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Cancer immunotherapy exploits the immune system 
to fight cancers. Although immunotherapy has been an 
important component of cancer treatment for decades, it 
does not attract too much attention until the past ten years, 
especially when the Nobel Prize in Physiology or Medicine 
was awarded for the discovery of cytotoxic T-lymphocyte-
associated protein (CTLA-4) and programmed cell 
death protein 1/programmed cell death protein ligand 1  
(PD-1/PD-L1) (1) in 2018. Nowadays, immune checkpoint 
inhibitors are used to treat various cancers, including 
the first line treatment of advanced non-small cell lung 
cancer (NSCLC), melanoma and renal cell carcinoma. In 
addition to immune checkpoint inhibitors, adoptive cell 

therapies and tumor vaccines are also common cancer 
immunotherapies. The basic mechanism for these cancer 
immunotherapies is that T cells exert an immune function 
via recognizing tumor antigens presented by the major 
histocompatibility complex (MHC) on the membranes of 
tumor cells (2,3).

MHC is a group of polymorphic genes expressed in nearly 
all the vertebrates, which determines histocompatibility 
between different individuals. MHC was first discovered 
during the first decade of the 20th century because of tumor 
rejection between genetically distinct mice (4). Human 
MHC is also known as human leukocyte antigen (HLA). 

HLA class I molecules are expressed on most cell types 
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including tumor cells in human, presenting endogenous 
antigens to the immune system. HLA class II molecules 
are mainly expressed by antigen-presenting cells (APCs), 
presenting exogenous antigens to T helper cells. Both HLA 
class I and class II molecules show high polymorphism, 
which means that they have many different alleles among 
human populat ions .  This  i s  why HLA mismatch 
between donors and recipients is the primary cause 
of transplant rejection (5). According to IMGT/HLA 
database, more than 12,000 alleles were identified as 
HLA class I genes (6). Evolutionarily, the diversity of 
HLA molecules ensures that the immune system could 
recognize as many antigens as possible and help us to 
defend various pathogens. Interestingly, while investigating 
the effect of HLA class I divergence on the efficacy of 
immune checkpoint inhibitor treatment for cancer (7), 
Chowell et al. found that greater sequence divergence of 
an HLA-I genotype is associated with higher diversity of 
self, tumor and viral immunopeptidomes. Furthermore, 
patients with high HLA-I divergence show better responses 
to immune checkpoint inhibitors than patients with low 
HLA-I divergence. These findings suggested that HLA 
polymorphism is critical for us to fight cancer.

Antigen presentation by HLA

HLAs presents tumor antigens to T cells to facilitate the 
immune system to recognize tumor cells. The process by 
which HLA molecules bind antigen peptides and present 
them on the cell membrane is called antigen presentation. 
Here we summarized three different pathways of antigen 
presentation (Figure 1). All of these processes occur 
during tumor development and mediate responses to 
immunotherapies. 

The peptide binding groove of HLA class I molecules 
is closed at both ends by conserved tyrosine residues, 
which usually restricts the size of bound peptides to 8–10 
residues (8,9). Endogenous antigens are degraded by 
proteasomes into short peptides in the cytoplasm, and these 
short peptides are transferred from the cytoplasm to the 
endoplasmic reticulum (ER) lumen through the antigen 
processing-related transporter protein (TAP) (Figure 1A). 
In the ER, empty class I molecules waiting for peptide 
loading is retained by a series of chaperones including 
a dedicated chaperone tapasin (also called TAP-binding 
protein, TAPBP) in the peptide-loading complex. With 
the help of several chaperones, appropriate peptides then 
bind to class I molecules and the peptide-HLA complexes 

become stabilized. The stable complexes continue to move 
along with the ER, pass through the Golgi apparatus, and 
finally reach the surface of the cell membrane. In addition 
to tapasin, a second MHC class I-specific chaperone, 
the tapasin-related protein TAPBP-R was identified in  
2013 (10). Both tapasin and TAPBP-R function as a peptide 
exchange catalyst and a quality control checkpoint. They 
ensure MHC class I molecules are loaded with high-affinity 
peptides and prolong cell surface presence of MHC class I 
molecules (11). 

