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Cancer arises as a result of a multi-step evolutionary process 
that is manifested on a genetically and epigenetically 
heterogeneous population of cells and currently is one of the 
leading causes of morbidity and mortality worldwide (1,2).  
In a Darwinian sense, “survival of the fittest” correlates 
with the selection of the most proliferative, invasive and 
tumorigenic cell type (3). Despite recent advances in 
diagnosis as well as development of targeted therapies and 
therapeutic interventions, there is a projection for a 50% 
increase in new cancer cases and a 60% increase in cancer 
associated deaths in the following two decades according to 
the World Health Organization (WHO). As the majority 
of cancer related deaths are due to the development 
of metastatic disease, this greatly reflects our limited 
understanding of the key processes that drive human cancer 
and lead to disease progression. Moreover, it highlights the 
ineffectiveness of current therapies that are most commonly 
followed by the development of resistance, as well as the 
inability to reinstate tumor suppressor gene function. 

From a therapeutic standpoint, the ultimate goal is to 
develop therapies that target cancer-relevant genetic alterations 
and benefit cancer patients by prolonging their life expectancy. 
Collaborative efforts such as The Cancer Genome Atlas 
(TCGA) and the International Cancer Genome Consortium 
(ICGC) initiative, employ next generation sequencing to 
catalogue the genetic as well as the molecular and epigenetic 
heterogeneity in different cancers and metastatic sites in a 
large number of patients (4,5). The emerging data can be 
better exploited by understanding how genetic driver events 
rewire the tumor cells’ transcriptional network to impact 
survival and phenotypic fitness of different cancer types 

in accordance to their unique tumor microenvironment. 
Interestingly, successful therapeutic approaches suggest that 
the genetic drivers that sustain tumor malignancy are actually 
quite few, with most cancers being dependent on one or few 
oncogenes or oncogenic pathways. For example, tumors 
can be commonly classified by a single genetic driver event 
such as estrogen receptor (ER) or epidermal growth factor 
receptor 2 (HER2) expressing breast cancer, BRAF expressing 
melanoma and so forth. This phenomenon has been termed 
as “oncogene addiction” and it highlights the central role of 
oncogenes in rewiring transcriptional networks in dependent 
cancer cells (6,7). Therefore, unraveling the new network 
nodes and interactions in cancer cells and understanding the 
interplay with the tumor microenvironment as well as the 
effect of current treatments in reshaping these networks is 
fundamental for the development of more effective targeted 
and combination therapies (6). With a prerequisite for a well-
characterized genetic background, functional genomic screens 
can help unravel these novel network relationships and growth 
vulnerabilities in cancer cells. 

To this end, in the recent publication of McDonald et al.,  
a large RNAi screen was performed in order to uncover 
cancer dependencies and to define protein interactions 
and networks that are pivotal for cancer survival. This 
project is termed DRIVE (deep RNAi interrogation of 
viability effects in cancer) and in detail, the authors targeted 
7,837 genes with an average of 20 shRNAs per gene in 
398 genetically sequenced and well-characterized cancer 
cell lines as part of the Cancer Cell Line Encyclopedia 
(CCLE) joint research program (8). With this approach, 
a global genetic interaction map has been recreated 

Editorial

Towards unraveling cancer’s Achilles heel: a massive RNAi screen 
exposes tumor cell weaknesses

Sofia Gkountela

Department of Biomedicine, Cancer Metastasis, University of Basel, Basel, Switzerland

Correspondence to: Sofia Gkountela. Department of Biomedicine, Cancer Metastasis, University of Basel, Mattenstrasse 28, Basel CH-4058, 

Switzerland. Email: sofia.gkountela@unibas.ch.

Comment on: McDonald ER 3rd, de Weck A, Schlabach MR, et al. Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal 

Relationships Uncovered by Large-Scale, Deep RNAi Screening. Cell 2017;170:577-92.e10.

Received: 04 November 2017; Accepted: 15 November 2017; Published: 25 November 2017.

doi: 10.21037/amj.2017.11.10

View this article at: http://dx.doi.org/10.21037/amj.2017.11.10

https://crossmark.crossref.org/dialog/?doi=10.21037/amj.2017.11.10


AME Medical Journal, 2017Page 2 of 3

© AME Medical Journal. All rights reserved. AME Med J 2017;2:172amj.amegroups.com

where individual genes or sets of genes can be queried 
for their local network neighborhood and correlations 
can be identified in different cancers. Within this global 
network, essential genes denote a robust neighborhood. 
A great example of the power of this approach is the 
reconstruction of p53 network. Known positive (MDM2, 
MDM4) and negative (TP53BP1, USP28 and CDKN1A) 
regulators are allocated in the close neighborhood of 
2–4 interactors, however new dependencies can also be 
identified—and explored therapeutically—when expanding 
the interactor neighborhood to include up to 10 genes. 
As proof of principle in the network reconstruction, 
genes with functional similarities form tight interactions 
therefore, node proximity between certain regulators, such 
as those identified therein between DNA methylation and 
histone acetylation protein mediators could be indicative of 
interplay and similar dependencies in cancer cells.

