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Background: To ensure high accuracy during radiation therapy (RT), the image-guided RT (IGRT) 
technique uses on-board cone-beam computed tomography (CBCT) scanning as an image guidance 
procedure for target localization before and during treatment. Adaptive RT aiming to modify RT target 
volumes according to kinetic changes in tumor shape during RT course is based on registration of CBCT 
and planning CT images. However, the re-contouring and re-planning procedures are extensively time and 
cost consuming. We developed a novel automatic contouring and image registration method to replace the 
manual re-contouring with accurate image registration. 
Methods: For the image sets with format of Digital Imaging and Communications in Medicine (DICOM) 
standard, we wrote a program in MATLAB language (Version R2016a) to read and convert CBCT 
images into cross-sectional (tomographic) images similar to those obtained via planning CT. For image 
enhancement, the active contouring by using Chan-Vese model with level set formulation was applied. To 
overcome the variations in spatial location of these two sets of CT images, the iterative closest point (ICP) 
algorithm was used for 3D model registration. The deformable image registration (DIR) with Double force 
Demons algorithm was performed for auto-transformation of contours from planning CT to CBCT images. 
Results: The customized program accurately converted the format of CBCT to planning CT. Image 
enhancement was achieved by our modified active contour model which solved the energy minimization 
problem. In 3D model registration, the variations in spatial location of the CBCT and planning CT 
images were corrected. After selection of most similar images, the planning CT images were registered to 
corresponding CBCT images. The registered images were clearer than CBCT images with removal of other 
confounding structures outside body contours. 
Conclusions: The planning CT and CBCT images could be precisely registered by using a novel 
established technique consisting of active contouring with 3D model and DIR. This technique would enable 
the on-line radiation treatment planning for adaptive radiotherapy.
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Introduction

In order to treat a patient’s disease via safe and effective 
modern radiotherapy techniques, radiation therapy (RT) 
procedures must include various stages: patient data 
acquisition, treatment planning, treatment simulation, 
patient setup, and target localization before and during 
treatment. High accuracy is required to align the patient 
with respect to the radiation beam during treatment. There 
are several types of image techniques for the visualization 
of soft tissue structures. The most extensively used of these 
techniques is image-guided radiation therapy (IGRT), which 
includes image guidance procedures for target localization 
before and during treatment. These procedures use imaging 
technology to identify and correct problems arising from 
inter- and intra-fractional variations in patient setup and 
anatomy, including planning target volumes (PTVs), the 
shapes of the treatment target, and the surrounding normal 
tissues, especially that of organs at risk (OARs). 

When easily correctable problems are recognized, such 
as dislocation, the couch can be shifted to match the original 
region. There are, however, some problems that cannot be 
solved directly, such as when a tumor changes its shape, size, 
or relative location to OARs, especially when said tumor 
is outside the treatment field. In such cases, re-alignment 
of the contour and treatment volume is the solution. 
The general procedure consists in arranging a computed 
tomography (CT) simulation and then contouring and 
planning again. Recreating a comprehensive treatment plan 
is complicated as well as time consuming and generally 
requires at least 4 to 6 days. The new plan cannot be 
immediately used on board when errors are detected, and 
the patient has to either be still treated using the old plan at 
incorrect locations or the treatment has to be temporarily 
halted, which decrease its radiobiological effects. When the 
new plan is available, the tumor might change its size, shape 
or location again. 

Ideally, we want change to contour and plan immediately 
when an error is found. This would require recontouring 
straight away and comparing the two isodose plans to enable 
professionals to make setup corrections or modify the 
treatment parameters to minimize the variations between 
the planned and the actual treatment. Such procedures 
fall into a category called image-guided adaptive radiation 
therapy (IGART). For such techniques, online rapid 
recontouring would be very convenient. However, there are 
some limitations: (I) the suitability of the software used for 
online contouring; (II) the image resolution of cone-beam 

computed tomography (CBCT) is not very high; (III) the 
time and personnel required for contouring.