HLA class II molecules usually bind peptides with 13–25 
residues in length according to their open binding grooves (12).  
Exogenous antigens are taken up by endocytosis or 
phagocytosis and cleaved into peptides in endosome. HLA 
class II molecules are synthesized in ER where they pair 
with a third chain, the invariant chain (Ii) (Figure 1B).  
This interaction prevents the loading of endogenous 
peptides to the MHC class II cleft. Ii also guides HLA 
class II through the cells to a late endosomal MHC class II 
compartment (MIIC). In MIIC, Ii is proteolytically cleaved 
into a short peptide called class II-associated Ii peptide (CLIP), 
which continues to block the binding of peptides to the class 
II cleft. The CLIP is exchanged for an antigenic peptide with 
the help of chaperones such as HLA-DM and HLA-DO. 
Like tapasin and TAPBP-R in the HLA I process, HLA-
DM and HLA-DO also shape the peptide repertoire of HLA 
II that is ultimately presented on the cell surface of CD4+ T 
cells. Interestingly, Yamashita et al. recently found that HLA-
DP molecules with β-chains encoding Gly84 (DP84Gly) do not 
bind Ii through the CLIP region, nor present CLIP. DP84Gly 
uniquely exploits both class I and II antigen pathways to 
present both endogenous and exogenous peptides (13).

Certain APCs such as dendritic cells (DCs) have the 
ability to process and present exogenous antigens with 
HLA class I molecules. This process is called cross-
presentation. During cross-presentation, extracellular 
proteins or cell debris are internalized by DCs through 
endocytosis or phagocytosis and further degraded into 
peptides and presented onto HLA class I molecules (14,15). 
There are mainly two pathways that have been reported 
for cross-presentation: the vacuolar pathway and the 
cytosolic pathway (Figure 1C). In the vacuolar pathway, an 
extracellular antigen is taken by DCs into the endosome. 
The antigen is degraded by proteasome and then the derived 
peptides are loaded onto HLA class I molecules directly in 
the endosome. In the cytosolic pathway, like the vacuolar 
pathway, the extracellular antigen is also internalized into 
the endosome. However, the antigen may be degraded inside 
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the endosome or transported out of the endosome and then 
degraded in the cytoplasm. The derived peptides can either 
be transported by the TAP transporter into the ER, or back 
into the endosome for loading onto HLA class I molecules. 
Both pathways may occur in DCs during cross-presentation. 
The importance of cross-presentation is that it allows DCs to 
acquire antigens from other pathogen infected cells or cancer 
cells in the periphery and then report their presence to naive 
CD8+ T cells in lymphoid organs (16).

HLA-dependent immunotherapy

CD8+ cytotoxic T lymphocytes (CTLs)-based immunotherapy

CD8+ cytotoxic T lymphocytes represent a crucial component 
of the adaptive immune system against tumors. Most cytotoxic 
T cells express T cell receptors (TCRs) that can recognize a 
specific antigen. After TCR binding to peptide-HLA complex 

expressed by tumor cells, CTLs are activated, accumulate 
at the tumor site, and release effectors to attack tumor cells. 
CTLs exert specific killing effects on tumor cells via two major 
pathways: (I) releasing cytotoxic substances such as perforin, 
granzymes, and cytokines to kill tumor cells; (II) activating 
death receptor pathway, e.g., FasL, expressed on the surface of 
T cells, binds to the death receptor Fas on the surface of tumor 
cells, to initiate apoptosis-related signals, which lead to tumor 
cell apoptosis. 

