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Introduction

It is widely accepted that acute fractures of the humerus 
have a good healing tendency by conservative treatment, 
because of an excellent blood supply to the bony fragments 
by the surrounding muscles (1-4). Conservative treatment, 
however, has limitations in cases of radial nerve palsy, 

extensive soft-tissue injury, multiple fractures, delayed 
union or nonunion, non-compliance or obesity (5,6). Plate 
osteosynthesis has been the treatment of choice when 
surgical procedure is needed (7,8). 

Humeral locking nails were introduced to reproduce 
the success seen with similar devices used in the lower 
extremities. Even though advantages of interlocking nails 
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compared with plating included less soft tissue damage, 
closed reduction and periosteum-sparing stabilization 
of complex fractures, these theoretical advantages were 
not confirmed and severe complications such as shoulder 
pain, delayed union, non-union and iatrogenic fractures 
were reported (5). Meanwhile, the decision on whether 
an antegrade or retrograde nailing is performed was left 
to the discretion of the surgeon (9). Authors reported that 
healing of acute humeral shaft fractures was not correlated 
to the direction of nailing (10,11), but in our experience, 
fracture healing was dependent upon choice of nail 
insertion according to the fracture sites of the humerus. In 
addition, to the knowledge of the authors no clinical and 
biomechanical results have been regarding the bone healing 
on the direction of interlocking nailing in the proximal, 
midshaft and distal diaphysis of the humerus. Hence the 
purpose of this study was to analyze the biomechanical 
properties of antegrade and retrograde nailing under three 
types of loads [axial compression, anterior-posterior (AP) 
bending and torsion] in diaphyseal fractures according to 
levels of the humerus. 

Methods

Based on the geometrical configurations and Unreamed 
Humeral Nails and CT scans of the humerus, 3D 
geometrical and finite element method (FEM) models 
of antegrade and retrograde nailing with humeral shaft 
fractures were formed by using Solidworks software. With 
ANSYS 15.0 program, the model was meshed into 6,042 
pieces of parabolic tetrahedron elements. By combining 
these models, interlocking nailing of the humeral shaft 
fracture was modeled, which consisted of fractured 
humerus, intramedullary nail and interlocking screws. The 
mechanical values which were inputted to this FEM model 
are as follows (Table 1). 

To conduct finite element analysis, it was supposed that 
antegrade and retrograde nailing with double interlocking 
screws insertion in each fragment was undergone 
respectively in the proximal, distal shaft and midshaft of the 
humerus of a person; 39 years old, 1.72 m tall and 60 kg 

weighted.
While the proximal end of the humerus was being 

constrained, bending force was applied to the fracture site by 
5 N, for torsional testing, rotational moment of 0.1 Nm was 
applied to the distal end of the humerus and axial compression 
was transmitted through the distal end by 100 N. 

According to antegrade and retrograde technique, values 
of stiffness and displacement at the fracture sites and the 
humerus were obtained. 

Results

Bending properties

During the testing under AP bending, the values of stiffness 
(Figures 1,2) and displacement (Figures 3,4) at the fracture 
site and the humerus are as follows (Table 2). 

Compared values of fracture bending stiffness by 
antegrade nailing with those by retrograde nailing 
according to fracture levels under bending force, the value 
of antegrade technique in proximal shaft was lower than the 
value of retrograde. Also, antegrade nailing demonstrated 
less stiffness than retrograde nailing, but the difference was 
not found to be great. In addition to the values of fracture 
bending stiffness, maximum stiffness values of the humerus 
had a similar tendency to those. 

From the viewpoint of displacement, the value of fracture 
site produced in antegrade approach by bending force was 
considerably lower than the value in retrograde nailing 
in the proximal diaphysis. Displacements in the midshaft 
and distal diaphysis were not different between the nailing 
directions. Maximum and minimum values of the humerus 
were found to be as well as the values of fracture site. 

Torsional properties

Table 3 presents the results of testing under torsion. 
The values of fracture torsional stiffness in antegrade 

nailing in the proximal, distal diaphysis and midshaft were 
somewhat greater than in retrograde technique, but the 
maximum values were not great on the contrary (Figures 5,6). 

Antegrade nailing resulted in less displacements of 
fractures site during torsional testing in the proximal and 
distal diaphysis than retrograde nailing (Figures 7,8). 

Axial compression properties

As described in the Table 4, in the distal shaft, the value 

Table 1 Young’s modulus and poisson ratio of the humerus

Compartment Young’s modulus (Kgf/cm2) Poisson ratio

Humerus 17,000 0.30

Nickel 2,100,000 0.31
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Figure 1 Bending stiffness of antegrade nailing. (A) Proximal diaphysis; (B) midshaft; (C) distal diaphysis.

