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Introduction

At first, in the bone marrow, another non-hematopoietic 
population of multipotential members distinguished 
from hematopoietic stems cells was discovered to be the 
progenitor of myeloid stroma, which was usually termed 
“bone marrow stromal cells” (BMSCs) or “marrow 
mesenchymal stem cells” (MSCs) (1). Nowadays, further 
studies have demonstrated that BMSCs are a heterogenous, 
pluripotential group which expresses markers of multiple 
systems, differentiates into various lineages (e.g., endothelial 
cells, fibroblasts, adipocytes, macrophages, osteocytes, 

muscle cells, neurons, etc.), and is actually widely distributed 
in many parts of the body more than bone marrow (2-4). 
This infers that BMSCs can not only traditionally generate 
skeletal and mesenchymal counterparts such as bone, 
cartilage and fat, but also possess a great potency evolving 
into or repairing other tissues (1,5,6). 

When concerned about the hematopoietic system only, 
BMSCs mainly act as the progenitor of bone and marrow 
structure and simultaneously are indispensable to long-
term maintain hematopoiesis since they could establish 
the hematopoietic microenvironment (HME) that mostly 
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contains stromal elements and cytokines for hematopoietic 
stem cells (HSCs) residence and blood cells production  
(7-11). Therefore, in the blood system, BMSCs play roles as 
the founder of myeloid mesenchymal section and HME, as 
well as the sponsor of hematopoietic members.

Nevertheless,  when blood diseases occur [e.g. , 
hematopoietic failures like aplastic anemia (AA) or 
malignancies], BMSCs change to become indolent or 
corrupt, resulting in dysfunction in HME and finally cause 
aggravated situation and disruption of normal hematopoiesis 
(12,13). The disorder in BMSCs may also be regarded as 
an initiating agent of hematopoietic diseases (14). Thus, by 
exploring the function of BMSCs and transformations in 
illnesses, we could deeply understand mechanisms of disease 
development, and then search for novel potential targets, 
invent effective therapeutic protocols to control disease 
progression and obtain the best cure effect.

A brief discussion about features of BMSCs

BMSCs were firstly isolated as the progeny of the colony-
forming-unit fibroblast (CFU-F) colonies that expanded 
when cultured single-cell suspensions of bone marrow 
in vitro and showed a spindle-shaped fibroblast-like 
morphology and an adherent habit (1,15-17). It is now 
clear that BMSCs form a complicated community with 
heterogeneous and pluripotential nature containing sorts 
of phenotypes, whereas no certain unique marker has 
been uncovered yet (18). Surface antigens of stroma-
genic differentiation like CD10, CD13, CD29, CD44, 
CD49e, CD73, CD90, CD92, CD105, CD146, CD166, 
SSEA4, Stro-1 and intracellular proteins could be detected 
synthetically for the identification (15,19-22). Furthermore, 
these myeloid progenitor stem cells express molecules 
mainly found in other organs like neural ganglioside GD2, 
nucleostemin, cardiac-specific symbols, and thus might be 
considered as special markers (23,24).

More importantly, not just express various markers, 
BMSCs could directly differentiate into multiple lineages 
with surprising potency and plasticity such as fibroblasts, 
adipocytes, endothelial cells, macrophages, osteoblasts and 
osteoclasts in general, which together generate the bone 
marrow mesenchymal tissue and what’s more, could even 
differentiate into hepatocyte-like cells, nerve cells, cardiac 
phenotypes, muscle cells for injury repair (25-29) or support 
the regeneration of other tissues (23,30,31). Indeed, BMSCs 
are prone to home to sites more than bone marrow and are 

widespread in all parts of the body to function appropriately 
or pathologically, expressing lineage-related mRNA 
species, mediating liver fibrosis, targeting tumor stem cells,  
etc. (32-34).

For the hematopoietic system we focus on, BMSCs 
occupies an essential position in the formation of HME, 
or bone marrow microenvironment including each stromal 
cells, cytokines and extracellular matrix to maintain 
the normal hematopoiesis of HSCs, which owns a 
considerable transcriptomic profile (9,35). Data illustrates 
that microenvironmental niches usually refer to several 
parts consists of the endosteal niche (osteocytes), vascular 
niche (sinusoidal endothelium), and, more importantly, 
reticular niche consists of primitive BMSCs (CXCL12-
abundant reticular cells and nestin-expressing cells) (36,37). 
In these niches, stromal cell types related to bone marrow 
tissues and extracellular matrix assembling in complicated 
networks, where HSCs can settle, proliferate, and mature, 
producing blood components through proximity to or 
intimate interaction with BMSCs and their derivatives 
(38-40). Evidence also suggests that factors synthesized 
by stromal cells like stem cell factor (SCF) from leptin 
receptor(+) cells, transforming growth factor-beta (TGF-β) 
from megakaryocytes, intercellular adhesion molecule-1 
(ICAM-1), etc. are required to retain the propagation of 
HSCs (41-43).

