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Introduction

Pheochromocytoma is a kind of tumor that originated in 
the adrenal medulla, the sympathetic ganglia and other 
parts of the chromaffin cells, secreting a large number 
of catecholamines (epinephrine, norepinephrine and 
dopamine) which act on the adrenergic receptors and 
cause high blood pressure (1). It is usually associated with 
paroxysmal or sustained hypertension, recurrent headaches, 
sweating, palpitations as well as weight loss (2,3). Severe 
cases can even be complicated by shock, heart failure, 
intracranial hemorrhage, ventricular fibrillation as well 
as myocardial infarction (4). If not diagnosed in time, the 
delaying treatment can cause serious damages in heart, 

blood vessel, brain and even death.
Pheochromocytoma is a kind of rare tumor. Its 

prevalence is not exactly known but has been estimated to 
be 1:6,500–1:2,500 in the United States (5). However, the 
autopsy results have even revealed that the prevalence was as 
high as 1:2,000, suggesting that many pheochromocytoma 
were not diagnosed before death (6). Besides, it is reported 
that the annual incidence is 2–10:100,000 individuals/
year (7-9). Tumors can occur in all ages, but the highest 
incidence happens in 40 to 50 years old, with the basically 
same gender distribution (10-15).

The same as most tumors, the etiology of sporadic 
pheochromocytoma has not been fully explained, but the 
familial pheochromocytoma is related to heredity. The 
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occurrence of pheochromocytoma is usually along with the 
mutations of PHD2, VHL, SDHx, IDH, HIF2A, MDH2 
and FH which are involved in the hypoxic pathway as well 
as RET, NF1, KIF1Bβ, MAX and TMEM127 which are 
involved in the activating kinase signaling pathways. In 
addition, GDNF, GNAS, H-ras, K-ras, CDKN2A (p16), 
p53, BRCA1&2, BAP1, ATRX and KMT2D mutations also 
play roles in the development of pheochromocytoma (16-27).

The  c l in i c a l  man i f e s t a t ion  o f  th i s  d i s ea se  i s 
heterogeneous mainly related to predominate catecholamine 
secretions. Catecholamines can act on the heart, increasing 
heart rate, contractions, and blood pressure (28,29). Typical 
paroxysmal attack is often characterized by sudden high 
blood pressure even reaching 200–300/130–180 mmHg 
with severe headache, excess sweating and palpitations (30).  
Besides, prolonged, persistent hypertension can lead to 
left ventricular hypertrophy, cardiac enlargement and 
heart failure. As for metabolization, high concentration 
of epinephrine acts on central nervous system, especially 
sympathetic nervous system to make oxygen consumption 
increase and basal metabolization rate heighten, resulting in 
calorific and emaciation (31). Liver glycogen decomposition 
is accelerated and insulin secretion is inhibited to decrease 
glucose tolerance and increase liver glycogen dysplasia. 
For other performances, too many catecholamines 
reduce peristalsis and tension of the intestine, leading 
to constipation, intestinal dilatation, intestinal necrosis, 
bleeding and perforation. Under the action of large amounts 
of epinephrine, the blood cells are redistributed, making the 
white blood cell count in the peripheral blood increase, and 
sometimes the red blood cell may also increase (32).

S i g n i f i c a n t  a d v a n c e s  h a v e  b e e n  r e m a r k e d  i n 
pheochromocytoma management since the tumor was first 
removed successfully by Roux and Mayo in 1926 (33). Before 
the use of α-adrenergic receptor blockers, the perioperative 
mortality was even as high as 50% in some researches (34,35) 
while after the introduction of α-blockers, the mortality 
range between 0–3% (33). Until now, surgical resection of 
tumors has been usually the first choice for the clinical use 
to control blood pressure and heart rate, treat arrhythmias, 
reduce circulating plasma volume, and prevent cardiovascular 
complications caused by excessive catecholamines in 
perioperative and intraoperative period (36,37). However, 
although treatments with α-blockers preoperatively 
seem to show some effect in many cases (38-40),  
limitations and side effects also appear along with them  
(41-47). Generally speaking, treatment therapies combining 
decreasing the producing of catecholamines upstream and 

the reception of catecholamines at the α-receptor level 
may show significant clinical effect in the treatment of 
pheochromocytoma.

