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Introduction

The human hepatitis B virus (HBV) is one of the smallest 
enveloped DNA viruses, and one of the principal pathogens 
causing acute and chronic hepatitis. Although prophylactic 
vaccine can prevent the HBV infection and reduce the 
incidence effectively, about 2% of the vaccinated people 
in some areas can develop chronic HBV infection. There 
are about 240 million people suffering from chronic 
HBV infection worldwide, and nearly 25% of whom 
have chronic liver disease and/or cirrhosis, which could 
progress to hepatocellular carcinoma. So HBV infection 
remains a major health problem worldwide (1,2). Hepatitis 
B surface antigen (HBsAg) is a hallmark for the diagnosis 

of HBV infection, and the quantification of serum HBsAg 
is regarded as a reliable marker of disease progression and 
predictor of the outcome. In addition, the clearance of 
HBsAg and the HBsAg-seroconversion are believed to be 
the ultimate goals of antiviral therapy, as they represent 
that host immune system can control the active HBV 
replication successfully (3). A large amount of evidence 
indicated that the emergence of mutations in the PreS/S 
genomic region, including amid acids substitution, insertion 
and deletion, is a frequent event that may be occur as the 
consequence of antiviral treatment or immunoprophylaxis, 
or occur spontaneously (4). In this review, we will describe 
the prevalence of the preS/S gene mutations and their clinic 
implications. 
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HBV virology and the feature of preS/S

HBV is a member of the Hepadnaviridae family, and 
characterized by a high liver tropism and species-specificity. 
Only the human been and chimpanzees are fully susceptible 
to infection with HBV, and the liver is thought to be the 
exclusive target organ for HBV virus, although a small 
amount of HBV has been found in other tissues such as 
mononuclear cells, pancreas, and kidney. HBV virion is an 
approximately 42 nM particle in diameter and its genome is 
a partially double-stranded relaxed, circular DNA (rcDNA) 
which comprised by approximately 3.2 kb base pairs (5). 
HBV genome is located in the nucleocapsid (core) which is 
surrounded by the envelop proteins. There are four partially 
overlapping open-reading frames (ORF) in the HBV genome: 
the preS/S, preCore/Core, Pol and X, and they encode 
the viral envelope proteins, the preCore and Core protein, 
viral polymerase, and the regulatory X protein respectively. 
Particularly, the preS/S ORF can be translated from three 
different starting codons and encode three different envelope 
proteins respectively (Larger, Middle, and Small protein). So 
the C-terminal domains of the three proteins are the same, 
but the N-terminal extensions are different. The Larger 
protein (L) consists of 389 to 400 aa depending on the 
different serotypes, and Middle (M) protein consists of 281 aa 
and Small (S) protein consists of 226 aa. The 55 hydrophilic 
aa at the N-terminal domain of the M protein is named 
preS2, and the extension of hydrophilic residues containing 
108 or 119 aa (depending on the genotype) at the N-terminal 
domain L protein is called preS1 (6,7). 

The HBV envelope proteins are typical membrane 
proteins and have a relatively complex topology. The 
envelope protein synthesis is performed at the endoplasmic 
reticulum (ER) via a distinct mechanism that is different 
from viral replication. Three distinct particles containing 
envelop proteins can be found in the serum of HBV infected 
patients, spherical particles, filamentous particles, and Dane 
particles. The first two particles are formed by the HBV 
envelope proteins but don’t contain the HBV genome, so 
they lost the capacity of infection. The Dane particles are 
infectious virions containing complete construction and 
HBV genome. The spherical and filamentous particles are 
termed as subviral particles (SVP) and their amount is 1,000 
to 10,000 times as the infectious virions. The SVPs can 
form the immune complexes circulating the host body and 
induce small vessel vasculitis; also, the SVPs can promote 
the host immune tolerance (5,7). Meanwhile, most of the 
envelope proteins present both in SVP and virions are S 

protein, only 20% of the envelope proteins are constituted 
by M and L protein. Notably, nearly all of the commercial 
HBsAg quantification assays use the antibodies which 
target the epitopes in the S protein, so these quantitative 
immunoassays can detect all of circulating envelope proteins 
including the immune complexes, but not distinguish the 
HBsAg in the virions or in the SVPs (8-10).

