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Angiogenesis and blood-retinal barrier (BRB) formation/
maintenance are required for normal function of the eye. 
These processes are controlled by canonical Wnt (β-catenin-
dependent) signaling in retinal endothelial cells (ECs) (1). In 
the retinal vasculature, canonical Wnt signaling is mediated 
by the ligand NDP (Norrie disease protein) and a receptor 
complex composed of FZD4 (frizzled class receptor 4), LRP5 
(low-density lipoprotein receptor-related protein 5), and the 
tetraspanin family member TSPAN12 (2-6). NDP, FZD4, 
LRP5 and TSPAN12 mutant mice had been reported 
by several groups to exhibit similar vascular defects 
characterized by a lack of intraretinal blood vessels and BRB 
defects (2,7). Additionally, in mutant mice where NDP/
FZD4 endo-lysosomal trafficking is inhibited specifically 
in ECs, similar morphological defects are observed in the 
retinal vasculature (8). These defects in mice resemble those 
observed in human patients with FEVR (familial exudative 
vitreoretinopathy) disease. In these mutant mice discussed, 
canonical Wnt signaling is downregulated, yet, canonical 
Wnt signaling upregulation has not been well studied. 

Recently, a paper published in Neuron by Mazzoni  
et al. presented a mouse model lacking the canonical Wnt 
inhibitor Apcdd1 (adenomatosis polyposis coli down-
regulated 1) and characterized its role in retinal angiogenesis 
as well as barrier formation at different stages during early 
development (Figure 1) (9). In this paper, Mazzoni et al. first 
examined the expression pattern of Apcdd1 in the retina by 
RNA in situ hybridization from P6-P17 in mice. Apcdd1 is 
mainly expressed in retinal ECs but not in pericytes or other 
neuronal markers, indicating a potential role of Apcdd1 
in retinal angiogenesis. Mazzoni et al. comprehensively 

examined retinal blood vessels from Apcdd1 mutant  
mice (12). Although there are no differences detected 
between control and Apcdd1 mutants at P5, knockout mice 
have significantly increased retinal blood vessel density 
from P10–P12. This vascular overgrowth phenotype 
contrasts canonical Wnt signaling loss-of-function 
phenotype. Additionally, Apcdd1 has been reported to be 
downregulated in retinas with mutant Norrin or Lrp5 (13). 
The increased vessel density observed in Apcdd1 mutants 
may be due to upregulated canonical Wnt signaling. 
Interestingly, Mazzoni et al. identified upregulated Sox17 
(Wnt/β-catenin target gene), increased pLRP6 and more 
active β-catenin at P10 in Apcdd1 mutant mice (12). These 
results support Apcdd1 acts as a negative regulator for 
canonical Wnt signaling in retinal angiogenesis. However, 
this overgrowth phenotype is only restricted in superficial 
vascular layer and eventually resolves after P14, suggesting 
that Apcdd1 mutants have a milder defect than Norrin, 
FZD4, LRP5, and TSPAN12 mutants. Their findings 
provide evidence that canonical Wnt signaling needs to be 
precisely controlled to ensure normal vascular development 
in the retina.

There are two reasons for retinal vascular overgrowth: 
retinal EC over proliferation or delayed vessel pruning. 
Canonical Wnt signaling has been reported to be involved 
in the both processes (14,15). For example, less EC 
proliferation and more vessel regression have been reported 
in Norrin mutant mice (15). However, Mazzoni et al. 
performed EdU assay on Apcdd1 mutant mice from P8–
P12 and did not find any evidence of over proliferation (9). 
On the other hand, some of newly formed ECs did not go 
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through the pruning process in Apcdd1 mutant retinas, 
which result hyper-vasculature. These results suggest 
Apcdd1 negatively controls canonical Wnt signaling but 
only in the process of pruning. 

Canonical Wnt signaling also controls development and 
maintenance of the BRB (3,5,7). It is possible that BRB 
formation is affected in Apcdd1 mutant mice. Mazzoni 
et al. used a low-molecular weight biocytin tracer to test 
paracellular BRB permeability in Apcdd1 mutant mice (9). 
These results demonstrated that Apcdd1 mutant mice from 
P10–P14 formed stronger paracellular BRB. Within EC 
junctions, the occludin mRNA level was not altered but 
its protein level increased in Apcdd1 mutants, indicating 
Apcdd1 affects BRB formation by regulating occludin 
protein stability. Consistent with the vessel overgrowth 
phenotype, stronger paracellular BRB permeability also 
disappeared at later stages. The BRB is also characterized 
by a low transcellular trafficking rate. Mazzoni et al. tested 
this trafficking rate in Apcdd1 mutant mice by intravenous 
injection of albumin, a transcellular tracer. However, there 
was no significant change for transcellular trafficking in 
the retinal ECs of Apcdd1 mutant mice. Interestingly, 
isolated brain ECs showed similar decreased paracellular 
permeability as in the BRB but increased transcellular 
permeability, which was inhibited by adding Wnt3a. 

Mazzoni et al. also generated a mouse model for Apcdd1 
gain-of-function specifically in ECs (9). These endothelial 

Apcdd1 overexpression mice display opposite phenotypes to 
Apcdd1 knockout mice, including decreased retinal blood 
vessel density and higher paracellular BRB permeability. 
All these data support Apcdd1 playing an important role in 
regulating retinal angiogenesis and BRB formation. 

There are still several questions remaining for the role 
of Apcdd1. First, although Apcdd1 mutant mice show 
phenotypes at early stage in retinas, they all revert back 
to normal at later time points. Is there a parallel pathway 
compensating for Apcdd1? Are there any phenotypes 
in ECs from other organs? Second, Apcdd1 has been 
previously reported to interact with Wnt3a and Lrp5 (10). 
Does it also interact with Norrin or other molecules in 
canonical Wnt signaling? Third, it is reported that Apcdd1 
mRNA level is decreased in Norrin and Lrp5 mutant 
retinas (13). Is Apcdd1 a direct target for Norrin/Lrp5 or 
due to a complicated feedback loop? Forth, does inhibiting 
Apcdd1 rescue defects from Norrin/FZD4/LRP5/Tspan12 
mutant mice? Addressing these questions will not only help 
further our understanding of how canonical Wnt signaling 
is regulated but also provide new therapeutic avenues for 
treating diseases that result from loss of canonical Wnt 
signaling, such as FEVR disease. 
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Figure 1 Norrin/β-catenin signaling in retinal angiogenesis and BRB formation with Apcdd1 involved in as negative regulator. Mazzoni  
et al. showed Apcdd1 inhibits β-catenin signaling (9). Apcdd1 was only reported previously to interact with LRP5 (10) but the question of 
how exactly Apcdd1 regulates β-catenin remains complicated. Modified from Lai et al. (11).
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