Therefore, understanding the metabolism of catecholamines 
in pheochromocytoma and reducing its secretion by using 
drugs is a good way to guide the preoperative medication and 
treatment of pheochromocytoma. Our review summarized 
the literature to describe the synthesis and metabolic process 
of catecholamines in pheochromocytoma, the ion channels 
associated with catecholamine secretion and the influencing 
factors of the section of catecholamine. The related treatment 
strategies are then summarized based on the metabolism and 
secretion of catecholamine.

Pathways of catecholamines synthesis and 
metabolism in pheochromocytoma

The first step in catecholamine synthesis is conversing 
tyrosine to 3,4-dihydroxyphenyl alanine (DOPA) by 
the rate-limiting enzyme, tyrosine hydroxylase (48). 
DOPA is then converted to dopamine by L-aromatic 
amino acid decarboxylase which is a kind of enzyme 
distributing widely in cells. After that, the vesicular 
monoamine transporter translocates dopamine into storage 
vesicles (49), in which dopamine β-hydroxylase converts 
dopamine to norepinephrine (50). Phenylethanolamine 
N-methyltransferase (PNMT) is an enzyme that primarily 
locate in the adrenal medullary chromaffin cells, and its 
action results in the conversion of norepinephrine to 
epinephrine (Figure 1). Since PNMT locates in cytoplasmic, 
the synthesis  of epinephrine is  dependent on the 
metabolism of norepinephrine, which leaks from the inner 
vesicles of the noradrenaline synthesis to the cytoplasm (51).  
Pheochromocytoma which produces catecholamines 
shows considerable differences in catecholamine levels 
based on biosynthetic enzyme expression (52-56). Most 
pheochromocytomas produce mainly norepinephrine, some 
produce norepinephrine and epinephrine, and few produce 
epinephrine. However, there are some extremely rare cases 
have been reported producing mainly dopamine (56,57).

Catecholamines are metabolized by a variety of 
enzymes, such as monoamine oxidase (MAO), catechol-O 
methyltransferase (COMT), as well as sulfotransferase. 
There are also other enzymes participating glycol and 
acid deamination metabolites such as aldose or aldehyde 
reductase and aldehyde dehydrogenase. In addition, alcohol 
dehydrogenase has contribution to the formation of the 
final product of catecholamine metabolism. Thus, the 
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multiple different metabolic pathways produce amounts of 
different metabolites (51).

MAO deamination stands for the more important one 
of the two major pathways on catecholamine metabolism. 
MAO has two isozymes, MAO-A and MAO-B, encoded 
by adjacent genes on the same chromosome (58). Both 
norepinephrine and epinephrine are metabolized by MAO 
in combination with aldose or aldehyde reductase into the 
deaminated glycol metabolite, 3,4 dihydroxyphenylglycol 
(DHPG). Besides, the aldehyde intermediate formed by the 
deamination of dopamine is preferentially metabolized by 
aldehyde dehydrogenase to 3,4 dihydroxyphenylacetic acid 
(DOPAC) (59-61).

The second major enzyme of catecholamine metabolism 
is COMT, which catalyze O-methylation of dopamine 
to methoxytyramine, epinephrine to metanephrine, and 
norepinephrine to normetanephrine. COMT also has two 
isozymes encoded by the same gene, which are membrane-
bound and soluble COMT (62,63). Furthermore, the 
metabolites catalyzed by MAO can be metabolized by 
COMT sequentially. DHPG is metabolized to 3-methoxyl-
4-hydroxyphenylglycol (MHPG) by COMT, while DOPAC 
can be metabolized to high homovanillic acid (HVA), 
which is the major end product of dopamine metabolism. 
Vanillic acid (VMA) is the major end product of human 

norepinephrine and epinephrine metabolism (64). VMA is 
mainly produced by MHPG oxidation, which is catalyzed 
by alcohol dehydrogenase (65-67). Except for the VMA, 
all catecholamines and their metabolites are metabolized 
into sulfate conjugates, representing other end products of 
catecholamine metabolism (51).

The activities of enzymes in catecholamine synthesis 
steps including tyrosine hydroxylase, L-aromatic amino 
acid decarboxylase and dopamine β-hydroxylase are found 
higher in pheochromocytoma than that in normal adrenal 
medulla, which may be the cause of excessive catecholamine 
production in pheochromocytoma (57,68,69). Another study 
found the similar results and came to the conclusion that 
catecholamines in the normal adrenal medulla may have a 
negative feedback mechanism through tyrosine hydroxylase, 
which not appears in pheochromocytoma. In addition, the 
increase in catecholamine degradation metabolism pathway 
of pheochromocytoma turns out to be unstable comparing 
with the normal adrenal medulla (70).