Three highly conserved areas in HBsAg are important 
for the HBV genotyping and sub-genotyping which located 
on the residues 25–43, 69–109 and 144–157. Genotype-
specific substitutions reside in between these locations in a 
bare major hydrophilic region (MHR) which extend from 
110–155 residues and encompasses the “a” determinant, 
and this determinant is the crucial site for the attachment of 
anti-HBs antibody (5,11). The mutations in “a” determinant 
are common and can reduce its ability of binding to anti-
HBs polyclonal and/or monoclonal antibodies which used 
in commercial diagnostic assays, and finally result in failure 
to detect HBsAg. In addition to the point mutations have 
been found in the HBsAg, nucleotides insertion or deletion 
can also occur and induce frame shift mutations. The 
cysteines are conserved in the HBsAg aa sequence and are 
very important for the formation of the loops in the “a” 
determinant. The mutations can lead the replacement of 
cysteine residues with serine, and consequently result in 
the changes of the molecule conformation and antigenicity 
lost. The lysine/arginine substitutions at residues 122 or 
160 can determine the variations of the d/y or w/r subtype. 
The hypervariability of the HBV genome can help HBV 
to escape from the selection pressures caused by the host 
immune system, vaccination, and antiviral treatments. 
The genome of HBV strains is diversity worldwide and 
we can separate these strains into different genotypes, 
subgenotypes and subtypes according to the sequence of 
HBsAg. Mutations within HBsAg may decrease its ability 
recognizing and binding by neutralizing antibody. Detection 
of HBsAg is affected by several factors, including the HBV 
genotypes or subtypes, the sensitivity and specificity of the 
immunoassay, the capture and detection antibodies, and the 
conditions of immunoassay (4,12,13).

The preS/S mutation prevalence and immune 
escape

The preS/S sequences exhibit the highest heterogeneity 
of the HBV genome. Many studies have confirmed that 
genetic recombination, base pair deletion, and point 
mutations in the preS/S regions can occur in HBV DNA 
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sequences from the patients with chronic HBV infection. 
In some areas, the mutations in the preS/S are up to  
10.8–11.2% among the patients who did not receive vaccine 
or HBIg (14,15). The plasma-derived vaccines can induce 
significantly higher prevalence of the “a” determinant 
mutations in children than the recombinant vaccines. The 
variants and the wild type virus can co-exist in the host. 
The vaccine-induced anti-HBs antibodies will be waning 
gradually, and it targets the variants initially. So the variants 
will be taken over, and the wild type virus will eventually 
become the predominant quasispecies (9,16). Several 
studies from the countries that implemented the Expanded 
Program on Immunization have confirmed that, people 
can be infected by variants with the G145R mutation or 
some other mutations in HBsAg “a” determinant, even 
those people have vaccinated and developed the anti-HBs 
antibodies successfully. But the prevalence of the preS/S 
mutations is different among these studies. Many factors 
may contribute to the discrepancies between these results, 
including the regional differences, the vaccination strategies 
and lasting time of the immunization program. The study 
in Singapore shows that the prevalence of “a” determinant 
variants was 39%, but in Taiwan it was 21.22%, in UK it 
was 22.12%, and in South Africa it was 0%. Interestingly, 
“a” determinant variants are rarely found in the area with 
high HBV prevalence, even from the individuals who have 
accepted the vaccination and were borne to HBV infected 
mothers. Moreover, the truth of prevalence of the “a” 
determinant variants can decrease the efficacy of vaccination 
has not caught people’s attention, because vaccine-induced 
variants are hardly to induce HBV infection breakthrough. 
The key factors contribute to the vaccination failure include 
the host gene background, babies infected with HBV before 
delivery, babies born by the mothers with high viral load, 
improper vaccination strategy and so on. Taken together, 
the results from these different studies illuminated that the 
prevalence of vaccine escape variants were negligible during 
the practice of the vaccination program worldwide (9,17-20).

