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Introduction

The outbreak of the novel coronavirus disease 2019 
(COVID-19) has since reached pandemic status, with over 
93 million cumulative confirmed cases as of January 17th 
2021 (1). Vascular complications, including thrombotic 
microangiopathy,  vasculopathy,  and intravascular 
coagulopathy, are of growing concern in patients with 
COVID-19 as they can lead to devastating vital organ 
injury at various stages of the disease course (2). Despite 
the growing concern, there is still limited research on the 
downstream effects of endothelial cell infection with severe 
acute respiratory coronavirus 2 (SARS-CoV-2). Considering 
the potential for virally-driven vascular injury, there is a 
utility in studying the characteristics that influence the 
pro-inflammatory hypercoagulability seen among some 
proportion of patients with COVID-19. Investigating 
the consequences and long-term disease processes of 
COVID-19 patients with damage to vasculature will be 
crucial for informing future avenues of clinical care.

In this concise editorial, we provide an overall account 
of the cellular mechanisms currently thought to contribute 
to vascular pathology in patients with COVID-19. We 
also discuss the various vascular diseases involved in the 
COVID-19 clinical course. Finally, we explore the use of 
emerging imaging technologies in conjunction with models 
of tissue injury to better visualize and understand SARS-
CoV-2-driven vascular damage.

Mechanism of SARS-CoV-2 vascular injury

The pathogenesis of SARS-CoV-2 offers insight into how 

the virus directly interacts with host cells and the immune 
system, providing greater context for subsequent vascular 
tissue damage.

Viral infection with SARS-CoV-2 is initiated when the 
S spike, a surface glycoprotein on SARS-CoV-2, binds 
human angiotensin-converting enzyme 2 (ACE2), which 
is highly expressed in the tissue of the lung, heart, and 
kidney (3). Within the renin-angiotensin signaling (RAS) 
pathway, ACE2 facilitates the conversion of angiotensin 
II (ANGII) into angiotensin 1–7. When bound by the S 
spike, the transmembrane ACE2 receptor signaling cascade 
is functionally impaired as the virus competes with native 
mitogens involved in the RAS pathway. Figure 1 provides 
context for how this disruption in angiotensin metabolism 
leads to aberrantly high levels of ANGII. High levels of 
ANGII ultimately favor pro-inflammatory and pro-fibrotic 
chemotactic signaling, which leads to greater local vascular 
tissue remodeling in patients with COVID-19.

After SARS-CoV-2 gains entry into ACE2-expressing 
host cells, the negative effects on vascular tissue are 
amplified. In response to viral invasion, human cells 
typically respond by synthesizing and secreting interferons 
(IFNs). The release of IFNs alerts neighboring cells to 
the presence of a harmful pathogen and also activates a 
signaling cascade that shifts cells into an “antiviral state” 
(4,5). Research regarding the effects of coronaviruses on 
the IFN signal transduction pathway, however, suggests 
that various components of this pathway are downregulated 
after inoculation. Reduced IFN activity preserves the host’s 
intracellular activity, allowing SARS-CoV-2 to exploit 
unusually energetic conditions to drive virion replication 
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and exocytosis (6,7). SARS-CoV-2’s interference in IFN 
signaling delays viral recognition and can lead to a higher 
viral load, resulting in an innate immune response that 
releases large quantities of pro-inflammatory cytokines (8,9). 
Subsequent induction of reactive oxygen species (ROS) 
functioning downstream to aberrant cytokine signaling 
further compromises the endothelial cell structure. The 
combination of over-expressed inflammatory cytokines and 
ROS result in a “cytokine storm,” shown in Figure 1. The 
“cytokine storm” leads to the recruitment of additional 
immune cells including macrophages, neutrophils, natural 
killer (NK) cells, and dendritic cells, releasing activation 
factors within the vasculature and damaging endothelial 
tissue in the process (5).

