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Introduction

The heavy water neutron irradiation facility (HWNIF) of 
the Kyoto University Research Reactor (KUR) is used for 
basic clinical research of boron neutron capture therapy 
(BNCT). Clinical BNCT studies using this equipment 
began in 1974 for brain cancer and malignant melanoma. 
More than 550 clinical studies have been performed, of 
which more than 80% have occurred since 2001. Recently, 

in addition to brain tumor and malignant melanoma, the 
adaptation of clinical cases has been expanded to recurrent 
head and neck tumors, liver tumors (1), mesothelioma (2),  
etc., and this approach has shown efficacy for each 
treatment. The main reasons for the increase in the number 
of cases are the use of epithermal neutrons, ability to 
irradiate in sitting positions, and a change in the structure 
of the equipment that allows access to the irradiation room 
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even during full-power KUR operation. To demonstrate 
the effectiveness of the BNCT, it is important to evaluate 
doses more accurately and to increase the number of cases. 
Accurate dosimetry is also necessary for a basic research 
performed in this facility, such as mouse and cell irradiation. 
At present, in clinical and basic research, the neutron dose 
is evaluated by the gold activation method. Although this 
method has the advantage of not disturbing the neutron 
irradiation field, the dose is evaluated after irradiation; 
thus, if the output of the nuclear reactor fluctuates during 
irradiation, there is the possibility that the necessary dose 
will not be accurately determined. In addition, the gold 
activation method is merely a point evaluation.

Fission chambers are used in reactor-based neutron 
sources such as Tsing Hua Open-pool Reactor (THOR) (3) 
and Finnish research reactor FiR 1 (4) with good detector 
performance by beam intensity monitors. However, it is 
difficult to introduce the fission chamber in Japan due to 
difficulties in obtaining permission.

Although two-dimensional evaluations are desired, they 
have not been performed owing to technical difficulties. In 
addition, to determine the exact doses to be administered 
to patients in clinical research and in basic experiments, it 

is required that the neutron flux be measured in real time 
during irradiation and that the irradiation can be stopped at 
the prescribed dose.

The real-time neutron measurement is performed as 
follows. The neutron field should not be disrupted as that 
with the gold activation method. The degradation due to 
irradiation is small. The count rate should measure the flux 
of the order of 109 n/cm2/s, and show good performance in 
terms of radiation resistance and gamma-ray discrimination.

In this study, we construct a real-time neutron detector 
by combining the scintillator and quartz fiber, satisfying the 
performance parameters described above. Furthermore, it is 
operated as a line detector. It is possible to measure the two-
dimensional neutron flux by the scanning method. We report 
on the count rate characteristics up to 109 n/cm2/s and the 
two-dimensional neutron distribution measurements using 
a nuclear reactor neutron source and an accelerator neutron 
source.

Methods

Neutron detector

Highly radiation-resistant materials are necessary for the 
irradiation field of the BNCT. Because a normal quartz 
fiber has a small bending radius, it is unsuitable for scanning 
the environment as required by this research. In contrast, 
a quartz fiber coated with a polyimide (Optical Fiber 
FV, Polymicro Technologies) was adopted because it can 
overcome the limitations of the bending radius (5).

An organic scintillator with a cubic shape and a side 
length of 2 mm was installed at the tip of a quartz optical 
fiber with length 6 m and core diameter 1 mm. To 
discriminate between gamma rays and neutron events, 
a 6LiF neutron convertor was surrounded by an organic 
scintillator. The quartz fiber was covered with a light-
shielding tube to prevent stray light input.

Figure 1 shows the schematic layout of the developed 
system. Scintillation light generated by the incidence of the 
neutrons and gamma rays was guided to a photomultiplier 
tube (PMT) by an optical fiber and fed to a discriminator 
through an amplifier (AMP). Signals above the threshold 
level were converted to digital signals by analog-digital 
convertor (ADC) and counted with a scaler with up to a 300-
MHz counting rate. The drive system consisted of a module 
that provided a pulse signal as an output for stepping motor 
control, a computer automated measurement and control 
(CAMAC) crate controller, and a personal computer. This 

Figure 1 Schematic layout of real-time thermal neutron monitor 
array.
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system could process input signals from many detectors at 
high speed. After counting the signals from each detector, 
this system drove the stepping motor to move the one-
dimensional detector array. The next measurement was then 
started. The gate signal that determined the measurement 
time could be changed from 1 to 99 s.

Because the stepping motor moved in 1 mm increments 
over 100 pulses, it was possible to move in increments of 
0.01 mm. The detection count during the measurement 
time was stored in the database.

Accelerator neutron source

To obtain the counting rate characteristics of this system, 
irradiation experiments using a cyclotron-based epithermal 
neutron source (C-BENS) were performed. C-BENS 
generates fast neutrons by injecting 30-MeV protons from 
the cyclotron accelerator into the beryllium target and 
generates epithermal neutrons through a moderator such 
as lead, iron, aluminum, and calcium fluoride. Details are 
provided in references (6,7). 