Extensive evidence has suggested that adoptive transfer of 
CTLs could harness the cellular immune system and lead to 
the killing of tumor cells both in animal models and cancer 
patients (17). Over the past decades, many studies have 
transferred in vitro expanded tumor-infiltrating lymphocytes 
(TILs) back into patient donors and showed promising 
outcomes. The first one was reported by Rosenberg et al. 
in 1988 to treat patients with metastatic melanoma (18).  
Since then, TIL therapy has shown satisfactory efficacy 

Figure 1 Three different pathways of antigen presentation. (A) Endogenous antigens are mostly presented by HLA class I molecular 
pathways; (B) exogenous antigens are mostly presented by HLA class II molecular pathways; (C) exogenous antigens can also be cross-
presented by HLA class I molecules, including the vacuolar pathway (left) and the cytosolic pathway (eight). HLA, human leukocyte antigen.
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in advanced melanoma. Favorable objective response 
rates up to 72% were reached with TIL therapy in 
several consecutive clinical trials, in which 10–20%  
of treated patients reached a complete remission and 40% of 
patients achieved durable clinical responses (19). In addition 
to melanoma, investigators also isolated TILs from other 
solid tumors such as renal cell, breast and cervical cancer. 
However, the tumor reactivity of TILs from these other 
tumors is usually lower when compared to melanoma (19).  
Although TIL treatment is effective, the biggest problem is 
that tissue samples for TIL production cannot be obtained 
from all cancer patients. Even worse, in some cases, TILs 
cannot be isolated from resected tumor tissues. Recently, 
with the help of lentivirus and other gene engineering 
technologies, a specific TCR recognizing tumor antigen 
was inserted into the genome of bulk T cells, which makes 
it possible to produce antigen-specific T cells for everyone. 
Thus, TCR-engineered T cells (TCR-Ts) are therefore 
considered as a more promising treatment for cancer 
patients.

Lots of TCR-Ts are currently tested in clinical trials as 
reviewed by other groups (20-22). In 2006, Morgan et al. is 
the first group to report clinical trial results to demonstrate 
the feasibility of treating tumors with TCR-Ts (23). In that 
study two patients showed a sustained objective regression 
of their metastatic melanoma and remained clinically 
disease-free for at least 20 months. In 2009, Johnson  
et al. used TCR-Ts to target MART-1 (melanoma antigen 
recognized by T cells 1) and gp100 for the treatment of 
melanoma (24). The response rate of targeting MART-1 
was 30% (6/20), and the response rate of targeting gp100 
was 19% (3/16). Moreover, in 2015, Robbins et al. reported 
that the response rates of NY-ESO-1 (New York esophageal 
squamous cell carcinoma 1)-specific TCR-engineered 
autologous T cells against synovial sarcoma and melanoma 
was 61% (11/18) and 55% (11/20), respectively (25,26). 
Nowadays, more clinal trials of TCR-Ts are ongoing. The 
majority of the TCR-T targets used in these trials are NY-
ESO-1, MAGE family (melanoma antigen family), AFP 
(alpha fetoprotein), WT-1 (Wilms’ tumor antigen 1), HPV 
(human papilloma virus), etc.

Expanding T cell epitope reservoir for CTLs-based cancer 
immunotherapy

The peptide-HLA complexes recognized by TCR are called 
T cell epitopes. Known T cell epitopes targeted by TCR-
Ts which have been tested in clinical trials were summarized 

in Table 1 of this review. Up to date, as shown in the list, a 
very limited number of T cell epitopes have been identified 
and targeted in immunotherapy. Most of known peptides 
are restricted by HLA*02:01. Therefore, identifying 
new targets for CTLs-based immunotherapy, especially 
peptides restricted by other HLA, is urgently needed in 
order to further enhance the therapeutic value of TCR-Ts. 
Although T cell epitopes can be identified by sequencing, 
bioinformatics and mass spectrometry, identifying new 
antigens that are immunogenic and can promote tumor 
rejection remains a major challenge (49). 