After extended periods of replication within host 
epithelial cells, SARS-CoV-2 may also affect the adaptive 
immune response, consequently prolonging infection. 
In patients with severe COVID-19, key components of 
the adaptive immune response, including CD4+  cells, 

CD8+  cells, B cells, NK cells, monocytes, eosinophils, 
and basophils, showed a marked decrease in circulation 
(9-13). There is additional evidence to suggest a virally 
driven imbalance in naïve and memory T cells following 
SARS-CoV-2 infection, which may contribute to the 
hyper inflammation and prolonged clinical course seen in 
COVID-19 patients (9,14,15).

Thus, the mechanism of SARS-CoV-2 infection reveals 
the profound impact it has on the human immune system. 
The additive effects of SARS-CoV-2’s binding, entry, 
and proliferation within host cells collectively interfere 
with the human immune responses and weaken vascular 
environments, laying a foundation upon which more severe 
damages can be elicited.

Vascular injury in patients with COVID-19

In a vascular environment weakened by SARS-CoV-2 
infection, a patient’s vascular clinical course is largely 

Figure 1 Factors contributing to SARS-CoV-2 vascular injury. SARS-CoV-2, severe acute respiratory coronavirus 2; ACE2, angiotensin-
converting enzyme 2; IFN, interferon; ROS, reactive oxygen species.
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dependent on the degree of virally-driven inflammation 
and coagulation as well as the damage dealt by pre-existing 
conditions.

Inflammation, coagulation abnormalities and endothelial 
injury

Preliminary research of patients with COVID-19 suggests 
that SARS-CoV-2 infection is associated with an intense 
inflammatory response. This response is mediated by 
the release of pro-inflammatory cytokines, including 
tumor necrosis factor-α (TNF-α) and interleukins 1 and 
6 (IL-1, IL-6) (8). These cytokines are implicated in the 
formation and activation of mononuclear cells, known to 
initiate coagulation through the release of thrombin (16). 
Accordingly, distinctive vascular features are observed in the 
pathology of peripheral lung in patients with COVID-19, 
including evidence of thrombotic microangiopathy, 
vasculopathy, and intravascular coagulopathy (16-19). When 
compared to patients with influenza, patients hospitalized 
with COVID-19 had nine times greater prevalence of 
alveolar-capillary microthrombi on histologic tissue 
samples (19). Ultimately, these data suggest that infection 
with SARS-CoV-2 results in hyper inflammation and 
hypercoagulation.

As blood viscosity increases in association with hyper 
inflammation, the risk of thrombus formation rises 
significantly. Blood vessels are especially susceptible to 
damage in areas of plaque formation as hemodynamic 
fluctuations can induce downstream thrombosis or 
ischemia (20). In fact, several studies have reported elevated 
levels of D-dimer, a common and nonspecific biomarker 
of ongoing inflammation and thrombus formation, in 
patients with COVID-19 (15,16). Elevated levels of the 
biomarker C-reactive protein (CRP), an acute phase 
reactant associated with ongoing inflammation within the 
body, was also witnessed in patients with COVID-19 (21). 
There is additional evidence suggesting that patients with 
COVID-19 accumulate vascular damage within a pro-
inflammatory and hypercoagulable state, corresponding to 
documented evidence of elevated acute phase reactant and 
prolonged prothrombin presence. For example, among 96 
detailed reports of patients with COVID-19 who suffered 
an acute stroke, CRP, D-dimer, and ferritin were found to 
be significantly elevated (22). Similarly, in a study of SARS-
CoV-2 and stroke in the New York health care system, the 
median of D-dimer was >10,000 ng/mL in stroke patients 
with positive COVID-19 as compared to stroke patients 

without COVID-19, whose median value of D-dimer was 
only 526 ng/mL (23). Thus, through the overwhelming 
amount of evidence presented above, we understand that 
infection with SARS-CoV-2 triggers hyper inflammation 
and hypercoagulation, further deteriorating the vascular 
health of patients with COVID-19.