However, in pathological conditions, HME experiences 
chaos in which BMSCs impede regulatory hematopoiesis 
and bring about the occurrence and progression of diseases, 
as elaborated below.

The role of BMSCs in benign hematopoietic 
disorders

AA is a kind of pancytopenia-bone marrow failure disease 
in which HSCs suffer injury by cross talking with the 
surrounding microenvironment and BMSCs (44). In AA, 
the clonogenic and proliferative competence of BMSCs 
is significantly attenuated and their effect to support 
hematopoiesis is slashed (45). Research has shown that 
high percentage of BMSCs from five children with severe 
aplastic anemia (SAA) stagnate in aberrant sub-G1 phase 
of cell cycle indicating a rising rate of apoptosis and they 
secrete anomalous increased cytokines of interleukin-6 
(IL-6), interferon-γ (IFN-γ), tumor necrosis factor-α 
(TNF-α), and interleukin-1β (IL-1β), which contribute to 
an abnormal microenvironment and immune dysfunction 
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of peripheral blood mononuclear cell (PBMC) (46). Similar 
evidences arise that BMSCs of AA patients markedly express 
lower concentrations of macrophage inflammatory protein  
(MIP)-1α  (P<0.001) and higher TNF-α  (P<0.001), 
granulocyte colony-stimulating factor (G-CSF) (P<0.001) 
and stromal cell-derived factor (SDF)-1α  (P<0.01) 
transcripts compared to the control (47). Another 
deficiency of downregulated CD106(vascular cell adhesion 
molecule-1, VCAM-1) gene expression through the NF-κB  
signaling pathway in vitro is also exhibited in BMSCs from 
AA patients, and thus capillary tube-like formation and 
vasculogenesis in vivo are attenuated (48). BMSCs that 
produce altered hematopoiesis regulatory molecules reveal 
a vital role in the pathogenesis of AA.

Impaired function and defective proliferation of 
BMSCs exist in some more examples, such as immune 
thrombocytopenia (ITP) and thalassemia. BMSCs get 
regressive and senescent during ITP and exert less 
immunosuppression on T and B cells as well as induce 
regulatory DCs(regDCs) differentiated from CD34+ 
hematopoietic progenitor cells through Notch-1/
Jagged-1 signaling pathway, which leads to over-activated 
autoimmunity and platelet destruction (49,50). Additionally, 
Crippa et al. (51) elucidate that BMSCs from β-thalassemia 
(BT) patients prove a diminished hematopoietic supportive 
capacity. The most primitive BMSCs pool suffers 
pauperization by ascending ROS production in vitro while a 
reduced frequency of BMSCs in vivo, is verified. The study 
also views a weakened antioxidative response and lacking 
expression of associated genes in BT-BMSCs.

In brief, during the occurrence of benign hematopoietic 
diseases, BMSCs usually appear to be hypofunction and 
serious dereliction of duty, bringing about or aggravating 
anemia and damage of other hemocytes.

The role of BMSCs in malignant hematopoietic 
tumors

In hematological malignancies, however, the bone marrow 
milieu could be a cradle or a shelter for hematopoietic 
tumor development, and BMSCs may turn into the evil 
crime culprit aiding tumor reproduction and metastasis. 
They secrete some biological or angiogenic factors, 
enhance tumor-related genes expression, closely interact 
with malignant cells, or through numerous methods in this 
microenvironment to induce the growth and progression 
of cancer and finally impede normal hematopoiesis (52-54) 
(Figure 1).

Multiple myelomas (MMs)

MM is an aberrant clonal-proliferation disease of plasma 
cells within the bone marrow, which causes extensive 
osteolytic destruction. BMSCs experience altered 
characterization when MM happens. The study of Arnulf  
et  a l .  (55)  noted that  though regular  phenotype, 
differentiation capacity, and long-term hematopoietic 
sponsor were retained, inferior potency suppressing T cell-
reproduction and high concentration of IL-6 generation 
were found in BMSCs from MM patients. Moreover, Corre 
et al. (56) further discovered that expression property of 
145 genes in BMSCs are distinct between MM and normal 
individuals, among which 46% might associate with the 
tumor-microenvironment crosstalk mainly increased IL-6 
and growth and differentiation factor 15 (GDF15) levels. 
Other abnormal secretion profiles accounting for MM 
pathogenesis and progressions like IL-10, CD40/40L, 
VCAM1, ICAM-1, LFA-3, HO-1, HLA-DR, and HLA-
ABC are also detected in MM-BMSCs (57).

