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Neurodegenerative diseases are a leading cause of disability 
worldwide, and despite significant resources put toward 
the discovery of potential therapeutic targets, there are 
currently no effective treatments. The rise of methods 
to derive and propagate stem cells in vitro offered great 
promise toward the development of cell replacement 
therapies. Unfortunately, these attempted therapies 
were stymied by extremely low cell survival and a lack of 
integration into the pre-existing circuitry due, in part, to an 
unfavorable environment. A recent report in Science from 
the laboratories of Heinrich Jasper and Deepak Lamba 
at the Buck Institute by Neves et al. (1) provides evidence 
that components of the immune system may underlie the 
favorability of a tissue microenvironment to cell survival 
and regeneration. Furthermore, they identify mesencephalic 
astrocyte-derived neurotrophic factor (MANF) as a 
potential mediator of regenerative favorability.

Efforts to boost the intrinsic regenerative potential of 
neurons in the central nervous system (CNS) revealed the 
importance of a permissive environment for successful 
regeneration (2). Consequently, extensive research has 
been devoted toward the understanding of both the cell 
intrinsic and environmental factors required to facilitate 
regeneration as well as methods to coax them toward a more 
permissive state. While we are still far from being able to 
regenerate damaged neural tissue, progress has been made 
in uncovering and manipulating intrinsic factors, largely 
due to advances in stem cell biology (3).

In contrast, modulation of the environment has been 
an inherently more complicated task. In the CNS, glial 
and immune cell types are major players in secreting 
factors into the local neural environment, many of which 
can have opposing effects, leading to an environmental 
milieu containing both regenerative and non-regenerative 
factors (4). In the context of damage, neurons will release 
distress factors which serve to recruit and activate local glial 
and resident immune cells. Activation prepares glia and 
macrophages for the clearance of cellular debris derived 
from the damaged neurons. Unfortunately, activation is 
often accompanied by an upregulation of inflammatory 
cytokines and other non-regenerative factors (5).

Although it is necessary for dying neurons to be 
removed, the mechanisms which facilitate clearance often 
also exacerbate damage, leading to further cell death and the 
creation of an environment that is hostile to the replacement 
of the damaged cells (6). The ultimate goal, then, is to find 
a way to modulate the activation response so it involves only 
the features that are conducive to regeneration. Progress 
toward this goal has been facilitated by the recognition that 
reactive macrophages, microglia, and astrocytes can exist in 
different states. These activation states are broadly defined 
as pro- and anti-inflammatory, and are classified as M1 
and M2, respectively (7). Presumably then, the most useful 
therapies will be those which strategically shift the balance 
in favor of the M2 state. Toward this goal, Neves et al. 
have potentially made a major breakthrough in the ability 
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to influence immune cell activation state and regenerative 
permissiveness in the mammalian retina using MANF.

MANF is an endoplasmic reticulum (ER) stress protein 
which can be localized to the ER lumen or secreted 
as a neurotrophic factor, suggesting it may play both 
intracellular and autocrine/paracrine functions (8). It is 
primarily understood to be involved in the unfolded protein 
response, regulated by GRP78/BiP to protect against ER 
stress induced cell death (9). MANF was originally found to 
be neuroprotective in dopaminergic neurons (10) and in the 
context of CNS ischemia (11,12). Since MANF is expressed 
in neurons, its intracellular role as an anti-apoptotic agent 
has been thought to underlie its neuroprotective effects (13). 
Although a role for MANF within photoreceptors cannot 
be ruled out, the work of Neves et al. reveals that, in the 
retina, the primary neuroprotective effect of MANF is 
derived from its effects on immune cells, rather than a direct 
effect on neurons. Another group has demonstrated that 
MANF is expressed only in activated subsets of microglia 
during ischemia (14) and macrophages in the spleen (15). 
This supports the idea that MANF is involved in immune 
cell regulation more broadly, though studies specifically 
addressing the generalizability of MANF’s immune 
modulation are still needed.

Neves et al. show that immune cells provide both 
a source and a target for MANF, suggesting that it is 
working in an autocrine fashion to alter its own state, and/
or in a paracrine manner to bias the activation state of its 
neighbors. Furthermore, they demonstrate that MANF 
loses its neuroprotective abilities in the retina when the 
immune cells are prevented from entering the M2 state. 
Although they provide convincing evidence that MANF 
can promote a regenerative environment, the mechanism 
is still unclear. The most critical question is how MANF 
interacts with its (unidentified) receptor and the signaling 
pathways affected by this interaction. The KDEL receptor 
(KDELR) has been implicated as a potential MANF 
receptor, both intra- and extracellularly (16). The work 
by Neves et al. indicates that MANF is working through 
KDELR in drosophila hemocytes (innate immune cells), 
yet whether this finding translates to mammalian immune 
cells has yet to be determined. Although the mechanism 
of action for KDELRs is also unclear, they are known to 
affect G-protein coupled receptors and membrane receptor 
clustering, triggering downstream signaling cascades (17). 
Characterization of the interaction between MANF and its 
receptor will help answer these questions.