Comorbidities and SARS-CoV-2 vascular injury

In a state of virally-induced hyper inflammation and 
hypercoagulation, individuals with comorbidities such as 
cardiovascular disease, diabetes, hypertension, and obesity 
are at higher risk of a poor clinical course following SARS-
CoV-2 infection (24-26). Prior to infection, patients with a 
history of these comorbidities are likely in a chronic state of 
low-grade inflammation, thereby compromising endothelial 
function over time, resulting in arterial wall stiffening (24).  
Upon infection,  exist ing endothelial  dysfunction 
facilitates the infection of cells with SARS-CoV-2 while 
chronic inflammation simultaneously contributes to 
hypercoagulability. These two factors act together, 
increasing the odds of a severe clinical course complicated 
by microangiopathic injury, which is highlighted in Figure 1.

Weakened vascular health brought about by pre-
existing conditions in addition to the hyperinflammatory, 
hypercoagulable state resulting from SARS-CoV-2 infection 
may promote underlying damage to the vasculature 
and surrounding tissue in multiple vital organs (26). 
Elevated markers of cardiac injury, including troponin I 
and creatine kinase (CK), have been reported in patients 
endorsing chest pain with COVID-19 (25). Additional 
cardiovascular complications associated with COVID-19 
include arrhythmias, fulminant myocarditis, and heart 
failure (21,25). Cerebrovascular disease, including transient 
ischemic attack (TIA) and stroke, may also complicate the 
clinical course of patients with COVID-19 (22,27-29). 
Importantly, ischemic strokes of the vertebrobasilar territory 
have been recorded in unexpectedly high frequencies 
among a cohort of 1,683 patients averaging 5 days between 
initial presentation with COVID-19 symptoms and stroke 
onset (29). In addition to strokes, thrombotic events and 
subsequent tissue injury are seen throughout the body 
as a result of infection, leading to worse outcomes (17). 
Consequences of hypercoagulability of COVID-19 occur 
in the arterial as well as the venous system, as deep vein 
thrombosis (DVT) and pulmonary embolism (PE) have 
been well recognized as complications in cases of severe 
COVID-19 (28).
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Taken together, it becomes clear that SARS-CoV-2 is 
heavily involved in generating a hyper inflammatory and 
hypercoagulable state. This state can very quickly lead to 
the formation of thrombi, which threatens regions of the 
vasculature weakened by chronic inflammation. As infection 
with SARS-CoV-2 has such deadly implications, it is 
important that we identify and implement technologies that 
monitor fluctuations in vascular health.

Emerging vasculature imaging for COVID-19 
complications

W h e n  h y p e r c o a g u l a b i l i t y  a n d / o r  t h r o m b o t i c 
microangiopathic injury is suspected, the diagnostic choice 
of imaging modality is based on a combination of clinical 
presentation and patient-specific factors, for example, 
allergies to contrast and ability to tolerate exam. For 
COVID-19 patients with suspected vessel occlusions in the 
extremities (DVT) and abdomen (renal vasculature), we 
assert that doppler ultrasound (DUS) is the gold standard 
for diagnostic imaging.

DUS relies on the detection of ultrasound signals to 
probe the tissue’s anatomy and functions. Leveraging the 
Doppler effect, DUS technology is capable of reporting 
hematocrit values in addition to the quality of blood flow 
in stenotic or occluded vasculature (29). By monitoring 
vessel patency and red blood cell concentration, DUS 
lends medical professionals the ability to locate the point 
of thrombotic vessel occlusion (Figure 2A) responsible 
for causing either ischemia or interstitial congestion in 
coagulopathic patients (32,33). After a patient has recovered, 
DUS can be used to detect endoleak following endovascular 
repair in microvessels (34). Thus, in patients recovering 
from COVID-19, DUS might be a useful tool in detecting 
long-term vascular remodeling. Additionally, the non-

invasive and relatively inexpensive aspects of DUS permit 
greater clinical access and more rapid implementation.