Shared antigens expressed by broad types of cancers or 
individuals are considered limited. Therefore, targeting 
unique, patient-specific tumor mutations now has attracted 
a lot of attention and could become a promising alternative 
in the near future. Moreover, targeting “neoantigens”, the 
somatic mutations expressed only by tumor cells, might 
enable specific tumor destruction without causing off-target 
damage to vital healthy tissues (50). Neoantigen-reactive T 
cells have been administered to cancer patients and shown 
objective response. In some cases, complete regressions in 
patients with different types of cancers were also observed 
(51-53). In order to identify neoantigens, tumor sections 
and corresponding normal tissues were sent for whole-
exome sequencing to determine the tumor-specific non-
synonymous mutations in protein-coding regions. After 
that, candidate neoantigens are selected according to HLA-
binding affinity, expression level, variant allele frequency 
and several other criteria. Finally, the immunogenicity of 
the selected candidate peptides is evaluated with different 
immunological screening assays (54).

Next generation sequencing has greatly facilitated 
the progress of TCR-based immunotherapy. A large 
number of candidates neoepitopes could be identified 
through whole-exome sequencing. Moreover, TCR 
clones could also be discovered by high throughput single 
cell sequencing (55,56). The traditional immunological 
screening assays for T cell antigen discovery, such as 
interferon-γ  (IFN-γ) ELISA/ELISPOT and pHLA 
multimer staining, are usually laborious and time-
consuming. Recently several high throughput techniques 
have been developed to identify cognate antigens for 
T cells (57-64). The research team led by Dr. Stephen  
J. Elledge has developed a high throughput, whole-genome 
screening platform called T-Scan to identify antigens 
recognized by T cells (60). In this study, this technology 
was applied to identify multiple cytomegalovirus (CMV) 
antigens that can be recognized by memory T cells. 
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Table 1 Known T cell epitopes targeted by TCR-T in clinical trials

Antigen HLA Sequence Cancer (s) Reference number

p53 HLA-A*02:01 LLGRNSFEV Metastatic melanoma (27)

MART1 HLA-A*02:01 AAGIGILTV Metastatic melanoma (28)

MART1 HLA-A*02:01 EAAGIGILTV Stage IV skin melanoma, eye melanoma (29)

gp100 HLA-A*02:01 KTWGQYWQV Metastatic melanoma (30)

NY-ESO-1 HLA-A*02:01, 
HLA-A*02:05, 
HLA-A*02:06

SLLMWITQC Metastatic melanoma, Metastatic SCS,  
solid cancers

(25,31,32)

CEA HLA-A*02:01 IMIGVLVGV Metastatic CRC (33)

MAGE-A3 HLA-A*02:01 KVAELVHFL Melanoma, SCS; breast, cervical, renal, 
bladder cancers

(34)

MAGE-A3 HLA-A*01 EVDPIGHLY High-risk or relapsed myeloma (35)

MAGE-A4 HLA-A*24:02 NYKRCFPVI Solid cancers (36)

MAGE-A4 HLA-A*02 GVYDGREHTV Solid and hematological malignancies (37)

MAGE-A10 HLA-A*02:01, 
HLA-A*02:06

GLYDGMEHL Advanced NSCLC (38)

MAGE-A12 HLA-A*02:01 KMVELVHFL Esophageal cancer (34)

WT1 HLA-A*02:01 RMFPNAPYL MDS, AML (39)

Tyrosinase HLA-A*02:01 YMDGTMSQV, YMNGTMSQV Melanoma (40)

HPV E6 HLA-A*02:01 TIHDIILECV HPV-associated cancers (41)

HPV E7 HLA-A*02:01 YMLDLQPET HPV-associated cancers (42)

Human thyroglobulin(hTG) HLA-A*02:01 SKYISSLKTSADG Metastatic thyroid cancer (43)

PRAME HLA-A*02:01, 
HLA-A2*02:01

VLDGLDVLL, SLYSFPEPEA, 
ALYVDSLFFL, SLLQHLIGL

AML, MDS, uveal melanoma (44)

KRAS G12V HLA-A*11:01 VVGAVGVGK Pancreatic, gastric, gastrointestinal, 
colon, rectal cancers

(45)

KRAS G12D HLA-A*11:01 VVGADGVGK Pancreatic, gastric, gastrointestinal, 
colon, rectal cancers

(45)

HA-1 HLA-A*02:01 VLHDDLLEA Relapsed or refractory acute Leukemia (46)

