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Osteoarthrit is  (OA) is  the most common chronic 
degenerative disease of the joint for which more than 1/3 of 
the population after 60 years old have radiographic signs for 
knee OA (1). OA has pejorative consequences on quality of 
life and working abilities, leads to a social isolation in elderly 
and has a significant impact on the public health costs.

To date, no validated curative medical treatments for 
OA are available. New “symptomatic slow-acting drugs” 
such as glucosamine and visco-supplementation with 
hyaluronic acid are used in OA, but they still lack evidence 
for efficiency on long-term structural articular remodeling 
(2,3). Therefore, OA still shows a huge unmet need while 
symptomatic painkiller treatments and physiotherapy 
remain the main alternatives before prosthetic surgical joint 
replacement.

A range of clinical risk factors favors OA development. 
Next to local risk factors with overweight and life-driven 
repetitive or acute mechanical stresses, there are also 
systemic risk factors. Among them, the first one is ageing. 
Indeed, knee OA rate increases continuously with age, with 
the highest relative risk between 70–75 years old (4). 

For long, OA was only considered as a degenerative 
disease of the cartilage per se. However, other joint structures 
play roles in OA etiology. Synovial membrane, that acquires 
inflammatory hypertrophic phenotype, contributes to 
symptoms severity, osteophytes formation and even articular 
erosion (5). Furthermore, remodeling of the subchondral 
bone is not only a consequence but also rather an active 
component of the disease, generating pain and articular 

loss of function (6). Thus, recent data teach us that OA is 
more a global and heterogeneous joint disease with both 
inflammatory and metabolic components. A new emerging 
theory linking age-related OA pathology and inflammation 
reveals the role of cellular senescence in OA onset, as 
recently demonstrated by Jeon et al. in Nature Medicine (7). 
Cellular senescence is a permanent cell proliferative arrest 
induced by intrinsic signals including telomere erosion but 
also extrinsic inappropriate stimuli such as free radicals or 
chronic exposure to inflammatory cytokines (8). Senescence 
is associated with dramatic changes in cell morphology, 
metabolism, epigenetic and genes expression (8). Several 
cyclin-dependent kinase inhibitors including the hallmark 
p16INK4a participate to senescence onset (9). Senescence 
program will thus trigger changes in cell functions pushing 
toward a terminal differentiated phenotype (10) meanwhile 
influencing tissue homeostasis through the establishment 
of one specific secretory phenotype so-called SASP for 
“senescence-associated secretory phenotype” (11). 

Cellular senescence features on chondrocytes have been 
found for years in articular cartilage isolated from OA 
patients compared to matched-age non-OA donors (12).  
Indeed OA chondrocytes harbor premature telomeric 
shortening (12), DNA damage accumulation (13) meanwhile 
an increase in p16ink4a expression and p16ink4a-dependent 
MMP-1 and MMP-13 metallo-proteases secretion (10). 
All these events seem to be deleterious for cartilage 
maintenance although still lack a causal demonstration for 
the role of cellular senescence in OA development
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In the recent Nature Medicine volume, Jeon et al. 
demonstrate for the first time a clear correlation between 
OA onset and accumulation of senescent cells in joint of 
surgically induced OA murine models. They took advantage 
of two transgenic murine models allowing non-invasive 
detection of senescent cells and their specific elimination 
after pharmacological challenges. The first model, p16-3MR,  
consists in mice driving a luciferase fused with a truncated 
form of herpes simplex virus 1 thymidine kinase under 
the control of p16INK4a promoter. The second one INK-
ATTAC mouse consists in p16INK4a-driven expression of 
luciferase and caspase 8 suicide gene. Both models allow 
monitoring of p16INK4a-positive senescent cells through 
luciferine delivery and their selective elimination in 
response to ganciclovir or AP20187 respectively. Jeon et al.  
first monitored the presence of articular senescent cells 
in 2-month-old p16-3MR mice following OA induction 
after anterior cruciate ligament transection. Using intra-
articular luciferase injection, they could reveal a significant 
pick in senescent cells accumulation at 14 days post-surgery. 
Following immunohistochemistry staining, they detected 
p16INK4a-positive senescent cells in activated synovium and 
in the superficial cartilage zones. 

To determine whether articular p16INK4a senescent cells 
are responsible for OA onset, they elegantly eliminate these 
cells in the knee of animals that underwent surgery by 
intra-articular injections of ganciclovir. Local elimination 
of articular senescent cells was associated with less cartilage 
degradation, less cartilage expression of inflammatory 
markers such as IL-1β and less hypertrophic catabolic 
markers such as MMP-13. One of major interest of these 
studies was to find a higher expression level for two  
pro-chondrogenic markers namely collagen type IIB and 
aggrecan in treated mice. To bring further convincing 
argument, the authors used the second transgenic model 
to study spontaneous OA onset in older mice. Remarkably, 
treatment by AP20187, delivered in 12-months-old 
INK-ATTAC mice up to their natural death, maintains 
healthy cartilage and therefore reduces the appearance of 
spontaneous age-related OA signs. 

