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In a recent paper, Guo et al. (1) analysed the methylation 
of DNA fragments circulating in the blood plasma that 
are released when cells die. Their analysis used a novel 
approach to annotate DNA methylation and a methylation 
status score, which captures both average methylation level 
and the pattern of co-methylation. They were able to detect 
lung and colorectal cancers and to predict their tissue of 
origin.

Blood plasma contains cell-free DNA (cfDNA) 
originating from dead cells. This cfDNA is present 
at low concentrations (2) and increases when there 
is necrotic tissue in which more cells than usual are 
lysing and releasing their DNA (3). This cfDNA is 
fragmented into pieces with a modal length of 166 bp, 
approximately the size of DNA that is associated with 
a single nucleosomal unit (4). cfDNA in blood plasma 
has the potential to be a biomarker with strong clinical 
utility for diseases, such as cancer, as it is derived from 
almost all of the tissues of the body and is easily accessible 
through venepuncture. Therefore, cfDNA may be used 
to assess cancer in tissues that are not easily accessible 
for biopsy and monitor cancer progression, remission, 
and relapse over multiple time points. Abbosh et al. (5)  
have recently explored the application of cfDNA to track 
the evolutionary dynamics of early-stage tumours.

Epigenetic control of gene expression includes the 
methylation of DNA, especially in CpG dinucleotides. 
Specific patterns of DNA methylation are frequently 
characteristic of a given tissue. Consequently, analysing the 
DNA methylation pattern of a length of DNA can be used 

to predict from which tissue it originated (6). In addition 
to the mutational changes affecting the cancer genome, 
the DNA methylation patterns of cancer cells are highly 
disrupted, undergoing a global loss of DNA methylation as 
well as hypermethylation in specific regions including some 
tumour suppressor genes (7). Changes in the underlying 
genetic sequence can also produce alterations in the 
DNA methylome. Thus, Guo et al. (1) have examined the 
methylation of cfDNA in an attempt to detect cancer and 
predict its tissue of origin (Figure 1).

The methylation status of CpG sites adjacent to one 
another in the genome is correlated (8) and is strongly 
predicted by CpG density (9). Groups of CpGs are 
frequently more informative about the functional status 
of their genomic locus than are individual CpG sites (10). 
In order to annotate the cfDNA methylation profiles with 
features that would provide more useful information, 
the authors drew an analogy between these correlated 
methylation states and the correlation of genotypes at 
adjacent loci. They made use of the same mathematics 
underpinning the concept of linkage disequilibrium (LD) 
in order to annotate co-methylation blocks, which they 
termed methylation haplotype blocks (MHBs). In order to 
score these features according to both their methylation 
level and their degree of co-methylation, they described a 
metric called methylation haplotype load (MHL). MHL 
is a weighted mean of the fraction of all possible fully 
methylated substrings of the region for which the MHL is 
being measured. Importantly MHL is able to distinguish 
between features with the same methylation levels and 
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different degrees of co-methylation.
Using 61 whole-genome bisulfite sequencing (WGBS) 

datasets drawn from human primary tissues, primary 
tumour samples, progenitor cells and cancer cell lines the 
authors identified 147,888 MHBs. These MHBs had an 
average size of 95 bp, and contained a minimum of 3 CpG 
sites per block, representing ~0.5% of the human genome. 
Most MHBs exhibit perfect coupling of their constituent 
CpGs, with r2>0.9 in 94.8% of MHBs in cultured stem 
and progenitor cells; 91.2% of MHBs in somatic cells 
from mixed primary adult tissue; and 87.8% of MHBs 
from mixed colorectal and lung cancer tissues and cell 
lines. This decline in the correlation of CpG from stem/
progenitor cells, through somatic tissue, to cancer cells 
is consistent with previous observations of increasing 
disorder in methylation across these tissues (11). 41.1% of 
MHBs were intergenic while 58.9% are within transcribed 
regions. MHBs were enriched in functional loci, including 
enhancers, promoters, CpG islands and variably methylated 
regions. To calibrate their cancer status prediction 
models, they looked at the MHL of MHBs in 158 reduced 
representation bisulfite sequencing (RRBS) data from 
healthy and disease, plasma and primary tissue datasets. 
They parameterised their tissue of origin prediction model 

with 43 mixed WGBS and RRBS samples from 10 healthy 
human tissues.

This cfDNA methylation study exploited techniques 
for the epigenetic analysis of small quantities of DNA 
developed for single-cell sequencing (scRRBS) (12). The 
authors were able to detect lung and colorectal cancer and 
identify their tissue of origin. They identified colorectal 
cancer and lung cancer with 96.7% and 93.1% sensitivity, 
and 94.6% and 90.6% specificity, respectively. In the 
detection of cancer, the MHL metric outperformed mean 
methylation and individual CpG methylation scores of 
MHBs. Samples were classified according to their tissue 
of origin with an accuracy for colorectal cancer of 82.8%, 
lung cancer of 88.5% and healthy tissue of 91.2%. Tissue of 
origin classification performance was best when limited to 
tumour samples of less heterogeneous clinical status.

The analysis of small quantities of DNA present in 
cfDNA shares many of the same limitations as does single 
cell DNA methylation profiling. Specifically, there is a 
tendency to get reasonable quality data for a quasi-random 
subset of the genome with other areas left essentially devoid 
of useful information. Therefore, there may not be data 
on the regions that possess the most predictive value in the 
models.

Figure 1 cfDNA DNA methylation methodology employed in Guo et al. (1). When cells die, they release short fragments of DNA into the 

bloodstream (cfDNA). This DNA can be extracted from blood cells and have its methylation state analysed. Individual sites of methylation are 

grouped together by how correlated neighbouring sites are (MHBs). These blocks are scored according to the extent and pattern of their methylation 

(MHL). The scores of these blocks are then used to predict the cancer status of an individual and the tissue of origin of that cancer. cfDNA, cell-free 

DNA; MHBs, methylation haplotype blocks; MHL, methylation haplotype load. Figure partially adapted by permission from Macmillan Publishers 

Ltd: Nature Genetics DOI: 10.1038/ng.3805, (c) 2017.
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Whilst the authors found support for their MHBs 
through higher correlation of CpGs within MHBs in 
RRBS and even Illumina Infinium HumanMethylation450 
BeadChip (450 k array) data, their initial WGBS discovery 
dataset was quite small given the number of tissues that 
they examined. Additional data will be needed to establish 
which MHBs are the most robust and reproducible. The 
MHB features and MHL metric developed here may have 
potentially useful applications in the wider study of DNA 
methylation. MHBs may be able to identify functional units 
of methylation in a way that differs from existing approaches 
such as those based on CpG density, differentially 
methylated regions and differentially variable regions. 
MHL scores could be used in place of average methylation 
levels of features in contexts where both methylation level 
and the extent co-methylation are pertinent.

At this point, the sensitivity and specificity of this method 
as a diagnostic test for cancer and the accuracy of tissue 
of origin prediction are too low for application in most 
clinical settings. However, this model was constructed on 
a relatively sparse dataset and more extensive training data 
may produce improvements in predictive quality. As the 
authors noted, an additional area to investigate will be to 
attempt training of a model on blood samples from patients 
drawn at various time points prior to cancer diagnosis to 
assess the utility of this method in early detection. Given 
the level of accuracy that was achieved with the available 
data, along with the ever-declining costs and increasing 
performance of the technologies involved, this approach 
could become practicable for use in clinical settings in the 
relatively near future.
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