TGFβRII frameshift protein HLA-A*02 RLSSCVPVA CRC (47)

AFP HLA-A*02:01, 
HLA-A*02:642

FMNKFIYEI HCC (48)

AFP, alpha-fetoprotein; CEA, carcinoembryonic antigen; HA-1, minor histocompatibility (H) antigen; HPV, human papilloma virus; HERV-
E-derived antigen, human endogenous retrovirus-derived antigen; MART-1, melanoma antigen recognized by T cells 1; NY-ESO-1, New 
York esophageal squamous cell carcinoma 1; PRAME, preferentially expressed antigen in melanoma; TGFβRII, transforming growth factor 
beta receptor type II; WT1, Wilms’ tumor antigen; AML, acute myeloid leukemia; ccRCC, clear cell renal cell carcinoma; CRC, colorectal 
cancer; HCC, hepatocellular cancer; MDS, myelodysplastic syndrome; SCS, synovial cell sarcoma.

Moreover, they also used this technology to successfully 
discover the genome-wide targets of self-reactive TCRs. 
David Baltimore’s research team developed two cell-based 

platforms for TCR antigen discovery. One platform used 
chimeric receptors called signaling and antigen-presenting 
bifunctional receptors (SABRs) (58). These chimeric 
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receptors are composed of an extracellular pHLA fused to 
an intracellular CD3ζ signaling domain and a CD28 co-
stimulatory domain. When recognized by a specific TCR, 
this interaction triggers the expression of green fluorescent 
protein (GFP) and CD69 on Nuclear Factor of Activated T 
cells (NFAT)-GFP-Jurkat cells which can be selected and 
sequenced to identify the specific peptide recognized. The 
other platform exploits a membrane transfer phenomenon 
called trogocytosis, a rapid exchange of envelope fragments 
or related molecules between cells through cell-to-cell 
contact (59). Co-incubation of T cells expressing an 
orphan TCR with target cells led to specific labeling of 
cognate target cells, enabling isolation of these target cells 
and sequencing of the cognate TCR ligand. These high 
throughput techniques not only facilitate the screening 
of tumor antigen targets, but also can be used to discover 
the off-target reactivities of a therapeutic candidate TCR, 
making it a versatile tool for the development of T cell 
immunotherapy.

Tumor may escape CTLs-based immunotherapy 
through downregulation of HLA

Tumor immune escape refers to the phenomenon that in 
order to survive and proliferate in human bodies, tumor 
cells can escape from the surveillance of immune system. 
The downregulation or loss of HLA class I molecules is an 
important mechanism for tumors to escape from T cell-
mediated immune responses.

HLA expression changes are a common event in the 
carcinogenesis process, and generally occur at the early 
stage (65,66). The downregulation or loss of HLA class I 
molecules can prevent tumor cells from being recognized 
by CTL. Besides, it was reported that class I molecules can 
be used as tumor suppressor genes in melanoma. Down-
regulating the gene enhanced the carcinogenicity of cells, 
and allow melanoma cells to have a higher proliferation rate 
and greater migration and invasion potential (67). There are 
mainly two types of HLA downregulation. The first one is 
total HLA class I loss or downregulation, which may due to 
the mutation of beta-2 microglobulin (b2m) gene, complete 
loss of HLA class I locus or defects in antigen processing 
and transport pathway. The other one is partial HLA class 
I loss or downregulation, due to loss of one or several 
HLA alleles or epigenetically downregulated HLA gene 
expression. HLA downregulation is common in cancers (68).  
The percentage of total or partial HLA loss ranges from 
65% to 90%, depending on the type of cancer (69). 

Carretero et al. examined the expression of HLA class I 
antigens in ten metastatic lesions obtained from a melanoma 
patient undergoing immunotherapy. The eight regressing 
metastases showed high level of HLA class I expression, 
whereas the two progressing lesions had low levels (70). 
Therefore, HLA class I downregulation may be barriers for 
effective CTLs-based immunotherapy.