MM is deemed to be a paradigm for exploring the 
interaction between tumor cells and the surrounding 
microenvironment (58,59). It has been emphasized 
repeatedly that the malignant MM cell  generally 
communicates with its ecological niche(especially with 
BMSCs through close contact or biological factors like 
well-known IL-6, CXCR4 and RANKL which refers 
to receptor activator of nuclear factor-κB ligand) to get 
abnormal elevation, bone resorption, angiogenesis, drug 
resistance and could, in turn, inhibit the proper operation of  
BMSCs (60-62).

For the MM-BMSCs interaction, it’s noteworthy in 
recent research that adherence of malignant plasma cells 
to mesenchymal stem cells enhances tumor necrosis 
factor receptor-associated factor 6 (TRAF6) expression 
reciprocally by NF-κB activation, fuels spliced form of 
X-box binding protein-1 (XBP1s) overexpression and 
induces altered transcriptomic profile in vitro in BMSCs, 
which together promote osteoclastogenesis and the growth/
survival of tumor cells (63-65). Immunosuppressive 
molecule B7-H1 on myeloma cells induced by IL-6 from 
BMSCs links to T-cell downregulation and aggressive MM 
cell characteristics (66), while increased levels of GDF15, 
B-cell-activating factor(BAFF) and the transcriptional 
repressor Gfi1 synthesized by BMSCs may give rise to 
chemoprotective effect for MM cells, poor survival for 
patients and inhibition of osteoblast differentiation (67-69). 
Besides, McNee et al. (70) imply a novel mechanism that 
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citrullination of histone H3 arginine 26 in BMSCs from 
MM patients directly triggers the upregulation of IL-6 and 
thus incurs resistance to chemotherapy by MM cells. All of 
the exosomes derived from a normal donor, MM patient, 
and murine 5T33 BMSCs also favor tumor cell growth 
and drug resistance to bortezomib through several relevant 
survival pathways (e.g., c-Jun N-terminal kinase, p38, p53, 
and Akt) (71).

Meanwhile, study from patient bone marrow aspirates 
and C57BL/KaLwRij murine model of myeloma confirms 
that the plasma cell burden leads to a decrease in alkaline 
phosphatase osteoblasts and a rise in the incidence of 
STRO-1 (a stromal cell-related surface marker) positive 
BMSCs that express higher levels of plasma cell- and 
osteoclast-activating molecules (72). MM cell-produced 
CCL25 could, in turn, attract mesenchymal stromal cells 
and upregulated IL-6, IL-10, insulin growth factor-1, 

vascular endothelial growth factor (VEGF), and dickkopf 
homolog 1 expression in BMSCs promising tumor growth 
in vitro and in vivo (73).

Leukemia and lymphoma

Likewise, signatures of marrow stromal cells get changed 
when leukemia happens. The capacity of BMSCs from acute 
myeloid leukemia (AML) and acute lymphocytic leukemia 
(ALL) to maintain normal hematopoietic progenitor cells is 
markedly slashed compared to donors (74). Distinguished 
BMSCs protein expression characterizations are defined, 
and using RNA sequencing reveals transcriptional profiling 
with the deregulation of proteoglycans and adhesion factors 
in BMSCs with AML, whereas deregulated metabolic 
pathways and endocytosis in both DNA methylation and 
transcriptional features are uncovered by KEGG pathway 

Figure 1 The role of BMSCs in different situations. Normal BMSCs could differentiate into various types of cells and support the growth of 
HSCs. In benign anemia, BMSCs become a failed sponsor resulting in a poor hematopoietic ability in HME. In other diseases such as ITP, 
BMSCs are unable to suppress the function of lymphocytes and thus brings about the immune overactivation effect. When the hematopoietic 
tumor occurs, BMSCs interact with malignant cells through biological factors or cell-cell contact, which leads to tumor proliferation, 
angiogenesis, osteolysis. BMSCs, bone marrow stromal cells; HSCs, hematopoietic stem cells; ITP, immune thrombocytopenia; HME, 
hematopoietic microenvironment.
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enrichment analysis (75-77). 
Like MM, leukemia-BMSCs usually favor tumor cell 

growth, invasion, drug resistance, and disease progression. 
In acute leukemia, Wnt and Notch signaling activation 
in malignant cells stimulated by BMSCs contributes to 
the protection, survival and chemoresistance of tumor 
(78,79), while in either chronic myeloid or lymphocytic 
leukemia (CML or CLL), BMSCs could induce mature 
DC (mDC) into another regulatory DC subset resulting in 
an immune-tolerance situation with less T cells and more 
Tregs proliferation through TGF-β1, and could long-
term maintain CLL-cell existence due to increased soluble 
prosurvival factors such as CXCL12 when cocultured in 
5% oxygen concentration (80,81). Furthermore, there 
is evidence that extracellular vesicles or exosomes play a 
fundamental role in crosstalk between BMSCs and leukemia 
cells. CML cells-derived exosome promotes BMSCs to 
produce IL-8 modulating tumor cell survival both in vitro 
and in vivo. In turn, extracellular vesicles from BMSCs 
prevent apoptosis and boost migration of leukemia cells as 
well (82,83).