As mentioned above, the CCLE cell lines are well 
characterized genetically and this allows for dependence 
correlations of genetic and expression data to be drawn. Not 
surprisingly among the most robust dependencies observed 
with the DRIVE project are those related to the shRNA gene 
target itself. These include mutated oncogenes such as BRAF 
and KRAS, amplifications of either mutated oncogenes or copy 
number alterations (CNAs) of wild-type genes such as ERBB2 
that act as oncogenes as well as highly expressed gene targets. 
Among the latter are known genetic drivers and cell cycle 
regulators such as D-type cyclins that interestingly, in order 
to mediate G1/S cell cycle transition, display a therapeutically 
exploitable lineage specific dependency with either CDK6 
or CDK4 in hematopoietic malignancies and solid tumors 
respectively. Novel dependencies, such as the dependence on 
RRAS2 in breast and ovarian cancer as well as the identification 
of oncogenic gene modifiers, that is genes that can modify 
oncogenic dependence, can also be uncovered. For example, in 
lung cancer and other solid tumors, dependence on EGFR relies 
on concomitant upregulation of the growth factor amphiregulin 
(AREG). Therefore, AREG expression should be taken into 
account when stratifying patients to achieve better response 
with anti-EGFR treatment regiments but also to identify those 
patients who are more likely to develop resistance. 

A major hurdle with targeted therapies is that in most 
cases, tumors are expected to develop resistance. To some 
extent, genetic determinants that lead to acquired resistance 
preexist in the treated tumors and as such, they should be 
anticipated and accounted for in the initial therapeutic design. 
A promising approach to counteract this is the development 
of combination therapies. The rationale for the effectiveness 

of this approach is that targeting the same oncogene or 
pathway using multiple drugs is expected to minimize the 
incidence of resistance, as the probability of multiple resistant 
phenotypes co-existing in a given tumor is very small. To this 
end, the DRIVE project has been invaluable for identifying 
synthetic lethal (SL) relationships, where disruption of a 
gene is only lethal when combined with the disruption of 
a pathway interacting partner, a paralog gene or a result of 
collateral incidence (9). Examples include the pairs of APC/
CTNNB1 and CDKN2A/CDK2 for pathway, ARID1A/
B for paralog and CDKN2A/PRMT5 for collateral SL. 
Moreover, of great importance is the identification of those 
SL dependencies that involve tumor suppressor genes. These 
genes have not been exploited therapeutically since it is 
lack of their expression that correlates with the malignant 
phenotype. With DRIVE, the authors could link mostly 
the homozygous deletion of tumor suppressor genes p53, 
CDKN2A and SMAD4 with collateral SL relationships 
involving a number of genes such as UBC, POLR2A, AURKB 
and PRMT5. As these dependencies create opportunities for 
the development of novel therapeutic efforts, they also create 
the basis for better understanding their network biology. 
To this direction, the network analysis reported in DRIVE 
also uncovered two metabolic neighborhoods, one for lipid 
biosynthesis (SCAP/SCD/SREBF1) and one for amino 
acid homeostasis (ASNS/ATF4/EIF2AK4). Both networks 
include several SL interconnections that can help define 
the metabolic pathways in cancer, as currently there is no 
molecular evidence to corroborate them. 

The DRIVE project and similar functional genetic screens 
are invaluable for validating (or not) cancer mutational 
profiles and in parallel provide the possibility for new 
therapeutic targets to be exploited. However, as much as these 
functional datasets are attractive and create a great resource 
for the development of novel therapeutic approaches, they 
still require a validation step before clinical applications can 
be considered. This has proven to be a bottleneck as the only 
clinically approved and therefore successfully exploited SL 
interaction to date is that of BRCA1/2 and PARP in cancer 
patients (10). In part this is due to the in vitro monolayer 
models that are currently employed for genetic screens 
and functional validation and their inherent inability to 
accurately interrogate the survival phenotype since they do 
not allow for the interplay with the tumor microenvironment 
to be evaluated. In addition, a number of cell lines that are 
routinely used for in vitro validation are poorly characterized. 
This is also evidenced by the DRIVE project for a number of 
KRAS mutant cell lines where unexpectedly no dependency 
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for KRAS itself was identified.
Moving forward towards the development of successful 

therapies that truly benefit cancer patients, we will also need 
to reevaluate previous data generated on well-established 
cell lines using more elaborate in vitro models. To this 
direction, 3-dimensional (3D) co-culture tumor spheroid 
assays and patient derived organoids that interrogate the 
tumor 3D architecture and interaction with the tumor 
stroma could be invaluable for identifying bona fide cancer 
dependencies and SL interactions before more extensive 
functional validation is performed in patient derived mouse 
xenograft models. In addition, we also need to employ data 
from various genetic functional screens to identify robust 
genetic targets. For example, with CRISPR screens we 
can assess the complete knockout phenotype, as opposed 
to shRNA gene expression knockdown, and therefore this 
might allow us to uncover different phenotypes. In parallel, 
we need to continue to characterize tumor heterogeneity, 
identify low frequency mutations and discover more targets 
for therapeutic applications. The interrogation at single cell 
resolution of both genomic and transcriptomic profiles will 
greatly advance our understanding of how cancer evolves. 
Moreover, “liquid biopsy” approaches, such as the ability to 
non-invasively, serially isolate and functionally characterize 
circulating tumor cells and cell free DNA from a large 
number of patients with progressive metastatic disease 
will also help us to narrow down the relevant genotypes 
for metastasis initiation. Synergistically, these approaches 
should identify and exploit true cancer vulnerabilities and 
help us fight this noxious disease. 
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