## Supplementary Table S1. The distribution of job position, jot title, major of respondents in medical fields

| Category | N $(\%)$ |
| :--- | :--- |
| Job position |  |
| Student | $156(38.05 \%)$ |
| Doctor | $151(36.83 \%)$ |
| Nurse | $36(8.78 \%)$ |
| Clinical laboratory doctors | $3(0.73 \%)$ |
| Pharmacists | $5(1.22 \%)$ |
| Teaching staff | $15(3.66 \%)$ |
| Administrative staff | $11(2.68 \%)$ |
| Researchers in medical fields / postdoctoral | $26(6.34 \%)$ |
| Technician | $7(1.71 \%)$ |
| Job title |  |
| Primary (not awarded) | $30(11.54 \%)$ |
| General Physicians | $59(22.69 \%)$ |
| Consultants | $89(34.23 \%)$ |
| Chief/Senior physician | $82(31.54 \%)$ |
| Work Unit |  |
| Tertiary hospital | $154(59.23 \%)$ |
| Secondary hospital | $7(2.69 \%)$ |
| Primary hospital/Community health service | $59(22.69 \%)$ |
| Private hospital/clinic | $5(1.92 \%)$ |
| University/academic institution | $28(10.77 \%)$ |
| Government health and disease control unit | $2(0.77 \%)$ |
| Other | $5(1.92 \%)$ |
| Major |  |
| Medical students without subspecialty | $116(28.64 \%)$ |
| Respiratory medicine | $2(0.49 \%)$ |
| Digestive medicine | $5(1.23 \%)$ |
| Cardiology | $4(0.99 \%)$ |
| Department of Nephrology | $4(0.99 \%)$ |
| Department of Hematology | $1(0.25 \%)$ |
| Endocrinology | $1(0.25 \%)$ |
| Department of Rheumatology | $1(0.25 \%)$ |
| Department of Neurology | $4(0.99 \%)$ |
| Hepatobiliary surgery | $5(1.23 \%)$ |
| Gastrointestinal surgery | $4(0.99 \%)$ |
| Breast surgery | $1(0.25 \%)$ |
| Cardiothoracic surgery | $1(0.25 \%)$ |
| Urology | $1(0.25 \%)$ |
| Bone surgery | $4(0.99 \%)$ |
| Neurosurgery | $1(0.25 \%)$ |
| Obstetrics and gynecology | $4(0.99 \%)$ |
| Pediatrics | $3(0.74 \%)$ |
| Emergency department | $4(0.99 \%)$ |
| Stomatology | $2(0.49 \%)$ |


| Infectious diseases | $1(0.25 \%)$ |
| :--- | :--- |
| Dermatology | 0 |
| Ophthalmology | $148(36.54 \%)$ |
| Otolaryngology | $9(2.22 \%)$ |
| Psychiatry | 0 |
| Critical Care Medicine | 0 |
| Oncology | $1(0.25 \%)$ |
| Imaging | $4(0.99 \%)$ |
| Laboratory | $3(0.74 \%)$ |
| Pathology | $5(1.23 \%)$ |
| Others | $66(16.3 \%)$ |

Supplementary Table S2. The distribution of work field, jot title in non-medical fields

| Category | N (\%) |
| :--- | :--- |
| Work/Study field |  |
| Agriculture / Fisheries / Forestry/Mining and mineral, oil | $9(3.03 \%)$ |
| and gas extraction |  |
| Manufacturing (Food/ Clothing/Electric Power |  |
| Equipment/Paper Products/ Furniture / Home appliances/ | $47(15.82 \%)$ |
| Heavy Industry/Car) |  |
| Pharmaceutical/Bioengineering/Medical | $20(6.73 \%)$ |
| Devices/Devices | $9(3.03 \%)$ |
| Electricity, gas and water supply/ Transportation and | $15(5.05 \%)$ |
| storage/ Logistics | $17(5.72 \%)$ |
| Construction industry /Real estate development | $2(0.67 \%)$ |
| Wholesale / Retail /Trade / Import and Export | $6(2.02 \%)$ |
| Art /Entertainment /Sports | $60(20.2 \%)$ |
| Media /Advertising | $11(3.7 \%)$ |
| IT /Software and hardware services /Internet operations | $7(2.36 \%)$ |
| Bank /Finance/Insurance | $14(4.71 \%)$ |
| Law/Accounting/Audit | $61(20.54 \%)$ |
| Administrative management /Management /National | $19(6.4 \%)$ |
| defense |  |
| Education / Training / Institution/ Research and | $66(22 \%)$ |
| Development | $63(21 \%)$ |
| Others | $84(28 \%)$ |
| Job title | $35(11.67 \%)$ |
| Student | $52(17.33 \%)$ |
| Lecturer |  |
| Associate professor |  |
| Professor |  |
| No professional title |  |

