The parameter settings for the model training process

The parameter settings for the model training process
NAME = None # Override in subclasses
NUMBER OF GPUs to use. For CPU training, use 1
$GPU_COUNT = 1$
Number of images to train with on each GPU. A 12 GB GPU can typically
handle 2 images of 1024×1024 px.
Adjust based on your GPU memory and image sizes. Use the highest
number that your GPU can handle to achieve best performance. IMAGES_PER_GPU = 2
$IWAGES_PEK_GPU = 2$
Number of training steps per epoch
This value does not need to match the size of the training set. Tensorboard
updates are saved at the end of each epoch, so setting this to a
smaller number involves more frequent TensorBoard updates.
Validation stats are calculated at each epoch end, and they
can be time-intensive; therefore, to avoid lengthy times when calculating validation statistics, do
not set this value to a too-small number
#.
STEPS_PER_EPOCH = 1,000
Number of validation steps to run at the end of every training epoch.
A larger number improves the accuracy of the validation statistics, but slows
down training.
VALIDATION_STPES = 50
The strides of each layer of the FPN Pyramid. These values
are based on a Resnet101 backbone.
$BACKBONE_STRIDES = [4, 8, 16, 32, 64]$
Number of classification classes (including background)
NUM_CLASSES = 1 # Override in subclasses
RPN
Length of square anchor side in pixels
RPN_ANCHOR_SCALES = (32, 64, 128, 256, 512)
Ratios of anchors at each cell (width/height)
A value of 1 represents a square anchor, while 0.5 indicates a wide anchor
$RPN_ANCHOR_RATIOS = [0.5, 1, 2]$
Anchor stride

If 1, then anchors are created for each cell in the backbone feature map.

If 2, then anchors are created for every other cell, and so on. RPN_ANCHOR_STRIDE = 2

How many anchors per image to use for RPN training RPN_TRAIN_ANCHORS_PER_IMAGE = 256

ROIs kept after nonmaximum suppression (training and inference)
POST_NMS_ROIS_TRAINING = 2,000
POST_NMS_ROIS_INFERENCE = 1,000

If enabled, resizes instance masks to a smaller size to reduce
memory load. Recommended when using high-resolution images.
USE_MINI_MASK = True
MINI_MASK_SHAPE = (56, 56) # (height, width) of the mini-mask

Input image resizing

Images are resized such that the smallest side is >= IMAGE_MIN_DIM and # the longest side is <= IMAGE_MAX_DIM. When both conditions cannot # be satisfied simultaneously the IMAGE_MAX_DIM value takes precedence. IMAGE_MIN_DIM = 800 IMAGE_MAX_DIM = 1,024 # If True, pad images with zeros such that they become (MAX_DIM × MAX_DIM) IMAGE_PADDING = True # currently, the False option is not supported

Image mean (RGB) MEAN_PIXEL = np.array([123.7, 116.8, 103.9])

Number of ROIs per image to feed to classifier/mask heads TRAIN_ROIS_PER_IMAGE = 128 # TODO: this study uses 512

Percent of positive ROIs used to train classifier/mask heads ROI_POSITIVE_RATIO = 0.33

Pooled ROIs POOL_SIZE = 7 MASK_POOL_SIZE = 14 MASK_SHAPE = [28, 28]

Maximum number of ground truth instances to use in one image MAX_GT_INSTANCES = 100

Bounding box refinement standard deviation for RPN and final detections. RPN_BBOX_STD_DEV = np.array([0.1, 0.1, 0.2, 0.2]) BBOX_STD_DEV = np.array([0.1, 0.1, 0.2, 0.2]) # Max number of final detections DETECTION_MAX_INSTANCES = 100

Minimum probability value to accept a detected instance # ROIs below this threshold are skipped DETECTION_MIN_CONFIDENCE = 0.7

Nonmaximum suppression threshold for detection DETECTION_NMS_THRESHOLD = 0.3

Learning rate and momentum # The paper uses a learning rate of 0.02, but we found that value to cause weights to explode often LEARNING_RATE = 0.002 LEARNING_MOMENTUM = 0.9

Weight decay regularization WEIGHT_DECAY = 0.0001

Use RPN ROIs or externally generated ROIs for training
This value should be True in most situations. Set to False to train
the head branches on ROIs generated by code rather than the ROIs from
the RPN. For example, to debug the classifier head without having to
train the RPN.
USE_RPN_ROIS = True