Based on the work by Neves et al., efforts directed 

toward uncovering the molecular mechanisms involved 
in the MANF signaling should be an active area of 
research. It has become clear in recent years that the 
characterization of activation states into two broad classes is 
an oversimplification (18), and a more realistic picture likely 
involves a spectrum where only a subset of the ‘alternatively 
activated’ cells are truly pro-regenerative. MANF may 
be selectively inducing a special M2 subclass, and it will 
be important to further characterize the immune cells in 
MANF treated retina beyond the expression of a few basic 
M2 markers. Ultimately, a better understanding of the 
mechanisms involved in establishing immune cell activation 
states, particularly M2, may have tremendous benefits in the 
production of future therapeutic targets.

Neves et al. indicate that the neuroprotective effect of 
MANF is linked to the activation of PDGFRα. Although 
they show that MANF can be induced through the action 
of PDGF-A and its receptor PDGFRα, the cell type 
mediating the direct effects remains unclear. The authors 
presume that PDGF-A is acting directly on the immune 
cells, and ignore the likely possibility that it is instead 
(or also) acting on the Muller glia. Muller glia are retinal 
radial-glia like cells which express PDGFRα, can become 
activated in response to neuronal distress signals, and 
have multipotent stem cell potential that facilitates retina 
regeneration in some species (19). Neves et al. indicate 
that MANF is also localized to Muller glial processes 
following photoreceptor damage, but fail to elaborate on 
how Muller glia may be involved in the neuroprotective 
actions of MANF. Similar to macrophages, MANF is only 
expressed at appreciable levels in glia in response to stress 
or damage (14). Glial cells can also have a spectrum of 
responses ranging from neuroprotective to pro-apoptotic 
in the damaged CNS, yet little is known about how 
glial activation states are established and regulated (20). 
Communication between glial and immune cells is known 
to influence the activation state of both cell classes (21), 
thus the signaling between them may also determine the 
overall inflammatory state of the area in which they reside. 
The interplay between Muller glia and immune cells may 
be critical to the neuroprotective and possibly even the M2 
response of MANF in the retina. A complete understanding 
of the mechanisms underlying MANF’s effects cannot be 
achieved without also investigating the role of MANF in 
Muller glia.

The clinical implications from the work of Neves et al. 
are significant. MANF appears to be able to protect 
photoreceptors from dying in a mouse model of retinal 
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degeneration, as well as enhance the long-term survival and 
integration of subretinally injected donor photoreceptors 
into degenerating retinas. Therefore, as a therapeutic agent, 
MANF can both delay the progression of degeneration and 
facilitate retina regeneration. It will be interesting to see 
if MANF also provides an advantage when combined with 
therapies aimed at enhancing the intrinsic regenerative 
potential of the retina itself, particularly those targeting 
Muller glia.

It is worth noting that the authors of this study are funded 
by Amarantus Biosciences, Inc., which was co-founded by 
one of the investigators who discovered the neuroprotective 
effect of MANF in dopaminergic neurons (10). Amarantus 
has decided to validate the clinical neuroprotective efficacy 
of MANF in the retina, and has received orphan drug 
designation from the European Union for the treatment of 
retinitis pigmentosa (RP) as well as the United States for 
the treatment of RP and retinal artery occlusion, and aim 
to have clinical trials in the near future (22,23). RP is an 
inherited progressive degenerative disorder characterized 
by the loss of rod photoreceptors, whereas retinal artery 
occlusion is an acute condition in which ischemia can lead 
to retinal and optic nerve damage. Since these conditions 
have very different etiologies, the evaluation of MANF to 
be neuroprotective in both could lend support for broader 
use. Ultimately, if MANF is beneficial for these devastating, 
but relatively rare ocular disorders, the next logical step is 
to see if the therapeutic value can be extended to help the 
leading causes of vision loss, macular degeneration and 
glaucoma.

Since MANF is neuroprotective, but not restorative on 
its own, it is likely that its greatest benefit will be its use 
as an adjunct in combination with another replacement or 
regenerative therapy. Indeed there are currently clinical 
trials underway for RP in a collaboration between The 
University of California-Irvine and jCyte using intravitreal 
injection of human retinal progenitors (24). If this cell 
replacement therapy is shown to be safe and effective, the 
addition of MANF may further enhance clinical outcomes. 
Finally, if the immune cell modulatory effects of MANF 
can be translated to other organ systems, it has the potential 
to be a therapeutically valuable factor in regeneration as a 
whole.
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