For the antiviral therapy, nucleos(t)ide analogous (NA) 
can suppress HBV replication and reduce the alanine 
aminotransferase activity quickly. But NAs need to be 
administrated for long-term as they can’t eliminate the 
cccDNA in the nucleus of hepatocytes. Long-term antiviral 
treatment with NAs induces the polymerase gene mutate 
and leads to the emergence of the drug-resistance. Drug-
resistance mutation is a common problem among the 
patients receiving NAs treatment. Because of the existence 
of the overlapping of the polymerase gene and the surface 

gene, the compensatory mutations can occur in the surface 
gene during the NAs treatment. Some of these mutations 
are located in the area of ‘a’ determinant and can help the 
HBV to escape from the host immunity (21). 

The distal part of the A-B inter-domain had the 
overlapping areas accompanying with the B domain of 
RT (residues 80–236); and residues 72–228 of the RT and 
surface proteins, respectively. The aa residues of 208, 51, 
52, 56, and 120 are notorious for various surface therapy-
escape mutations of which the rtA181T/sW172 mutant 
has a dominant negative secretion effect which leads to the 
clearance of HBV antigen from the serum, where vaccine-
escape-like mutants might be selected (21,22). Many studies 
have compared the replication capabilities of the wild type 
and surface mutants. The results showed that these mutants, 
including E164D, I195M, W196S, M198I, E164D, and 
I195M, which were selected during lamivudine treatment, 
had the minimal capabilities to bind to anti-HBs antibody, 
just as the mutant G145 which can escape from the vaccine 
immunity. So the variants selected by lamivudine may not 
be neutralized by the anti-HBs antibody which was induced 
by vaccine. For the other NAs, including adefovir, tenofovir, 
entecavir, and telbivudine, it’s not clear whether these 
antivirals have the potential to select HBV variants which 
reduce the capabilities of binding to the anti-HBs antibody 
(9,23) (Table 1).

The preS/S mutation and occult HBV infection 
(OBI)

As the development of the high sensitive techniques, 
HBV DNA can be detected from the patients with HBsAg 
negative in the serum. We defined the individuals with HBV 
DNA positive persistently in the liver and HBsAg negative 
as OBI, whatever the HBV DNA in the serum is positive 
or negative (13). The mechanisms of OBI are not clear yet. 
Patients infected with HBV variants which had defective 
replication activity or cannot express S antigen may develop 
OBI. But most of the HBV quasispecies isolated from the 
OBI patients were replication-competent viruses. Patients 
infected with HBV variants producing surface antigen 
which cannot be recognized by the conventional detection 
assays may explain the development of OBI. But these 
explanations need to be confirmed further (8,13,54).

In recent years, OBI has attracted people’s attention 
worldwide because it may be a threat of the HBV infection 
in transfusion medicine. The HBV strains from OBI 
patients cannot be detected by the commercial assays, so 
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these OBI patients may be selected as blood donors and 
their blood containing HBV may transfuse to the other 
patients. In the blood donors, the prevalence of OBI 
ranges from 0.0002% to 0.084% in Europe. China is one 
of the highest HBV endemic regions, and the prevalence 
of OBI in the blood donors is as high as 0.18% (38,55-58). 
Most of the studies about HBV mutation just focused on 
limited parts of the HBV genome, so we can’t get enough 
information to analyze relationship between mutation and 
OBI. A recent survey showed that the prevalence of specific 
mutation in OBI patients was 8.3–20.8%, but in the overt 
infected patients it ranged from 0% to 3.7%. It’s worth 
to mention that there is no unified standard to determine 
which mutations are associated with OBI. Some scholars 
considered the mutations located in “a” determinant as 
OBI-associated mutations, but others thought they may 
include the mutations in the whole MHR (13,38).