What’s more, in pheochromocytoma patients, more than 
94% of elevated plasma metanephrines concentrations are 
caused by metabolism of catecholamines through COMT (71).  
The metabolism happens in pheochromocytoma tumor 
cells, rather than in the blood circulation by the extra-adrenal 
COMT (52). This suggests that in pheochromocytoma 

Figure 1 The synthesis pathway of catecholamines. Tyr, tyrosine; DOPA, 3,4-dihydroxyphenyl alanine; TH, tyrosine hydroxylase; AAAD, 
aromatic amino acid decarboxylase; DA, dopamine; NE, norepinephrine; PNMT, phenylethanolamine N-methyltransferase; E, epinephrine.
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patients, most of the elevated levels of catecholamine 
metabolites are produced within the tumor rather than 
released outside the tumor (51) (See in Figure 2).

Ion channel and catecholamine secretion

Generally, the trigger for catecholamine secretion is the 
activity of the visceral nerve, which releases acetylcholine 
from nerve endings in the adrenal medulla, close enough 
to chromaffin cells that rapid synaptic potentials can 
be observed (72). The direct response to acetylcholine 
release is nicotinic receptors activation (73,74), which 
depolarizes chromaffin cells and allows Ca2+ to flow 
through the nicotinic receptors (75). This produces cellular 
depolarization, action potential discharges, as well as 
catecholamine secretion on the other hand (76).

Although neuro-induced catecholamine release is  
critical (77) the intrinsic electrical activity of catecholamines 
is also an important possibility that contributes to 
catecholamine secretion in some situations. Consistently, 
recent studies have revealed that chromaffin cells exhibit 
series of intrinsic excitatory patterns, including slow-wave 
burst which is potentially important for the secretion of 
catecholamines (78-83). Some ion channels are related to 

the secretion of catecholamine.

Na+ channels

Chromaffin cells in almost all mammalian species show 
obvious voltage-dependent Na+(Nav) current (83,84). It 
is reported that Na+ current in chromaffin cells is caused 
by Nav1.7 (85-87), while the evidence is still limited. The 
recent report shows that Nav1.3 and Nav1.7 both contribute 
to mouse chromaffin cells, with Nav1.3 subtype taking 
the predominance (83). However, the activation as well 
as the steady-state inactivation of Nav whole cell current 
seem to be consistent with only one type of channel (83).  
According to the research on the heterologous expression of 
Nav1.3 and Nav1.7, the two channels usually have similar 
functional characteristics, but compared with Nav1.7, the 
Nav1.3 semi-inactivated voltage usually shifts to the right 
(88,89). In mouse chromaffin cells, Nav current seems to be 
the most consistent with Nav1.3 channel (76).

Ca2+ channels

Chromaffin cells release catecholamines into the circulation 
via a calcium-dependent extracellular mechanism (90). 

Figure 2 The metabolism pathway of catecholamines. DA, dopamine; NE, norepinephrine; E, epinephrine; DOPAC, 3,4 
dihydroxyphenylacetic acid; HVA, homovanillic acid; DHPG, 3,4 dihydroxyphenylglycol; MHPG, 3-methoxyl-4-hydroxyphenylglycol; 
VMA, Vanillic acid.
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Acetylcholine released by splanchnic-chromaffin cells causes 
cell depolarization and the opening of L- (91), N- (92), 
and P/Q-type (93) voltage-dependent calcium channels. 
Ca2+ enters the cell through these channels and triggers 
the fusion of vesicles with the plasma membrane, as well as 
releasing catecholamines (94). Therefore, the effectiveness 
of Ca2+ may be a possible control of the extent and rate of 
the secretion. ATP (95-97) and opioids (98) are co-released 
with catecholamines, inhibiting calcium channel currents 
through these three type channels (99-102) with a pathway 
delimited by G-protein-coupled membranes. This may 
form the basis of autoinhibitory mechanism for the entry 
of Ca2+, which has been shown to exist in different animal 
species (97,99-102), including human chromaffin cells (103). 
This Ca2+ entry control can therefore be used to modulate 
the release of catecholamines (Figure 3).