Immunotherapies to overcome HLA 
downregulation

Chimeric antigen receptor (CAR) T-cell (CAR-T)

The discovery of CAR-T therapy provided a way to 
get around the limitation of the dependence on class I 
molecules. The main concept is to trigger T-lymphocyte 
cytotoxic reaction without the need for HLA recognition. 
CAR is a genetically engineered hybrid of an antibody and a 
TCR (71). CAR confers the T cells the abilities to recognize 
tumor cells with a chosen surface antigen and to trigger T 
cell activation with TCR signaling pathway. 

The CAR structure consists of three parts,  the 
extracellular antigen-binding region, the intracellular 
signal peptide region, and the transmembrane region. Its 
extracellular antigen-binding region is composed of single-
chain variable fragments (scFv) derived from an antibody; 
the transmembrane region connects intracellular and 
extracellular structures, usually comprising CD8 or IgG4-
Fc; and the intracellular signal peptide region, usually 
carrying a co-stimulatory domain and a CD3ζ chain, is 
mainly responsible for T cell activation. The CAR structure 
has gone through four generations of development so 
far. In the first-generation CAR, a scFv was fused to the 
gamma chain of an immunoglobulin or the zeta chain of 
a CD3 complex. There was no costimulatory molecule, 
and the survival time in vivo was short (72,73). The second 
generation was improved one step further by fusing 
a costimulatory molecule to the upstream region of a 
CD3 domain, mainly CD28 or 4-1BB (74,75). The third 
generation CAR combines multiple co-stimulatory domains, 
such as CD28 and 4-1BB or CD28 and OX40. The fourth-
generation CAR-T further adds factors that enhance T cell 
expansion, persistence, and anti-tumoral activity, such as 
IL-2, IL-5, IL-12 and co-stimulatory ligands (76).

Immunotherapy with CAR-T cells has achieved 
tremendous successes in treatment of hematological 
malignancies. By targeting CD19, two second-generation 
CAR-Ts were approved by the US Food and Drug 
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Administration (FDA) for treating leukemia and lymphoma 
in 2017, of which Kymriah uses 4-1BB as a co-stimulation 
domain and Yescarta uses CD28 as a co-stimulation domain. 
Researchers found that patients treated with tisagenlecleucel 
(Kymriah®) for relapsed/refractory B-cell precursor acute 
lymphoblastic leukemia (r/r ALL) showed a response rate 
that exceeds the response rate reported previously for 
standard chemotherapies. Moreover, clinical data showed 
that tisagenlecleucel has a continuous response without 
major safety concern (71,77).

There are also several ongoing clinical investigations 
about CAR-T therapy in solid tumors. The popular targets 
include glypican-3 (GPC3) (78,79), ganglioside GD2 
(80,81), EGFR (82,83), EGFRvIII (84,85), etc. However, 
developing CAR-Ts for the treatment of solid tumors is 
challenging. Compared to the success in hematological 
malignancies, CAR-T therapy has to date been much 
less effective for solid tumors (86,87). The first obstacle 
in treating solid tumors with CAR-T cells is that there 
are limited antigens solely expressed on the cell surface 
of tumor cells but not normal cells. In the treatment of 
neuroblastoma, the fatal neurotoxicity was observed in 
high-affinity GD2-specific CAR-T cell therapy because 
of low amounts of GD2 expression in the cerebellum and 
basal regions of the brain (88). These results highlight the 
challenges associated with target antigens that exhibit shared 
expression on critical normal tissues. Therefore, to improve 
target specificity and eliminate toxicity are necessary in 
CAR-T cell therapy. Another problem for CAR-T therapy 
is the poor infiltration and survival of CAR-T cells in 
tumor microenvironment. To solve these problems, Ma et 
al. enhanced CAR-T cell activity against solid tumors by 
vaccine boosting. They used a CAR targeting EGFRvIII 
in combination with a vaccine containing an amphiphilic 
polymer linked to the EGFRvIII target antigen. In mice 
with EGFRvIII+ gliomas, vaccination resulted in improved 
CAR-T cell proliferation and survival, and improved 
infiltration of activated CAR-T cells into tumor sites (89,90).
Natural killer cells (NK cells)

NK cells are another type of cytotoxic lymphocytes, whose 
function is also mediated by the interaction of cell surface 
receptors with HLA class I molecules (91).