## Supplementary Table S3. Perceptions on medical artificial intelligence

|  | Disagree | Neutral | Agree | p-value <br> (Medical vs. <br> Non-Medical) | p-value (Undergrad or below vs Grad or Phd) | p-value (Female vs. Male) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I have heard of the concept of medical artificial intelligence | 25(3.52\%) | 53(7.46\%) | 632(89.01\%) | 0.8791 | 0.001996 | 0.4935 |
| I can list at least one practical application scenario | 65(9.15\%) | 160(22.54\%) | 485(68.31\%) | <2.2e-16 | $1.284 \mathrm{e}-13$ | 0.2905 |
| I can list three medical specialties | 194(27.32\%) | 284(40\%) | 232(32.68\%) | <2.2e-16 | <2.2e-16 | 0.02261 |
| I can list at least one common algorithm | 330(46.48\%) | 188(26.48\%) | 192(27.04\%) | 0.0003445 | $1.828 \mathrm{e}-09$ | 0.007062 |
| I have received a course/ training/lecture | 400(56.34\%) | 124(17.46\%) | 186(26.2\%) | 0.000005337 | $3.379 \mathrm{e}-09$ | 0.02192 |
| I have been involved in research | 503(70.85\%) | 75(10.56\%) | 132(18.59\%) | 0.00002045 | 5.127e-14 | 0.0001353 |

## Supplementary Table S4. Channels that respondents know medical artificial intelligence (Multiple-choice)

|  | Medical | Non-Medical |
| :--- | :--- | :--- |
| Participating in medical artificial intelligence research | $132(32.2 \%)$ | $52(17.33 \%)$ |
| Academic conferences, special lectures | $264(64.39 \%)$ | $89(29.67 \%)$ |
| Medical artificial intelligence related courses | $120(29.27 \%)$ | $60(20 \%)$ |
| Information from network and social platform | $277(67.56 \%)$ | $247(82.33 \%)$ |
| The artificial intelligence service in the hospital | $175(42.68 \%)$ | $117(39 \%)$ |
| Books, magazines, newspapers | $184(44.88 \%)$ | $180(60 \%)$ |
| TV programs and films | $106(25.85 \%)$ | $155(51.67 \%)$ |
| No understanding at all | $29(7.07 \%)$ | $17(5.67 \%)$ |
| Other | $4(0.98 \%)$ | $0(0 \%)$ |

## Supplementary Table S5. Willingness to participate in medical artificial intelligence teaching activities.

|  | Strongly <br> Disagree | Somewhat <br> Disagree | Neutral | Somewhat Agree | Strongly <br> Agree | p-value (Medical vs. NonMedical) | p-value (Undergrad or below vs Grad or Phd) | p-value <br> (Female <br> vs. <br> Male) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Interested in medical artificial intelligence | 6(0.85\%) | 14(1.97\%) | 84(11.83\%) | 360(50.7\%) | 246(34.65\%) | 0.000001857 | $5.577 \mathrm{e}-11$ | 0.3187 |
| Willing to acquire general knowledge | 5(0.7\%) | 17(2.39\%) | 60(8.45\%) | 329(46.34\%) | 299(42.11\%) | 0.0001284 | 0.0003605 | 0.5074 |
| Willing to participate in academic lectures and conferences | 10(1.41\%) | 23(3.24\%) | 72(10.14\%) | 349(49.15\%) | 256(36.06\%) | $6.095 \mathrm{e}-13$ | $4.067 \mathrm{e}-08$ | 0.6374 |
| Willing to take courses | 8(1.13\%) | 32(4.51\%) | 89(12.54\%) | 306(43.1\%) | 275(38.73\%) | 7.992e-09 | 0.00004449 | 0.7578 |
| Willing to participate in the research | 15(2.11\%) | 75(10.56\%) | 115(16.2\%) | 254(35.77\%) | 251(35.35\%) | $2.2 \mathrm{e}-16$ | 8.646e-10 | 0.4337 |
| Willing to undertake or assist in the education reform and related work | 36(5.07\%) | 74(10.42\%) | 151(21.27\%) | 236(33.24\%) | 213(30\%) | 1.162e-08 | $4.794 \mathrm{e}-16$ | 0.5635 |
| Current knowledge can support the study of medical artificial intelligence courses | 82(11.55\%) | 126(17.75\%) | 153(21.55\%) | 178(25.07\%) | 171(24.08\%) | $1.229 \mathrm{e}-08$ | $1.118 \mathrm{e}-15$ | 0.002882 |