While DUS has already shown great utility in clinical 
application, we believe that further development of 
novel biomedical imaging technologies might allow 
medical professionals to glean greater details from images 
captured in the clinic. Photoacoustic tomography (PAT), 
for example, is an emerging technology that has shown 
promising utility in several biomedical applications 
(35,36). PAT relies on light-induced ultrasound emission 
through transient thermoelastic expansion (37). When 
paired with ultrasound technology, PAT can detect the 
location and age of DVT (Figure 2B) as well as report 
thrombosis composition following microbubble-assisted 
sonothrombolysis treatment (38,39). These chemical 
and functional details can greatly impact a physician’s 
treatment plan when caring for a COVID-19 patient with 
complications related to thrombotic microangiopathy. 
Advanced age of a DVT, for example, increases the 
likelihood of the formation of an embolism, which 
can alert clinicians to imminent pulmonary ischemia 
threatening the lung tissue. Thrombosis composition 
might also influence a physician’s choice in dosage and 
timing of anticoagulant treatment. Although PAT is 
not yet extensively used in clinical practice, the unique 
qualities of this novel imaging technology may provide 
detailed information on vascular injury and response 
to treatment, becoming an important tool in ongoing 
COVID-19 patient care and research.

Potential in vitro tissue models for vascular 
injury in COVID-19 patients

While there are great prospects for the use of the 
aforementioned imaging modalities in the clinical diagnosis 
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Figure 2 Non-invasive imaging of thrombus. (A) DUS (30) and (B) PAT images of DVT (31). DUS, doppler ultrasound; PAT, photoacoustic 
tomography; DVT, deep vein thrombosis.

7.7

7.7
cm/s



Microphysiological Systems, 2021 Page 5 of 9

© Microphysiological Systems. All rights reserved. Microphysiol Syst 2021;5:1 | http://dx.doi.org/10.21037/mps-20-6

of COVID-19-related vascular complications, research 
models of endothelial injury resulting from SARS-CoV-2 
infection will also be essential in understanding the 
mechanisms contributing to devastating complications. 
While small animal models such as rodents have been 
popular for imaging studies in the past, COVID-19 presents 
a unique challenge: no existing animal model perfectly 
mimicks the human immune response to SARS-CoV-2 
infection. To overcome this challenge, there is utility in 
studying transgenic animal models as well as human-based 
tissue models to conduct imaging research on vascular 
injury with COVID-19. One such model is already under 
development for COVID-19 vaccination testing (40).  
By breeding and infecting transgenic ACE2 mice with 
SARS-CoV-2, researchers were able to induce human 
symptoms in mice. Imaging these transgenic models might 
be extremely informative, allowing the aforementioned 
imaging modalities to become a routine part of COVID-19 
symptom monitoring. However, it should be noted that 
these transgenic models still do not perfectly model human 
immune responses to COVID-19, which may lead to false 
conclusions surrounding imaging diagnostic data. Thus, we 
suggest looking to alternative solutions, namely innovative 
models that are able to exactly model human physiology 
without compromising the health of patients and risking the 
spread of COVID-19.

An alternative to animal models is to use engineered 
human tissue. One exciting platform is the microfluidic 
organ-on-a-chip system (41,42), which has recently been 
combined with three-dimensional (3D) bioprinting to 
produce high-content in vitro human-based models (43). 
The organ-on-a-chip platform enables the modeling of 
vascular structures using microfluidics and microfabrication 
techniques. Microfluidic devices provide dynamic flows 
to relevant cells, such as endothelial cells, facilitating the 
real-time imaging of vascular responses to mechanical 
and/or chemical influences (44,45). In the lung-on-a-
chip model, based on the alveolar and capillary interface, 
endothelial cells are cultured on the bottom of a porous 
membrane-based device while the alveolar epithelial cells 
are seeded above the same membrane (Figure 3A) (46). 
To simulate cyclic breathing, both cell layers undergo 
repetitive simultaneous stretching. Reproducible organ-
level responses to bacterial infection and inflammation were 
achieved in this device. However, the most current organ-
on-a-chip systems are compartmentalized and locally planar, 
limiting their ability to model certain complex aspects of 
the tissues and organs they model.