A study including more the 400,000 blood-donors found 
that twenty mutations in genotype D strains were associated 
with OBI strongly. Most of these mutations were located 
in “a” determinant, but can also be found in other area 
of HBsAg. Interestingly, these mutations reported in this 
study were quite district from those found in OBI patients 
who were infected with genotypes B or C. In the author’s 
opinion, the mutations associated with OBI may be unique 
among every genotype. Nevertheless, the mutation G145R/
A was thought to be one of the major mutations associated 
with OBI, and it could be found both in genotypes B and C 
(49,59,60). On the other hand, the mutations in the MHR 
were found to be responsible for decreasing the surface 
antigen levels in serum. Huang et al and colleges found 
some mutations in the MHR can reduce the detection 
sensitivity of commercial assays, and others can influence 

the secretion of surface antigen and/or virion itself (49).
Cassini et al isolated HBV strain from liver samples and 

found C695T mutation which can lead to the appearance 
of stop codon in HBs gene at aa181. This additional stop 
codon can result in truncated S protein production, and 
decrease the levels of HBsAg both in the serum and in 
the liver. In this study, HBV DNA can be found in the 
peripheral blood mononuclear cells (PBMCs) and liver 
tissue gotten from the OBI patients. So the authors strongly 
suggested that testing the PBMCs and liver tissue can 
help for diagnosis of OBI (61). In addition, preS antigen 
also played a crucial role for the expression, synthesis, and 
secretion of the S protein. And the mutation in preS may 
have the potential association with the OBI development. 
The effect of preS region for the OBI development needs 
to be investigated further (60,62) (Table 1).

The preS/S mutation in acute and chronic 
hepatitis B

More and more evidence showed that the mutations in preS 
and S region can be found in severe forms of HBV related 
acute and chronic liver diseases, and these mutations can 
affect the development or even the outcome of diseases. 
Indeed, mutations within preS can be found in a majority of 
patients chronic infected with HBV. Several genetic defects 
may be responsible for the mutation emergence within 
preS, including deletions of aa in the preS1 and/or preS2 
area, and point mutations. The point mutations at the start 
codon of preS2 also bad been found and it prevented M 
protein expression completely (63,64). 

Mutations in preS, especially that abolish the expression 
of M protein, have been found in the patients with 

Table 1 PreS/S mutations and their clinical implications

Mutations Clinical implications

E164D (24), I195M (24), M198I (24), W196S (24), T116N (25), P120S/E (26), I/T126A/N/I/S (27-29), Q129H/R  
(29-31), M133L/T (31,32), K141E (33), P142S (33), D144A/E (32,34), G145R/A (29,31,35,36), M103I (34), L109I (34), 
T118K (34), P120A (34), Y134H/N (34,37), S143L (34), S171F (34), C48G (34), V96A (34), L175S (34), G185E (34), 
V190A (34), L108V/I (31), T87I (31), I84T (31), A91T (31), T68V (31), S78N (31), V60A (31), T31I/T (31), P34N/T (31), 
G31E (31), Q2K/B (31), T140I (31,37), G130N (29), F134I (29)

Immune escape

Y100S (38,39), Q101R (38), P105R (39,40), T115N/A (31,41), T116N (38), P120L (42), R122P (38), T123N/A (31,43), 
I126S/T (44), P127H/L (45), Q129P/R (29,31,46,47), M133T (48), S143L (38), S167L (38), R169H (48), G145R/
A (31,48), C124Y (49), D144A (50), G119R (49), C124Y (49), I126S/A (31,49), C139R (51), S78N (31), L108I (31), 
A90V (31), Q118L (31), T87S (31), A90T (31), KL45F (31), P47T (31), N56T (31), G73E (31), P94S (31), I110L (31), 
S117N (31), S114T (52), P127S/T (52), M133T (52)

