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Introduction

Interleukin 34 (IL-34) is a newly discovered cytokine 
that regulates the survival, differentiation and function of 
macrophage, osteoclast as well as microglia. Like other 
cytokines (1-15), it exerts its roles in target cells depending 
upon its receptor distribution. Although several receptors 
of IL-34 have been identified, the colony-stimulating factor 
1 receptor (CSF1R, also called CD115) is a major one. 
However, CSF1R also binds with its archetypical ligand 
colony stimulating factor 1 (CSF-1), or called macrophage 
colony stimulating factor (M-CSF), for mediating 
mononuclear phagocyte, especially participates in the 
development of macrophage, dendritic cell, Langerhans 
and microglia (16). In CSF1-KO mice, Langerhans and 
microglia are unaffected, but they are absent in CSF1R-

deficient mice. It suggests CSF1 is a dispensable cytokine 
for the development of Langerhans and microglia, and 
IL-34, alternative ligand of CSF1R, is nonredundant 
for differentiation of myeloid progenitor cell in the skin 
and central nervous system (CNS) (17). In 2009, Wei  
et al. (18) revealed IL-34, like CSF1, phosphorylates the 
membrane receptor CSF1R tyrosine phosphorylation, 
enhances the proliferation and viability in CSF1R+ 
macrophage via activating intracellular signaling pathway 
MAPK and ERK1/2. Additionally, IL-34 was identified as 
osteoclastogenic cytokine product by multiple myeloma 
cells that promote osteoclast formation and deteriorate 
osteolytic disease in multiple myeloma (19). Indeed, the 
osteocloast formation usually needs RANKL and M-CSF 
(20,21). Thus, IL-34 can directly initiate macrophage 
and monocyte responses as a pro-inflammatory agent by 
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combining its receptor CSF-1. Nonetheless, IL-34 can be 
produced by regulatory cells (22) and then plays a role in 
suppressing immune responses. It is clear now that Treg 
cells are a crucial negative player that regulates immune 
balance and prevention of autoimmune and inflammatory 
diseases (23-31).

Source of IL-34

It is well known that IL-34 is a cytokine mainly produced 
by macrophage, monocyte, and microglia (32). Additionally, 
it is also produced by synovial fibroblasts in rheumatoid 
arthritis (RA) and hepatocytes in hepatitis virus infection. As 
synovial fibroblast plays a critical role in the pathogenesis of 
rheumatoid arthritis (33-37), this is likely that IL-34 serves 
as an inflammatory cytokine to participate in inflammation. 
In addition, IL-34 has also been found to be expressed 
in regulatory T cell (Treg) and IL34+ Treg has stronger 
immunoregulatory capacity (22). Thus, IL-34 could be a 
double sword that plays a different role under the distinct 
conditions and environments. 

IL-34 in infection immunity

IL-34 has been recognized as an anti-virus cytokine during 
infection with influenza A virus (IAV) (38), hepatitis B 
virus (HBV) (39,40), hepatitis C virus (HCV) (41), human 
immunodeficiency virus (HIV) (42), that is produced in 
response to virus infection by inhibiting virus replication 
accompanied infiltration of macrophage in peripheral tissue 
or microglia in CNS. Virus infection is a critical cause of 
immune responses, and interleukins are secreted during 
the host’s anti-virus process that plays a different role in 
different tissues depending upon the types of virus-infection. 
For example, IL-22 is one of IL-10 family members to play 

a role in inhibiting inflammatory responses, was enhanced 
in IAV infected patients to induce IL-34 production that 
feedbacks to regulate IL-22 expression (38). In HCV-
infection, IL-34 from hepatocytes around liver lesion 
can drive the existing macrophages to secret chemokine 
ligands (CCLs) and chemokine receptors (CCRs) to recruit 
monocytes and macrophages, to release platelet-derived 
growth factor (PDGF), and transforming growth factor 
beta (TGF-β) that induce liver fibrosis (41). The detailed 
descriptions of the anti-virus immune responses of IL-34 
are summarized in Table 1 and Figure 1.

Taken together, role IL-34 exerts in the infection 
remains to be further studied, existing researches focus only 
on viral infections but not on bacterial, fungal, and parasitic 
infection. These studies demonstrate that IL-34 requires 
the responses of monocyte and macrophage in inflammation 
initiated by the virus to exert its function, but the triggering 
mechanism of initial IL-34 expression is still elusive. 
Interestingly, A contradictory phenomenon was reported 
that IL-34 is enhanced in IAV-infection while decreased 
in HBV-infection (38,40). Alternatively, IL-34 functional 
differences may be related to the timing and specific tissue 
localization.