We designed a novel system that combines: (I) active 
contouring, (II) 3D model registration to increase the 
signal-to-noise ratio of the CBCT images; (III) demons 
deformable image registration (DIR) to transfer the 
treatment contour from simulated CT images to the 
corresponding CBCT images. Based on current clinical 
practices, CBCT is the most commonly used IGRT 
technique during radiation therapy. Although CBCT shares 
many similarities with traditional (fan beam) CT, there 
are important differences, particularly for reconstruction. 
CBCT has the advantages of having a lower cost, a 
shorter scanning time (it can be completed in less than 
one rotation), and lower radiation doses (1). The wider 
collimation in CBCT leads to increased scatter radiation 
and degradation of image quality, as evidenced by artifacts 
and decreased contrast-to-noise ratio. The time required 
for image reconstruction is longer for CBCT (1 minute) 
compared with that for traditional CT (real time) because of 
the computationally demanding cone-beam reconstruction 
algorithms used. 

There are several research groups trying to improve 
the CBCT technique. For the reconstruction algorithm, 
there analytic 3D reconstruction algorithms (2,3) and 
statistical iterative reconstruction algorithms (4,5) have 
been developed. As for the problem of scattered doses, 
new methods have also been tried (6). To the best of our 
knowledge, there are no techniques or systems developed 
to combine the remodel CBCT images with auto-
contouring to match the traditional CT images. In actual 
practice, transformations between CT and CBCT images 
are associated with deformations. The first step consists 
in increasing the resolution and performing contrast 
enhancements. The second step consists in matching 
structures with the same isocenter and then perform an 
auto-contour.

In the present study, we established the 3D reconstruction 
algorithm and demonstrated the results as a basis for further 
research.

Methods

Loading the CT and CBCT images

Different medical institutions and linear accelerators for 
radiotherapy employ different secure data systems and 
unique recognition procedures. CBCT and traditional CT 
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use different file formats (CBCT data uses the extension 
*.his, whereas CT data uses *.dcm). They are both based 
on the Digital Imaging and Communications in Medicine 
(DICOM) standard. We need to develop a new system for 
loading the database. 

For loading the image database, we wrote a program 
in MATLAB language to read and convert CBCT images 
into cross-sectional (tomographic) images similar to those 
obtained via CT.

Increasing resolution and contrast enhancement

Previously reported methods for increasing contrast are 
histogram equalization (HE) and wavelet decomposition 
and reconstruction. They are used for enhancing medical 
images, but they decrease saturation at the same time. 
Adaptive histogram equalization (AHE) (7,8) was developed 
to solve this problem. 

De-noising is another practical approach. Some de-
noising methods, such as spatial filtering, Fourier-based 
spectral filtering, mean filtering (9), and Gaussian filtering, 
can successfully decrease noise but they make the margins 
of the image blurry. Median filtering preserves the margins 
but can overcut the image. 

Image registration

Where is the true location of the patient in real time? 
Unlike simulated CT images, the patient’s location in real 
CT images might have multi-directional errors in rotation, 
yaw, and/or pitch. The relationship between locations 
in two images can usually be determined via rigid-body 
transformations and by matching the isocenters of the 
two images (10). Auto-registration has been used in some 
algorithms, such as the Bone (uses the chamfer matching 
algorithm), GreyValue (11), and Demons algorithms 
(12,13). We tried these three methods and compared their 
advantages and disadvantages.

Auto-contouring 

Active Contour model (Snakes)
In order to extract the region of interest in the image, 
an image segmentation technique is required. Two types 
of methods are available: (I) identifying pixels and then 
carrying out a reconstruction; (II) contour the outline of 
the item of interest. The active contour model, also called 
the Snakes model (14), is usually used for this purpose. This 

algorithm can clearly determine the edges of soft tissues. 
Because they are based on different formulas, there are 
several subtypes of the Snake model. One of them is the 
Chan-Vese model, which is based on the Mumford-Shah 
functional and can be used to solve energy minimization 
problems. 

The core equation of the Snake model is shown in 
Equation [1]. 

1 2

2 2

1 2 0 1 0 2( , , ) ( ( , ) ) ( ( , ) ) +F c c C u x y c dxdy u x y c dxdy v C
ω ωΩ = Ω =Ω−
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1 2 0 1 0 2( , , ) ( ( , ) ) ( ( , ) ) +F c c C u x y c dxdy u x y c dxdy v C
ω ωΩ = Ω =Ω−

= − + −∫ ∫
Equation [1]: Core equation of the Snake model.
C indicates the contour. C1 is the average radiodensity 

(CT number, Hounsfield units) inside the contour and C2 
is that outside the contour. Ω means area; Ω1 is the area 
inside the contour and Ω2 is that outside the contour. µ0 is 
the origin of the image and ω is the target contour.