## Supplementary Table S6. Obstacles in the implementation of medical artificial intelligence teaching activities (multiple-choice)

| Medical field | $\mathbf{N ( \% )}$ |
| :--- | :--- |
| Students are not interested | $48(11.71 \%)$ |
| Students' basic knowledge of the relevant disciplines is weak, and it is difficult to | $237(57.8 \%)$ |
| learn well |  |
| Students are burdened with heavy workload and have no time to take care of them | $175(42.68 \%)$ |
| Lack of teachers in the field of medical artificial intelligence | $302(73.66 \%)$ |
| Lack of policy guidance and financial support | $194(47.32 \%)$ |
| Medical artificial intelligence is not mature at this stage, and its development | $127(30.98 \%)$ |
| prospects are uncertain | $147(35.85 \%)$ |
| medical artificial intelligence has potential medical, legal, ethical risks | $20(4.88 \%)$ |
| The prospects of medical artificial intelligence talent employment are not positive | $5(1.22 \%)$ |
| Others | $\mathbf{N ( \% )}$ |
| Non-Medical field | $55(18.33 \%)$ |
| Students are not interested | $159(53 \%)$ |
| Students believe that they are not related to their academic fields | $184(61.33 \%)$ |
| Students' basic knowledge of the relevant disciplines is weak, and it is difficult to | $124(41.33 \%)$ |
| Students are burdened with heavy workload and have no time to take care of them | $186(62 \%)$ |
| Lack of teachers in the field of medical artificial intelligence | $143(47.67 \%)$ |
| Lack of policy guidance and financial support | $132(44 \%)$ |
| Medical artificial intelligence is not mature at this stage, and its development pros | $109(36.33 \%)$ |
| Medical artificial intelligence has potential medical, legal, ethical risks | $34(11.33 \%)$ |
| The prospects of medical artificial intelligence talent employment are not positive | $3(1 \%)$ |
| Others |  |


|  | Strongly <br> Disagree | Somewhat <br> Disagree | Neutral | Somewhat <br> Agree | Strongly <br> Agree | p-value <br> (Medical vs. <br> Non-Medical) | p-value <br> (Undergrad or below vs. Grad or Phd) | p-value <br> (Female vs. <br> Male) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Medical college should offer medical artificial intelligence courses | 8(1.13\%) | 13(1.83\%) | 78(10.99\%) | 319(44.93\%) | 292(41.13\%) | 0.877 | 0.001429 | 0.001429 |
| Universities should encourage research projects on medical artificial intelligence | 6(0.85\%) | 7(0.99\%) | 51(7.18\%) | 329(46.34\%) | 317(44.65\%) | 0.06464 | 0.08205 | 0.08205 |
| Supervisors in medicine and science professions can cooperate to cultivate PhD Students | 8(1.13\%) | 9(1.27\%) | 52(7.32\%) | 345(48.59\%) | 296(41.69\%) | 0.0335 | 0.0005918 | 0.0005918 |
| Medical artificial intelligence should be set as an independent subject in universities in the future | 12(1.69\%) | 20(2.82\%) | 124(17.46\%) | 291(40.99\%) | 263(37.04\%) | 0.5424 | 0.02412 | 0.02412 |
| VR (virtual reality) technology shows the anatomic features of disease and is beneficial to medical teaching | 3(0.42\%) | 15(2.11\%) | 57(8.03\%) | 300(42.25\%) | 335(47.18\%) | 0.00427 | 0.006617 | 0.006617 |
| 5G+ Internet can assist remote connections between students and teachers, which is beneficial to medical teaching | 8(1.13\%) | 7(0.99\%) | 47(6.62\%) | 315(44.37\%) | 333(46.9\%) | 0.03148 | 0.05925 | 0.05925 | when they were ranking top 3 future profession