A 20-cm cubic water phantom was placed on an 
irradiation port of diameter 10 cm. A scintillator was set 
at a depth of 20 mm. A gold wire of diameter 250 µm and 
a gold wire in a cadmium cover were installed at a depth 
of 20 mm to measure the thermal neutron flux derived by 
the gold activation method. Because the gold-activated foil 
and scintillator were measured at the same position, there 
was no change in spectrum. Furthermore, as the capture 
cross-section of thermal neutron was larger than that of 
the epithermal and fast neutrons, the detector count was 

converted as thermal neutron flux.

Nuclear reactor neutron source

To confirm whether a two-dimensional distribution of 
neutrons can be acquired using this system, an irradiation 
experiment was carried out using HWNIF of KUR. In 
HWNIF, it is possible to moderate a range from fast 
neutrons from the reactor core to epithermal neutrons 
using aluminum and heavy water. Details are provided in 
reference (8). The irradiation field can form an arbitrary 
shape with a piece of LiF-containing polyethylene. The 
piece size was 15 mm in height, and the horizontal width 
was arbitrarily changeable. As shown in the Figure 2, 
a collimator irradiation field of size 105×110 mm2 was 
formed. A scintillator array was set in front of a collimator, 
and two-dimensional distribution was acquired by scanning 
the scintillator array.

Results

Count rate characteristic

 After the irradiation of the gold wire and the gold wire 
inside the cadmium cover set at a 20-mm water phantom 
depth, the saturated radioactivity of the gold was measured 
using a germanium semiconductor detector. The thermal 
neutron flux was derived from the cadmium ratio. The 
thermal neutron flux was estimated to be 1.1×109 n/cm2/s 
under the condition of a proton current of 1 mA.

Because the relation between the proton current incident 
on the beryllium target and the thermal neutron flux 
showed good linearity, the proton current was changed to 
obtain the relationship between the thermal neutron flux 
and the counting rate characteristic of this system.

The time trend of the current value when changing the 
proton current by 100-µA steps and the count number 
obtained with this system are shown in Figure 3. Figure 4 
shows the relationship between the thermal neutron flux 
at the depth of 20 mm in the water phantom and the count 
number of this system. The count rates of 1 and 0.9 mA are 
slightly saturated due to the double counting phenomenon. 
However, it was confirmed that this system can measure up 
to 8×108 n/cm2/s with good linearity.

Figure 5 shows the results of the response test of this 
system when irradiated with 1 mA of proton current under 
the condition of a thermal neutron flux of 1.1×109 n/cm2/s.  

Figure 2 Photograph of the experiment for measuring two-
dimensional thermal neutron flux.
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The counting rate of the system at 1.1×109 n/cm2/s was 
3,230 counts per seconds. As the proton current changed, 
it was confirmed that the count number of this system 
changed and the response characteristics were good. In 
addition, because there was no deterioration of the count 
number with time; it can be said that it also had radiation 
resistance characteristics.

Two-dimensional neutron distribution measurement

To perform the characteristic test of the two-dimensional 
thermal neutron detection system, a two-dimensional 
thermal neutron distribution was acquired in the HWNIF 
of KUR. The irradiation time at each position was 5 s. 
The data were scanned at intervals of 1 cm, and data were 
acquired from a total of 20 locations. The time taken to 
acquire one two-dimensional image was approximately  
3 min. Figure 6 shows the response of the thermal neutrons 
from scintillators No. 1–7 near the collimator. The distance 
between the scintillators was 2 cm. Monte Carlo simulation 
using PHITS 3.02 (9) was performed to confirm the 
disturbance caused by the array itself. The thermal neutron 
flux did not change when the adjoining scintillator was not 
installed. 

Detector position No. 4 was set to be the center of the 
collimator. The distance between the scintillators was  
2 cm, and the scintillator No. 1 measured the position  
60 mm above the center of the collimator. Scintillator  
No. 7 measured the position 60 mm below the center of the 
collimator. Scanning positions from 5 to 9 cm measured by 
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Figure 3 Relationship between elapsed time and proton current or 
detector counts.

Figure 4 Relationship between the thermal neutron flux at a depth 
of 20 mm in the water phantom and the detector counts.
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Figure 5 Results of the response test of this system when irradiated 
with 1-mA proton current.
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scintillator No. 6 had smaller fluxes than those measured by 
scintillator No. 2, indicating that the uppermost piece was 
asymmetrical in the left and right sides and was partially 
shielded as shown in Figure 2. In this way, when using a 
multi-leaf collimator, it is important to measure the two-
dimensional neutron distribution with quality assurance 
before patient irradiation. It was possible to measure the 
thermal neutrons shielded by the LiF-containing collimator. 
By narrowing the spacing between the scintillators, it was 
possible to obtain a more detailed distribution.

Discussion and conclusions

As a method for measuring thermal neutrons in real time, we 
developed a detector based on a combination of quartz fiber 
and a scintillator resistant to radiation. By installing this 
scintillator in the array, one-dimensional thermal neutron 
flux distribution can be measured. Furthermore, by scanning 
the one-dimensional array, we succeeded in acquiring 
the thermal neutron distribution in the two-dimensional 
position. We also confirmed that we can measure up to 
109 n/cm2/s thermal neutron flux using counting rate 
characteristics with an accelerator neutron source. In the 
future, we plan to adapt to the actual clinical setting.
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