Equation [1] can be simplified as shown below in 
Equation [2]:

2 2

1 2 1 2( ) ( )
( ) ( )=

inside C outside C
F C F C uo c dx uo c dx+ − + −∫ ∫
Equation [2]: Simplified core equation of the Snake 

model.
F1 corresponds to the construction of contour C and F2 

corresponds to the dilation of contour C. The equation is 
balanced when the contour matches the margins of the item 
of interest. 

Actual practice

Using formal origin contour
Figure 1 shows an example situation. Figure 1A shows what 
happens when the construction force is higher than the 
dilation force (F1 > F2), resulting in contour construction. 
In Figure 1B, this situation is reversed as F1 < F2, resulting 
in contour dilation. 

Figure 1C shows an unbalanced situation, with the lower left 
region exhibiting contour dilation and the upper right region 
showing contour construction. Figure 1D indicates that the 
equation is balanced, resulting in no changes to the contour. 

It is not easy to change the location and size of a round 
origin contour. On the other hand, rectangular origin contours 
do not usually match the target shape and are time consuming. 

Using reformed origin contour
The first slice can be used to reform the contour from the 
formal origin contour. Then, the results (reformed origin 
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contour) can be transferred to the next slice directly. In this 
way, the shape of the template contour can be more similar 
to the target than round or rectangular shapes and achieve 
faster results. 

In actual practice, using reformed origin contour then 
remodeling as the sequence of steps presented in Figure 2.

Remodeling the reformed origin contour
Between slices, the image might undergo construction 
or dilation. The algorithm addresses certain problems 
during image construction in the next slide if the previous 
slice image is used as a template. These problems are, for 
example, when the margins cannot be found or when the 
contour is not correctly constructed. An addition algorithm 
was employed to detect changes in area between slices. If 
the area of the next slice is smaller, the contour is directly 
constructed on the template image. This addition results in 
a smoother and more ideal remodeling procedure. 

Extraction of the main body

The resulting image from the previous step is recognized, 
remodeled, and filled up. The filled-up image is compared 
and multiplied with the original image, allowing us to 
extract the main body (Figure 3).

3D model registration

The patient’s location cannot always remain the same in all 
directions. This also happens when matching CBCT images 
and simulated CT images. Therefore, we need 3D model 
registration to registration in giant view.

For dislocation between the images as in Figure 4, 
we used the iterative closest point (ICP) method (15) to 
reconstruct 3D models of the images to make a general 
comparison. The ICP method converts the images into 
a cloud of points and calculate the distances between the 
points to then construct 3D models, as shown in Figure 5. 
The 3D models are then compared in terms of offset angle 
and size to carry out any necessary corrections. 

Matching the most similar images

We used the matchTemplate method and the square difference 
matching method (method = CV_TM_SQDIFF) (16) to match 
the most similar images. We chose the least difference criteria 
to match the images. The procedure is presented in Figure 6.

DIR

We need an improved system and a method for precisely 
transforming CT images into CBCT images so as to enable 
the real-time treatment of the information comprising the 
treatment plan and CBCT image data.

How can CT image data be transferred to CBCT image 
data? We used the DIR method, which is based on the 
Demons algorithm. The latter was developed by Thirion 
in 1998 and is used to calculate the gradience and fluence 
of every spot in images for comparison purposes. It then 
indicates shifts in the shapes and locations of the image. 

The algorithm consists in the three following steps and 
Figure 7:

(I)	 Calculate momentum of every spot in the images 
according to the following equation:

( ) ( ) ( )
( 1)

2 2( ) 2 ( ) 2 ( )

( ) ( )dr
( ) ( )

k k k
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k k k
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= +

− + ∇ − + ∇

Where dr = (dx, dy, dz) indicates the location of each 
spot;

(II)	 Use a Gaussian equation to smooth the calculated dr;
(III)	 The smoothed dr is added to the vector field v(x)

and then Im is renewed.
These three steps are repeated until the equation is 

balanced.

Figure 1 Example situation of the active contour model.
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Figure 2 The sequence of steps for using reformed origin contour.

Figure 3 The result of extraction of the main body.