NK cells circulate in peripheral blood and are larger 
than T cells in size, and their phenotypes are different from 
that of T cells. There are no immunoglobulins or TCRs 
on the surface of NK cells. Human NK cells are generally 
defined as cells that lack the cell surface marker CD3 and 

express CD16 and/or CD56 cell surface glycoproteins. 
Immediately after pathogen infection, NK cells migrate to 
the site of inflammation and release their immune function. 
In addition to cytotoxic functions, NK cells can also secrete 
certain cytokines to kill infected cells.

NK cell-mediated cell killing activity was inversely 
related to the expression of HLA class I molecules. The 
mechanism is that when the specific receptor of the HLA 
class I molecule on the surface of NK cells encounters its 
ligand molecule, it will send an inhibitory signal to prevent 
NK cells from being activated to exert cytotoxicity and 
secret cytokines (92), preventing NK cells from killing 
healthy cells. To that end, each NK cell expresses at least 
one inhibitory receptor that can specifically interact 
with type I molecules. There are two types of inhibitory 
receptors in human NK cells for HLA class I molecules, 
one is a heterodimer composed of membrane molecules 
CD94 and NKG2A that are covalently bound through 
disulfide bonds (93,94). The other type is called killer-cell 
immunoglobulin-like receptor (KIR) which are a family of 
transmembrane glycoproteins expressed on NK cells and a 
subset of T cells. The different ways used by NK cells and 
CD8+ T cells to recognize and respond to class I molecules 
allow them to collectively generate complementary immune 
defense against infection.

Since 1970s, several studies have revealed the important 
role played by NK cells in anti-tumor cytotoxicity. For 
examples, NK cells can release CCL5, XCL1, and XCL2 to 
promote the aggregation of DCs inside solid tumors and to 
promote the antitumor effect of CD8+ T cells (95). In a recent 
study, scientists transformed NK cells derived from patients 
with ovarian cancer into a cytotoxic CD56superbrightCD16+ 
subset, which can effectively control the growth of autologous 
ovarian cancer xenografts in mice (96).

NK cells function through an antigen-independent 
pathway and can recognize the loss of HLA molecules as an 
activation signal, which effectively reduces the possibility 
of immune escape of tumor cells due to the downregulation of 
class I molecules. By exploiting this feature, we can then utilize 
NK cells to make up for the restriction on target recognition 
imposed by HLA class I molecules in TCR-T therapy.

CD4+ T cells

At present, most TCR-T researches are focused on CD8+ T 
cells. Since tumor cells often escape the surveillance of the 
immune system by down-regulating the expression of class 
I molecules, the application of CD8+-associated TCR-T 
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therapy is greatly limited. Therefore, some researchers have 
turned to CD4+ T cells.

Class II molecules mainly present exogenous antigens 
and are only selectively expressed on specialized APCs that 
are functionally differentiated, such as macrophages, B cells, 
and DCs. One common feature shared by these cells is that 
class II molecules and antigen peptides form complexes 
before being transferred to the cell membrane surface and 
subsequently recognized and bound by CD4+ T cells.

CD4+ T cells are also called T helper cells, which help 
the activation of CTLs, B cells, macrophages and DCs. 
CD4+ T cells can differentiate into different subsets such 
as Th1, Th2, Th17 and Treg cells. Although CD8+ CTLs 
are the preferred tools to target tumors, CD4+ T cells are 
also required for effective antitumor immunity (97,98). On 
one hand, CD4+ T cells could kill tumor cells directly when 
HLA class II molecules expression were induced on certain 
tumor cells by IFN-γ stimulation (98). On the other hand, 
CD4+ T cells can exert indirect cytotoxicity. Tumor antigen 
was processed by HLA class II positive APCs and presented 
to CD4+ T cells. Tumor-specific CD4+ T cells were activated 
and started to secrete cytokines (99,100). Vaccination 
with CD4+ immunogenic mutations/neo-epitope induced 
cytotoxic T lymphocyte responses and conferred antitumor 
activity both in mice and patients, which revealed the 
participation of CD4+ T cells in immunotherapy (100,101). 
Moreover, Robert D. Schreiber’s group found that CD4+ T 
cells were also required in immune checkpoint therapy and 
the expression of MHC class II-restricted antigens by tumor 
cells was required at the site of successful rejection, indicating 
that activation of CD4+ T cells must also occur in the tumor 
microenvironment (102).