Figure 2 Bending stiffness of retrograde nailing. (A) Proximal diaphysis; (B) midshaft; (C) distal diaphysis.

A B C

A B C

Figure 3 Bending displacement of antegrade nailing. (A) Proximal diaphysis; (B) midshaft; (C) distal diaphysis.

A B C



AME Medical Journal, 2019Page 4 of 10

© AME Medical Journal. All rights reserved. AME Med J 2019;4:36 | http://dx.doi.org/10.21037/amj.2019.09.02

Figure 4 Bending displacement of retrograde nailing. (A) Proximal diaphysis; (B) midshaft; (C) distal diaphysis.

A B C

Table 2 Values of stiffness and displacements under bending loads

Biomechanical properties

Antegrade technique (fracture site) Retrograde technique (fracture site)

Proximal 
diaphysis

Midshaft
Distal 

diaphysis
Proximal 
diaphysis

Midshaft
Distal 

diaphysis

Displacements at the fracture 
site (m)

7.164×10–7 3.9422×10–6 2.329×10–5 1.8934×10–4 1.6254×10–6 3.1552×10–5

Fracture stiffness (Pa) 9.235×105 4.099×105 35,440 1.0923×106 5.5027×105 1.4451×106

Maximum stiffness (Pa) 4.19×106 2.098×106 3.433×106 8.218×106 1.5515×106 7.4959×106

Minimum stiffness (Pa) 0.00021 0.00024 0.00097 0.0077 0.00218 0.0004

Maximum displacements (m) 4.3×10–6 1.28×10–5 4.55×10–5 0.00092 1.6298×10–6 6.2824×10–5

Minimum displacements (m) 4.778×10–7 1.4223×10–6 5.057×10–6 0.0001 1.8×10–7 6.98×10–6

Table 3 Values of stiffness and displacements during torsion

Biomechanical properties

Antegrade technique (fracture site) Retrograde technique (fracture site)

Proximal 
diaphysis

Midshaft
Distal 

diaphysis
Proximal 
diaphysis

Midshaft
Distal 

diaphysis

Displacements at the fracture 
site (m)

2.685×10–7 3.4×10–7 1.4544×10–6 3.1596×10–5 1.578×10–7 1.3952×10–5

Fracture stiffness (Pa) 5.321×105 7.5429×105 5.97×105 56890 1.044×105 5.246×105

Maximum stiffness (Pa) 3.3759×106 1.303×106 3. 8833×106 6.956×106 2.627×106 3.583×106

Minimum stiffness (Pa) 0.0115 0.0126 0.0259 0.0026 0.00229 0.0103

Maximum displacements (m) 5.5264×10–6 2.2062×10–6 9.925×10–6 0.0004 1.267×10–6 5.648×10–6

of fracture site stiffness by antegrade nailing under axial 
compression was lower than the value by retrograde 
technique. Also, retrograde nailing showed less stiffness 

than antegrade nailing in the proximal diaphysis and 
midshaft, but there was no significant difference between 
them. Maximum stiffness values of antegrade nailing in the 
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Figure 5 Torsional stiffness of antegrade nailing. (A) Proximal diaphysis; (B) midshaft; (C) distal diaphysis.

A B C

Figure 6 Torsional stiffness of retrograde nailing. (A) Proximal diaphysis; (B) midshaft; (C) distal diaphysis.

A B C

Figure 7 Torsional displacement of antegrade nailing. (A) Proximal diaphysis; (B) midshaft; (C) distal diaphysis.

A B C
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A B C

Figure 8 Torsional displacement of retrograde nailing. (A) Proximal diaphysis; (B) midshaft; (C) distal diaphysis.

Table 4 Values of stiffness and displacements during axial compression

Biomechanical properties

Antegrade technique (fracture site) Retrograde technique (fracture site)

Proximal 
diaphysis

Midshaft
Distal 

diaphysis
Proximal 
diaphysis

Midshaft
Distal 

diaphysis

Displacements at the fracture 
site (m)

2.05×10–5 9.02×10–5 1.442×10–6 7.4512×10–6 8.5962×10–5 4.617×10–5

Fracture stiffness (Pa) 7.84×106 4.26×106 2.69×105 7×106 4.1×106 3.19×106

Maximum stiffness (Pa) 1.085×107 6.45×106 6×106 1.11×107 2×107 8.95×106

Minimum stiffness (Pa) 0.0419 0.0341 0.0012 0.009 0.0094 0.0042

Maximum displacements (m) 6.115×10–4 5.43×10–4 1.53×10–6 1.229×10–4 4.653×10–4 1×10–4

Minimum displacements (m) 6.79×10–5 6×10–5 1.7×10–7 1.36×10–6 5.17×10–5 1.178×10–5

proximal, distal diaphysis and midshaft were lower than 
retrograde nailing (Figures 9,10).