Last but not least, according to several studies, BMSCs 
primarily act to protect non-Hodgkin’s lymphoma cells 
from apoptosis and can recruit follicular lymphoma cells 
supporting their survival (84). Conclusions depict that 
the protective effect may be attributed to the adhesion of 
malignant B cells to BMSCs through pro-survival adhesion 
molecule VLA-4, and ultimately the stimulation of either 
NF-κB pathway as well as related antiapoptotic proteins in 
lymphoma cells or BAFF expression in BMSCs (85-87).

Clinical significance of BMSCs in hematopoietic 
diseases

Transplantation and graft versus host disease (GVHD)

It has been reported that infusion with BMSCs in 
hematopoietic stem cell transplantation (HSCT) could 
repair the loss of stromal niche function and accelerate 
hematopoietic regeneration (88), and remarkable advantages 
of microenvironmental and hemopoietic compartments 
recovery within marrow are obtained via direct intra-bone 
marrow route rather than intravenous injection in mice 
(89-91). More importantly, the administration of BMSCs 
is thought to lower the incidence of GVHD following 
HSCT and even preserve graft-versus-leukemia activity 
(2,92,93). What is more, infusing BMSCs or BMSC-derived 
extracellular vesicles with unique microRNA property exerts 

great influence on the induction of T cell anergy, prevention 
of effector T cells differentiating from a naïve phenotype 
and maintenance of Treg population, which is superior to 
the conventional immunosuppressive regimen in curing 
severe acute GVHD refractory (94,95). The investigation 
also demonstrated that treating high grade acute GVHD 
with mesenchymal stromal cell end-products could achieve 
an overall survival of 71%±11% after a two-year follow up 
compared to 51.4%±9.0% in clinical statistics (96).

Potential targets of BMSCs in hematopoietic tumor 
treatment

Increasingly, mechanisms for tumor development correlated 
with BMSCs have been excavated, hence available targets 
could be applied to the therapeutic regimen. Experts have 
been working on to block the cross-talk between BMSCs 
and tumor cells; for example, bruton tyrosine kinase (Btk) 
inhibitor PCI-32765 suppresses MM cell growth induced by 
cocultured BMSCs and MM cell-mediated osteolysis both  
in vitro and in vivo (97). The pan-inhibitor of VEGF 
receptors, GW654652 as well as the VEGF receptor tyrosine 
kinase inhibitor PTK787/ZK222584, equally prevents the 
proliferation and migration of MM cells through inhibiting 
VEGF-triggered activation of downstream signaling factors, 
and IL-6 and VEGF secretion in tumor cells stimulated by 
the binding to BMSCs (98,99). Moreover, other agents like 
the inhibitor of oncogenic microRNA miR-21 in BMSCs, 
CXCR4 inhibitor AMD3100, arsenic trioxide, pentraxin 3  
(PTX3) and sepantronium bromide (YM155) can not 
only disrupt stromal/plasma cell interaction and restrict 
tumor progression, but also improve the mesenchymal 
cell-mediated drug resistance and alleviate bone-resorbing 
activity in MM (100-104).

Additionally, in leukemia, targeting several pathways 
such as FGF2-FGFR1 and Wnt signaling which contributes 
to the leukemia-protective effect by BMSCs could get the 
disease relieved (78,105). Also, aiming at BMSCs-derived 
periostin that promotes CCL2 in B-ALL cells, together 
with platelet-derived growth factor receptors (PDGFRs) 
activated in CLL-BMSCs that is crucial for Akt stimulation, 
may reduce the tumor burden and an angiogenic switch to 
some extent (106,107).

Conclusions

We have summarized the features and actions of BMSCs 
in hematopoietic diseases. The conclusion is drawn that 
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this kind of heterogeneous, stem-like lineage is infertile 
during benign anemia and rebel to collude with malignant 
cells and establish a distant metastasis when tumor occurs. 
Thus, treatment associated with BMSCs is common in 
transplantation and molecule-targeted therapy. However, 
it is still controversial if BMSCs act as a friend or a foe in 
oncogenesis, since they are also able to cross-present quite 
a few tumor antigens to overcome the immunological 
tolerance and express the suicide gene for anti-tumor 
remedy (108-111). Considering the tumor-homing ability 
and heterogeneity of BMSCs, the interaction of stromal and 
cancer cells is supposed to be complicated leading to diverse 
outcomes. There is an urgent need to clarify the cluster 
of BMSCs further, and only by creating certain solutions 
according to particular situations can we obtain an optimal 
therapeutic effect.
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