OBI

A1762T (53), G1764A (53), G1862T (53), G1896A (53) Fulminant hepatitis
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fulminant hepatitis (FH). Pollicino et al. and colleges 
analyzed the whole genome of HBV isolated from a surgeon 
and his mother, both of them suffered from FH and died 
of it. They found the viruses from these two patients had a 
double mutation in the preS2 start codon (ATG → ACA) 
which prevent the production of the M protein (65). Several 
other studies also found the preS2 defective viruses from 
the patients of FH, and their outcomes were similar with 
reports by Pollicino et al. (66,67). These studies showed 
that infection by preS2 defective virus is frequently 
associated with FH, indicating that this variant might play 
a pathogenetic role in cases of acute liver failure. Until 
now, people can’t confirm that preS2 defective viruses 
can induce acute liver failure in the animal models. In 
the HBV transgenic mouse model, HBV surface proteins 
accumulated in the hepatocytes, and lead the hepatocytes to 
enhance the sensitivity to IFN-γ produced by the cytotoxic 
T lymphocytes. The livers from these mice showed pan 
lobular necrosis and hepatic failure. According to it, we 
can get a hypothesis that preS2 defective viruses which 
can’t express M protein may overproduce L protein, which 
promote the L protein accumulated in the hepatocytes and 
induce hepatic failure occurred. In addition, the specific 
immune response for M protein, including the T cell 
response and B cell response, are very important during 
the early stage of HBV infection. The viruses without M 
protein may be targeted ineffectively by the specific T cells, 
which may result in more severe course of the infection (4).  
These hypotheses can make an explanation for the 
association between preS2 defective mutations and the FH, 
but they need to be confirmed by experimental studies.

Fibrosing cholestatic hepatitis (FCH) is a rapidly 
progressive and usually fatal form of viral hepatitis, and 
characterized by specific histologic manifestation of HBV 
infection consisting of periportal fibrosis, hepatocyte 
ballooning, cholestasis, a relatively scant inflammatory 
infiltrate, and marked overexpression of HBV antigens in 
hepatocytes. FCH had been reported in immunosuppressed 
patients, including liver, kidney, and bone-marrow 
transplanted patients. The accumulation of massive HBV 
antigens in the hepatocytes caused by the preS mutation 
can also lead to a direct cytopathic effect and result in 
the hepatocytes impairment, just as the FCH, and this 
hypothesis has been confirmed by Bock CT et al in the 
human hepatoma cell line. It’s worth to mention that treated 
the patients undergoing liver transplantation with NAs can 
not only inhibit HBV replication, but also prevent FCH 
development effectively (68,69).

The HBV virions with preS mutations infected the 
human liver and induce viral proteins and replicative 
intermediates retention in the hepatocytes. In this 
condition, the massive intracellular viral proteins may be 
cytotoxic and result in liver injury, which is considered to 
be the mechanism for preS mutant infection can induce 
worsen outcome of the CHB. Actually, the association 
between preS mutant infection and liver cirrhosis has been 
found in a series of studies, which has also been confirmed 
by some prospective researches. In addition, more and 
more evidence showed that the “complex HBV variants”, 
which contain mutations both in preS and BCP area, are 
more danger than the variants with mutations only in one 
area. The “complex HBV variants” have more potential 
to improve CHB progression toward worse outcomes, 
including liver failure and cirrhosis (4,70,71) (Table 1).

Conclusions and perspective

HBV sequences from the OBI patients demonstrate 
numerous mutations that lead to immune escape, down-
regulating the expression of HBsAg, or impaired HBV 
packaging. In addition, these mutations may be associated 
with changes in the core or polymerase gene, and may play 
an important role for the diseases progression and outcomes. 
The variants with mutations in the ‘‘a’’ determinant can 
produce modified surface antigen, whose antigenicity has 
decreased and can’t be recognized and targeted by the anti-
HBs neutralizing antibody induced by the vaccine immunity. 
Its consequence is the occurring of immune-escape. It’s 
difficult to detect these variants by the commercially 
available immunoassays which target the HBsAg. And 
this is a stronger risk factor for the prevalence of OBI. 
It’s necessary to screen the preS/S mutation in the CHB 
patients. Identifying the patients infected with these specific 
HBV variants can help doctors to evaluate their diseases and 
give them appropriate treatment, and also it may be useful 
for excluding the OBI patients from the blood donors and 
preventing these specific HBV variants transmissions. 
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