Up to date, several studies have shown that adoptive 
transfer of CD4+ T cells can also induce tumor regression 
(103-105). Researchers have generated an MHC class II-
restricted TCR transgenic mouse model in which CD4+ T 
cells recognize one epitope in tyrosinase-related protein 
1 (TRP-1), an antigen expressed by normal melanocytes 
and B16 murine melanoma (103). Both in vitro and  
in vivo experiments have confirmed that CD4+ T cells can 
eliminate established B16 melanoma, and its therapeutic 
effect is mainly mediated by IFN-γ. In a clinical study (106)  
patients with metastatic melanoma were treated with 
autologous DP4-restricted NY-ESO-1 specific CD4+ T cell 
clones and have achieved a long-term complete response for 
over 2 years, suggesting that CD4+ T cells can also induce 
long-term tumor regression in human similar to what CD8+ 
T cells have achieved.

Frequently found in a variety of cancer types, MAGE-A3 
is a cancer germline antigen and is one of the best targets 
for cancer immunotherapy. In a clinical study conducted 
in 2017, 17 patients received adoptive transfer of CD4+ T 
cells retrovirally transduced with MAGE-A3 TCR after 
lymphadenectomy plus systemic high-dose IL-2. The 
results showed that objective complete remission was 
observed in patients with metastatic cervical cancer. Patients 
with esophageal cancer, urothelial cancer, and osteosarcoma 
all had objective responses with durations ≥4 months. 
There were no treatment-associated adverse effects. 
Taken together, these findings have proven the safety and 
effectiveness of the MAGE-A3 specific CD4+ TCR-Ts (107). 

Summary 

HLA molecules play a pivotal role in T cell-mediated 
adaptive immunity. HLA class I molecules exist on most 
types of human cells and interact with TCRs to activate T 
cells to induce adaptive immune responses. CD8+ T cell-
based therapies such as TIL therapy and TCR-T therapy 
are HLA-dependent immunotherapies (Figure 2). Although 
TIL has achieved significant results in the treatment of 
metastatic melanoma, it is still difficult to isolate and identify 
effective TILs for other malignant tumors. In addition, as 
a “personalized” treatment, its industrial manufacturing 
process is full of obstacles. The current researches on TIL 
therapy are focused on how to use a rapid method to isolate, 
identify, and expand TILs to the clinically required doses. In 
TCR-T therapy, antigen-specific TCRs are transduced into 
normal T cells using retrovirus or lentivirus making it more 
convenient compared to TILs. Currently, several TCR-Ts 
are under investigation in clinical trials to further explore 
the therapeutic value. However, tumor cells may escape T 
cell attacks through downregulation of HLA, which poses 
a greater challenge to HLA-dependent immunotherapy. 
Thus, HLA-independent immunotherapies such as CAR-T 
therapy, NK therapy and CD4+ T cell therapy are discussed 
above (Figure 2). Interestingly, Crowther et al. recently 
found one TCR recognized and killed most human cancer 
types via the monomorphic MHC class I-related protein, 
MR1 (108). This MR1-restricted TCR mediated in vivo 
regression of tumor both in mice and in melanoma patients 
without the requirement of a specific HLA. These findings 
offered another opportunity for HLA-independent and 
pan-population immunotherapies. Considering great 
heterogeneity in tumor microenvironment, we believe that 
the combination of different immune cell therapies such as 
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CD8+ T cells and CD4+ T cells should be a trend of tumor 
adoptive immunotherapy in the future.
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