IL-34 in autoimmune diseases

Autoimmune diseases are a systemic disease characterized 
by excessive immune responses involving many immune 
tissues, cells and interleukins (43-47). The high serum level 
of IL-34 was observed in many autoimmune diseases (48-53). 
Indeed, the involvement of IL-34 has been assessed in the 
initiation and development of autoimmune inflammation. 
Many correlation-studies assessed the serum level of IL-34 
and suggested IL-34 is a positive biomarker for autoimmune 
response. Osteoclasts are the potent drivers and effector 

Table 1 Immunoregulatory role of IL-34 during virus infection in patients 

Virus Producer Target cell Role of IL-34 Synergistic molecule Effect References

IAV IAV-infected cells in 
PBMC

Th17 Feedback induce IL-22 
expression

IL-22 ↑IL-22; drive inflammatory (38)

HBV Normal hepatocyte Hepatoma cell Inhibit HBV expression Unclear ↑Liver fibrosis (39,40)

HCV Hepatocytes around 
liver lesion

Monocyte; 
macrophage

Recruit monocyte/
macrophage

↓ ↓Collagenase; ↑collagen 
synthesis; ↓MMP1

(41)

HIV Microglia Peripheral 
macrophages

Recruit peripheral 
macrophages into brain

Receptor-type protein-
tyrosine phosphatase zeta 
(RTPTP-ζ)

Drive brain reconstitution 
peripheral macrophages  
into microglial-like cells

(42)
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that participated in both inflammatory and erosion of bone 
and cartilage in rheumatoid arthritis (RA). The serum level 
of IL-34 was higher in RA patients than osteoarthritis 
patients, more than healthy control, and was positively 
accompanied with a higher radiographic progression and 
rheumatoid factors expression (54-56). The maturation 
of osteoclastogenesis is successfully induced by the 
supernatants of tumor necrosis factor-α (TNF-α) stimulated 
periodontal ligament cells added to the differentiation 
medium of human peripheral blood monocytes/macrophage 
cells with the receptor activator of nuclear factor kappa-B 
ligand (RANKL) in vitro, but the number of osteoclast 
was decreased after the anti-IL-34 IgG was added to the 
cultures (57). Obviously, the high expression of IL-34 in 
RA patients is inseparable from its ability to promote the 
differentiation of monocytes, especially osteoclasts, and thus 
participates in the development of RA. 

High serum level of IL-34 was also observed in patients 
with systemic lupus erythematosus (SLE), and the worse 
the clinical features and the higher IL-34 expression (48,58). 
The SLE is a systemic autoimmune disease characterized 
by a large number of activated autoreactive T, B cells 

and followed by immune dysfunction (59-63). However, 
abnormal secretion of many cytokines can lead to immune 
dysfunction, but how the IL34 is involved in the course of 
SLE remains to be unclear and deserves a deep study in the 
future.

IL-34 in transplant immunity

Induction of transplant tolerance provides an efficiently 
therapy in both the acute rejection and the chronic allograft 
dysfunction (64-66). The therapy of anti-graft immunity 
has benefited from the development of Tregs and immune-
suppressive monocytes in both experimental allograft-
models and transplantation-patients (67,68). Yet, it is 
still unclear how IL-34 regulates Tregs and suppressive 
monocytes and how the balance of pro-inflammatory 
and anti-inflammatory role of IL-34 is regulated. 
Recently, IL-34 was demonstrated as a key mediator as 
it was highly expressed in CD8+CD45RClo Tregs and 
regulatory macrophages (69,70). In fact, Treg cells and M2 
macrophage have an outstanding anti-inflammation role in 
organ transplantation and other diseases (71-77). Bezie and 
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Figure 1 Roles of IL-34 in different tissues and immune-microenvironment.
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colleagues has found that CD8+CD45RClo Tregs expressed 
a high level of IL-34. IL-34-treated macrophages when co-
cultured with allogeneic PBMCs, significantly increased 
the percentage and number of Foxp3+CD8+CD45RClo 
and Foxp3+CD4+CD45RClo Tregs. Importantly, the IL-
34-expanded Foxp3+CD8+CD45RClo Tregs showed an 
enhanced immunosuppressive capability (22), as shown 
in Figure 1. Moreover, long-term transplant survival was 
successfully established in rat cardiac allograft model by IL-
34 overexpression to expand Foxp3+CD8+CD45RClo Tregs 
that promotes macrophage to easily migrate into graft, then 
exhausts the autoreactive effect T cells and inhibits the 
production of autoantibody.

Concluding remarks

IL-34 is functionally similar to CSF-1, playing a key role 
in development and function of mononuclear linage cells. 
However, its effect is strongly determined by timing and 
sources. It is yet unclear what is its exact role in the diseases 
and patients. The further study is strongly suggested. 
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