To resolve this issue, 3D bioprinting technology 
has emerged as a pivotal strategy to build volumetric 
constructs in precise geometries with various cell types 
and extracellular matrix (ECM) materials in an automated 
manner (49,50). In vascular 3D bioprinting, bioinks 
containing vascular cells and biochemical factors can be 
used to produce volumetric tissue constructs containing 
perfusable vascular networks. Extrusion bioprinting is one of 
the most commonly used methods for vascular bioprinting 
and is based on thermo-, ionic, or photo-crosslinking (51). 
To fabricate the heterogeneous vasculature with gelatin 
methacryloyl (GelMA) as a matrix, Pluronic F127 was used 
as the sacrificial bioink and was subsequently selectively 
removed to achieve the perfusable embedded microchannels 
seen in Figure 3B (47). Vat photopolymerization is a high-
speed and high-resolution bioprinting method based on 
photocrosslinking of hydrogel bioinks layer-by-layer when 
exposure to sequentially digitally patterned light (50).  
For example, Miller and colleagues recently reported 
the bioprinting of the multi-vascular network at the 
organ-scale using such a technique (52). A microfluidic 
platform to fabricate multi-material constructs containing 
microvasculature in different tissue types has also been 
developed (Figure 3C) (48).

Of note, 3D bioprinting is not entirely separate from 
microfabricated organ-on-a-chip platforms, and they can 
be easily integrated to enable the dynamic environments 
supplied by the latter and the volumetric complexity 
provided by the former (43,53). As these strategies achieve 
a model of desired human tissues on a relatively small 
scale, researchers gain access to a more accurate and 
higher-throughput alternative to animal modeling. More 
importantly, the engineered tissue chip technology can 
be used in conjunction with the aforementioned imaging 
modalities as it reduces the necessity for high penetration 
depth, including traditional optical microcopy technologies. 
With aid from novel imaging modalities and modeling 
technologies, a human-based vascular tissue model that is 
immunocompetent (54-57), can likely be developed and 
optimized. In fact, one research group has already identified 
Amodiaquine as an especially potent antagonist of SARS-
CoV-2’s entry into host cells by repurposing a pulmonary 
organ-on-a-chip model previously used for influenza drug 
optimization (58). As a result, through the use of organ-on-
a-chip modeling in conjunction with 3D bioprinting, we 
can achieve a better understanding of how SARS-COV-2 
infects and damages human vasculature without sacrificing 
model accuracy and participant safety.
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Conclusions

In summary, there is accumulating evidence suggesting that 
thrombosis and vascular injury are connected with SARS-
CoV-2 infection. SARS-CoV-2’s binding affinity for ACE2, 
its ability to evade innate immunity upon entry, and its role 
in disrupting the adaptive immune response collectively act 
together to compromise the human vascular system. While 
the exact mechanism of thrombotic microangiopathic 

vascular injury in patients with COVID-19 remains to 
be explored, available evidence suggests that virally-
driven hyperinflammation and hypercoagulation as well 
as comorbidities associated with chronic inflammation 
and endothelial injury put patients with COVID-19 
at greater risk of poor clinical outcome. In an effort to 
further the understanding of COVID-19 and its impact 
on vascular health, vasculature imaging presents itself 

Figure 3 Engineered vasculature models. (A) A lung-on-a-chip platform creates stretching of alveolar-capillary interface (46). (B) Embedded 
vascular network produced by sacrificial extrusion bioprinting followed by endothelialization on the surfaces of the lumens (47). (C) Multi-
material digital light processing bioprinting for the fabrication of a tumor angiogenesis model (top right) and a vascularized skeletal muscle 
tissue (bottom right) (48).
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as an important tool to better visualize vascular damage, 
aid in early diagnosis, guide treatment, and monitor the 
disease progression of patients with COVID-19. When 
used in parallel, DUS and PAT have great advantages in 
assessing vascular injury and advising therapy. Additionally, 
3D bioprinting and organ-on-a-chip are two emerging 
technologies capable of modeling vascular tissue injury in 
COVID-19 and assessing the viability of DUS and PAT in 
diagnosis. As the global community continues to work to 
contain the spread of COVID-19, much is still unknown 
about this virus and its impact on the vascular system. The 
effects of this pandemic on the human population will 
certainly not end with the distribution of a vaccine, so we 
must continue to research COVID-19 and its potential to 
cause long-term vascular harm to those who have recovered 
from it.
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