Di sp lacements  o f  f rac ture  s i t e  and  max imum 
displacements had a similar tendency to the stiffness on 
axial compression (Figures 11,12). 

Discussion

Conservative treatment is indicated in undisplaced fractures, 
if patients refuse operative stabilization and in patients 
with indication for surgery. Plating is frequently used for 
metaphyseal fractures or fractures with an extension into the 
joint. External fixation is seldom used. The main indications 
are severe soft tissue injuries, severe contamination and 
infection (12,13). After soft tissue healing, conversion to 

definitive internal fixation is planned (14).
Double interlocking on either fragment of the fracture 

provides higher axial and rotator stability than single 
interlocking. Interlocking through slots is less stable than 
through round static holes (15).

The choice of an antegrade or retrograde approach was 
dependent on the preference of the surgeon. Healing of 
acute humeral shaft fractures is independent of the direction 
of nailing (10,11).

In our experience, however, fracture healing was different 
between antegrade and retrograde nailing according to the 
fracture levels. For example, a patient with the distal shaft 
fracture of the humerus was operated with a retrograde 
nailing, which resulted in nonunion after 6 months and 
reoperated with a plate osteosynthesis (Figure 13). Hence, 
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Figure 9 Stiffness of antegrade nailing on axial compression. (A) Proximal diaphysis; (B) midshaft; (C) distal diaphysis.

A B C

Figure 10 Stiffness of retrograde nailing on axial compression. (A) Proximal diaphysis; (B) midshaft; (C) distal diaphysis.

we purposed to analyze the biomechanical properties of 
antegrade and retrograde nailing under three types of loads 
(axial compression, AP bending and torsion) in diaphyseal 
fractures according to the levels of the humerus. 

In our study we formed 3D geometrical and FEM 
models of the humeral fractures and intramedullary nails 
using Solidworks software and analyzed biomechanical 
properties of humeral nailing under 3 types of loads: AP 
bending, torsion and axial compression with ANSYS 15.0 
program. To estimate and compare biomechanical stability 
of antegrade and retrograde nailing, were formed using 

Solidworks software based on CT scans of the humerus 
and analyzed with ANSYS 15.0 program. Biomechanical 
analysis was performed under three types of loads: AP 
bending, torsion and axial compression.

During the bending test, values of fracture stiffness by 
antegrade nailing were lower than those by retrograde 
nailing in proximal, distal diaphysis and midshaft. The 
displacement of fracture site in the proximal diaphysis 
by antegrade approach was considerably lower than in 
retrograde nailing, while displacements in the midshaft 
and distal diaphysis were not different between the nailing 
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directions. This means that antegrade nailing is safer than 
retrograde nailing on the bending force, especially in the 
proximal diaphysis.

Under torsional load, the values of fracture stiffness 
in antegrade nailing in the proximal, distal diaphysis 
and midshaft were somewhat greater than in retrograde 
technique, but the maximum values were not great on the 
contrary. Antegrade nailing resulted in less displacements 

of fractures site in the proximal and distal diaphysis than 
retrograde nailing. On torsional load, antegrade nailing 
was found to be more stable than retrograde nailing in the 
proximal and distal diaphysis. 

As applied axial compression, in the distal shaft, the value 
of fracture site stiffness by antegrade nailing was lower than 
the value by retrograde technique. Also, retrograde nailing 
showed less stiffness than antegrade nailing, but there was 

Figure 12 Displacement of retrograde nailing on axial compression. (A) Proximal diaphysis; (B) midshaft; (C) distal diaphysis.

A B C

Figure 11 Displacement of antegrade nailing on axial compression. (A) Proximal diaphysis; (B) midshaft; (C) distal diaphysis.

A B C
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no significant difference between them. Displacements 
of fracture site and maximum displacements showed a 
similar tendency to the stiffness on axial compression. It is 
shown that under axial compression in the distal diaphysis, 
antegrade nailing is a safer procedure compared to 
retrograde approach.

Conclusions

Humeral nailing can be used by either antegrade or 
retrograde technique and its insertion direction may be 
dependent upon the preference of the surgeon. According 
to the levels of fracture in the humerus, however, antegrade 
and retrograde nailing produces different stabilities. In the 
proximal and distal diaphysis, antegrade nailing is a safer 
procedure than retrograde nailing biomechanically. There is 
no difference between antegrade and retrograde technique 
in the midshaft fracture.
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