Senescent cells are characterized by their resistance to 
apoptotic signals through up-regulation of anti-apoptotic 
BCL2-BCLX pathway (14). Several teams in the world have 
recently validated drugs that could specifically trigger cell 
death on senescent cells by targeting this anti-apoptotic 
axis. Thus, several of these so-called senolytic drugs, 
including UBX0101 (also known as ABT263), have already 
been validated as anti-senescent treatment in mice suffering 

from different age-related diseases (15): for instance, 
senolytics improved cardiac function in old mice (16), 
prevented osteoporosis (17), delayed loss of intervertebral 
disk proteoglycans in progeric Ercc-/Δ mice (16), reversed 
irradiation-induced pulmonary fibrosis (18) and depleted 
senescent hematopoietic and muscle stem cells in old mice (19).

To test the efficacy of such senolytic drugs as new 
innovative OA treatment, Jeon et al. performed 6 intra-
articular injections (every 2 days) of UBX0101 in 2-month-
old mice, 14 days post-surgery when articular senescence 
was the highest. Results were impressive: UBX0101 
significantly reduced p16INK4a senescent cells induced by 
surgery, but also cartilage degradation and OA-related 
pain after 28 days. Moreover, UBX0101 treatment reduced 
MMP-13, IL-6 and IL-1β expression in cartilage while 
promoting neo-cartilage formation, with an increase in 
collagen type II and aggrecan production. The authors 
concluded that UBX0101, by eliminating articular senescent 
cells, reduced experimental post-traumatic OA symptoms 
and disease severity in mice. Furthermore, UBX0101 
stimulated new cartilage formation.

To translate these results from murine models to 
human OA patients, Jeon et al. offer convincing in vitro 
evidences. Using monolayer and 3D culture of human 
chondrocytes isolated from late-stage OA cartilage obtained 
after arthroplasty surgery, they showed that UBX0101 
treatment reduced the expression of senescence- and OA-
associated genes and even increased the proliferation rate 
of the remaining chondrocytes, indicating new cartilage 
growth. By eliminating senescent cells, UBX0101 not only 
removes a causative actor in OA process, but also restores a  
pro-chondrogenic environment. Thus, the authors add a 
new and promising category of drugs in the therapeutic 
arsenal of all physicians involving in OA management.

As for every new major step in medicine, several 
questions should be solved before UBX0101 human 
application in OA. First, UBX0101 is already used to 
treat cancer in phase I/II trials (20) and side effects, 
e.g., thrombocytopenia, have been described (21). The 
author’s choice to inject locally the drug is reassuring: the 
systemic exposure in this case was very low (only 3,3% of 
the intra-articular dose) in mice. We can hypothesize that 
the systemic toxicity will be negligible in intra-articular 
treated patients. Nevertheless, the patient’s fear for such 
molecules could become a problem. To circumvent this 
potential limitation, several other molecules less toxic (e.g., 
the flavonoid quercetin) have been screened for senolytic 
properties (16) and could be proposed as an alternative.
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In daily practice, patients usually present late-stage 
disease with severe cartilage lesions. Jeon et al. also answered 
this question by injecting UBX0101 in young mice not 
only 14 but also 42 days after OA induction, when cartilage 
degradation was higher. They still observed an increase 
in cartilage staining and chondrogenic genes expression, 
suggesting that UBX0101 was also efficient in later-
stage disease. However, UBX0101 was not able to reduce 
abnormal subchondral bone remodeling and osteophyte 
formation in these mouse models. The authors suggest that 
the local injection did not allow the drug to reach the bone. 
This could be a clinical limitation, as subchondral bone 
modifications are able to modulate OA severity (6).

Lastly, OA prevalence increases with ageing (4). To 
extrapolate their models to the elderly, 19 months old mice 
were used. The systemic removal of p16INK4a senescent cells 
markedly reduced the spontaneous age-related cartilage 
degradation, confirming that targeting senescence was also 
promising in older patients. However, in this case, intra-
articular injection of UBX0101 alone had no impact on 
cartilage degradation and did not enhance chondrogenic 
genes expression in old mice. Thus, as discussed, intra-
articular injection in aged patients would probably not be 
enough and a systemic treatment should be considered. The 
risk-benefit ratio of systemic administration of anti-cancer 
therapies to delay OA onset must therefore be carefully 
investigated. 

In conclusion, evidences are accumulating that link 
cellular senescence features and numerous age-related 
pathologies including osteoporosis, sarcopenia or heart 
hypertrophy affecting elderly (15). Demonstrating that 
senescent cells are participating to OA onset is the 
major finding of this study paving thus the way to very 
promising innovative senolytic drugs-based treatments 
for OA. Nevertheless, one has to keep in mind that 
cellular senescence is also a physiological positive process 
implicated in wound healing, tumor suppression, immune 
and anti-viral responses, among others (22,23). We thus 
lack the perspectives on long-term effects and safety for 
senolytic treatments on human health. So the road is still 
long before celebrating the end of orthopedic surgery to 
treat OA. 
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