

Eosin, IHC,
NGS/Liquid Biopsy

(WHO 2020 ?)

Morphology on
H ematoxylin-Eosin
& IHC (WHO 2015)

by a good reproducibility and simplicity as well as clinical 
relevance, conventional histology will have a limited role in 
the future management of patients with lung cancer. 

The concept of histology (or tumour histologic type) 
significantly changed in the last years with the overbearing 
entrance of molecular information. Nowadays, the 
modern meaning of histology should incorporate key 
genetic information permitting a more precise diagnosis, 
a correct tumour stage in pulmonary multiple cancers and 
molecularly guided targeted therapies (Figure 6). 

The possibility to obtain robust histotype-related 
multigene data from liquid biopsy could partially replace 
the need for tumour tissue, dramatically introducing a novel 
and non-invasive paradigm in approaching patients with 
lung cancer.
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