Input image

Input image

100 iterations

100 iterations100 iterations

100 iterations

Input image

Input image

Initial contour

Initial contour Initial contour

Global region-based segmentation

Global region-based segmentation Global region-based segmentation

Global region-based segmentation

Initial contour

50     100   150   200    250

50     100   150   200   250

50     100   150   200    250

50     100   150   200   250

250

200

150

100

50

250

200

150

100

50

250

200

150

100

50

250

200

150

100

50

A B

C D

CT image CBCT imageA B



Therapeutic Radiology and Oncology, 2019Page 6 of 9

© Therapeutic Radiology and Oncology. All rights reserved. Ther Radiol Oncol 2019;3:36 | http://dx.doi.org/10.21037/tro.2019.07.06

Results

The proposed novel system integrates data loading, image 
enhancement, reforming, auto-contouring, and image 
matching to make the auto-registration between CT and 
CBCT images possible. 

After increasing resolution, contrast enhancement and 
image registration, the auto-contouring was developed by 
the Snake model.

After solving several practical problems, the system was 
put into actual practice, as shown in Figure 8.

Reformed CT image was made using planning CT image 
and is the result of comparing and reforming. The shape 
was matched to that of CBCT image to achieve the clearer 
resolution and higher quality offered by CT images.

Discussion

Radiotherapy had widely used on-board CBCT scanning 

as image guidance procedure for target localization before 
and during treatment. This image technique has the nature 
advantages of having a lower cost, a shorter scanning time 
and lower radiation doses (17). It also has some limitation 
for the use in the practice, for example scatter radiation, 
degradation of image quality, different image database from 
traditional CT and lacking technique to match and modify 
these two kinds of images.

Some researchers used learning-based method to 
effectively capture the relationship between the planning 
CT and CBCT. It reduce scatter artifacts improving 
CBCT image quality to a level close to planning CT but 
not directly fit with the planning images (18). There was a 
study using MV CBCT images generated by proprietary 
3D reconstruction software based on the FDK algorithm 
for megavoltage treatment planning (19). It is feasible 
after phantom evaluation but the planning only based by 
low quality CBCT image. Most of the papers declared as 

CBCT CT 

Figure 4 Dislocations between CT and CBCT images. CBCT, cone-beam computed tomography.

Figure 5 3D models constructed from a cloud of points identified in the images.
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Figure 6 Procedure for matching the most similar images.

Figure 7 The deformable image registration method based on the Demons algorithm.
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Figure 8 The result of auto-registration between CT and CBCT images. CBCT, cone-beam computed tomography. 

adaptive radiotherapy and used offline CBCT data for check 
the dose quality control with the CTV-to-PTV margin and 
fraction dose recalculations. Based on my knowledge, there 
was no acceptable technique directly transfers online CBCT 
to be modified, registration and auto-contouring (20).

In order to change contour and plan immediately when 
an error is found, we require recontouring straight away to 
minimize the variations between the planned and the actual 
treatment.

We develop the new system for loading the CBCT 
and traditional CT database. Increasing resolution and 
contrast enhancement of CBCT image. Auto-contouring 
use the Active Contour model (Snakes) then remodeling 
the reformed origin contour for the actual practice. We 
used the ICP method (15) to reconstruct 3D models and 
the square difference matching method to matching the 
most similar images. Adaptive RT aiming to modify RT 
target volumes during RT course is based on registration 
of CBCT and planning CT images. This new technique 
can automatically online rapid re-contouring and match the 
CBCT and traditional CT images, saving the time and cost.

The dose calculation is based on an accuracy Hounsfield 
Unit (HU) and electron density. We modified the images 
from the planning CT (traditional CT). The HU data 
remained to depend on the original CT images even we 
changed their shapes. We had checked HU values after 
modifying the images. The HU values were similar to the 
planning CT except when the volume changed significantly 
for the reasons such as marked changes in body weight. 
In that case, we arranged re-simulation and used the HU 
values of the new planning CT for calculation.

The next step of the IGART is the re-planning. The re-
planning procedures had been developed by some company, 

for example the new Varian Linear Accelerator “Halcyon”. 
The combined of them might make the IGART in the real 
practice.

This isolated system can also be linking with the other 
radiation treatment procedure. It might make adaptive 
radiotherapy with proton or heavy ion technique possible. 

Conclusions 

This novel established technique consisting of active 
contouring with 3D model and deformable image 
registration. This technique would enable the on-line 
radiation treatment planning for adaptive radiotherapy.
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