| Profession | Rank | Not considering | Consider the influence | p-value |
| :---: | :---: | :---: | :---: | :---: |
| Clinical service guiding, care workers | 1st | 24 | 63 | <2.2e-16 |
| Clinical service guiding, care workers | 2nd | 3 | 5 | <2.2e-16 |
| Clinical service guiding, care workers | 3 rd | 4 | 5 | <2.2e-16 |
| Nursing staff | 1st | 15 | 9 | <2.2e-16 |
| Nursing staff | 2nd | 15 | 16 | <2.2e-16 |
| Nursing staff | 3 rd | 5 | 7 | <2.2e-16 |
| Clinical laboratory doctors | 1st | 7 | 21 | <2.2e-16 |
| Clinical laboratory doctors | 2nd | 14 | 33 | <2.2e-16 |
| Clinical laboratory doctors | 3 rd | 9 | 22 | <2.2e-16 |
| Medical technicians | 1st | 18 | 14 | <2.2e-16 |
| Medical technicians | 2nd | 14 | 17 | <2.2e-16 |
| Medical technicians | 3 rd | 13 | 15 | <2.2e-16 |
| Pharmacist | 1st | 4 | 5 | <2.2e-16 |
| Pharmacist | 2nd | 9 | 16 | <2.2e-16 |
| Pharmacist | 3 rd | 11 | 16 | <2.2e-16 |
| Medical related administrative staff | 1st | 22 | 26 | <2.2e-16 |
| Medical related administrative staff | 2nd | 28 | 21 | <2.2e-16 |
| Medical related administrative staff | 3 rd | 45 | 41 | <2.2e-16 |
| Surgeon | 1st | 118 | 101 | <2.2e-16 |
| Surgeon | 2nd | 58 | 47 | <2.2e-16 |
| Surgeon | 3 rd | 45 | 37 | <2.2e-16 |
| Medical imaging doctor | 1st | 8 | 15 | <2.2e-16 |
| Medical imaging doctor | 2nd | 17 | 22 | <2.2e-16 |
| Medical imaging doctor | 3 rd | 23 | 27 | <2.2e-16 |
| Pathologist | 1st | 6 | 2 | <2.2e-16 |
| Pathologist | 2nd | 11 | 18 | <2.2e-16 |
| Pathologist | 3 rd | 25 | 27 | <2.2e-16 |
| Dermatologist | 1st | 12 | 13 | <2.2e-16 |
| Dermatologist | 2nd | 19 | 16 | <2.2e-16 |
| Dermatologist | 3 rd | 21 | 14 | <2.2e-16 |
| Ophthalmologist | 1st | 101 | 79 | <2.2e-16 |
| Ophthalmologist | 2nd | 86 | 89 | <2.2e-16 |
| Ophthalmologist | 3 rd | 36 | 30 | <2.2e-16 |
| Physician | 1st | 37 | 26 | <2.2e-16 |
| Physician | 2nd | 46 | 53 | <2.2e-16 |
| Physician | 3 rd | 52 | 45 | <2.2e-16 |
| Obstetrician and Gynecologist | 1st | 7 | 8 | <2.2e-16 |
| Obstetrician and Gynecologist | 2nd | 24 | 13 | <2.2e-16 |
| Obstetrician and Gynecologist | 3 rd | 22 | 20 | <2.2e-16 |
| Pediatrician | 1st | 3 | 3 | <2.2e-16 |
| Pediatrician | 2nd | 6 | 8 | <2.2e-16 |
| Pediatrician | 3 rd | 23 | 23 | <2.2e-16 |
| Researchers in medical related fields | 1st | 27 | 22 | <2.2e-16 |
| Researchers in medical related fields | 2nd | 58 | 35 | <2.2e-16 |
| Researchers in medical related fields | 3 rd | 67 | 74 | <2.2e-16 |
| Other | 1st | 1 | 3 | <2.2e-16 |
| Other | 2nd | 2 | 1 | <2.2e-16 |
| Other | 3 rd | 9 | 7 | <2.2e-16 |

Supplementary Table S9. Score table of ranking the top 3

|  | Not consider (N) | Consider (N) |
| :--- | :--- | :--- |
| Surgeon | 515 | 434 |
| Ophthalmologist | 511 | 445 |
| Researchers in medical related fields | 264 | 210 |
| Physician | 255 | 229 |
| Medical related administrative staff | 167 | 161 |
| Medical technicians | 95 | 91 |
| Dermatologist | 95 | 85 |
| Obstetrician and Gynecologist | 91 | 70 |
| Clinical service guiding, care workers | 82 | 204 |
| Medical imaging doctor | 81 | 116 |
| Nursing staff | 80 | 66 |
| Pathologist | 65 | 69 |
| Clinical laboratory doctors | 57 | 130 |
| Pediatrician | 44 | 48 |
| Pharmacist | 41 | 63 |
| Other | 16 | 18 |