To illuminate the important Ca2+-dependent steps 
required for catecholamine secretion, chromaffin cells have 
been extensively studied to understand how cytosolic Ca2+ 
transients are coupled to exocytosis (104,105). Evidence 
differs from the different reports on whether a particular 
Ca2+ channel subtype plays a specific role in the coupling 
of catecholamine secretion, or exerts other subtype-specific 
effects (106-110).

In addition, the Ca2+ channel also takes a crucial part in 
regulating chromaffin cell excitability, which is triggered by 
the activation of inward and outward Ca2+ current, through 

the nearby BK channel or farther SK channel (111,112). It 
has been reported that there may exist a mechanism of tight 
coupling of Ca2+ and BK channels in some neuroendocrine 
cells. To support this suggestion, the P/Q-type channel and 
N-type channel have turned out to couple with BK channel 
activation (113,114). It seems that all Ca2+ channels can 
drive BK current in chromaffin cells, in which L-type may 
preferentially co-locate with it, especially when transient 
depolarization is in use (115,116). For longer depolarizing 
stimuli, secretion (117) and activation of the BK channels 
are both activated by a global elevation of Ca2+ from all Ca2+ 
channels (116,117).

The influencing factors of the section of 
catecholamine

The secretion of catecholamine and the accompanying 
hypertension are affected by many factors such as the 
triggers, tumor location, genetic background and so on. 
Catecholamines are stored in separate vesicles along with 
adenosine triphosphate, chromogranin and dopamine 
β-hydroxylase. Stress, pain, cold, heat, asphyxia, hypotension, 
hypoglycemia,  and sympathetic excitation during 
hyponatremia increase the release of catecholamines (118). 
After preganglionic sympathetic excitation, the vesicle 
contents can be released by exocytosis (119). In addition, 
in some cases, catecholamines can be released not through 

Figure 3 Catecholamine releasing via a calcium-dependent extracellular mechanism. Ach, acetylcholine; AChR, acetylcholine receptor.
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sympathetic excitation and exocytosis.
Paraganglioma derived from extra-adrenal chromaffin 

tissues in sympathetic paravertebral ganglia of thoracic 
cavity, abdomen and pelvis. It also originates from 
parasympathetic ganglia located near the glossopharyngeal 
and vagus nerves in the neck and skull base (120) which 
is not able to produce catecholamines. About 80–85% of 
chromaffin-cell tumors are pheochromocytomas, while 
15–20% are paragangliomas (121).

Pheochromocytoma has been proven to exhibit highly 
evident gene expression profiles in MEN2 and VHL 
syndrome which usually caused by the mutation of RET 
and VHL respectively (122,123). Although VHL tumors 
show activation of the hypoxia-angiogenic signaling 
pathway, the expression of many components associated 
with the catecholamine-related pathway is decreased 
compared to MEN2. For example, MEN2 tumors express 
phenylethanolamine N-methyltransferase, which converts 
norepinephrine to epinephrine and is not expressed in VHL 
tumors (56). The reason of the more symptomatic character 
of pheochromocytoma in MEN 2 than in VHL syndrome is 
considered to be the relative amount of norepinephrine and 
epinephrine produced by the two tumors and the different 
effects on α and β adrenergic receptors (56,124-126).

Furthermore, Tumors associated with SDHAF2, 

SDHC, and SDHD mutations are usually located in the 
head and neck, originating from the parasympathetic 
ganglia. As mentioned earlier, they often do not secrete 
catecholamines. As for NF1-related pheochromocytoma, it 
usually shows elevated norepinephrine and catecholamine 
metabolites (127). The biochemical features of SDHB 
mutant tumors are similar to those of norepinephrine 
predominance VHL patients, but they also show high 
methoxytyramine (a metabolite of dopamine) excretion as 
the increased biochemical marker (127). Last but not least, 
the biochemical features of tumors associated with SDHA, 
TMEM127, and MAX mutations have not been well 
determined (128).

What’s more, when cases like compression of the 
tumor during massage; direct trauma; eating foods rich in 
tyramine; and taking potentially stimulating drugs such as 
histamine, glucagon, tetraethylamine happen, high blood 
pressure may occur.

Treatment strategies for metabolism and 
secretion mechanisms

The treatment of pheochromocytoma with metyrosine 
(Table 1)

Metyrosine specifically inhibits tyrosine hydroxylase 

Table 1 Studies on the use of metyrosine 

Author Year Study Drugs Efficacy

Renato  
Mariani-Costantini

2019 Paraganglioma: A Multidisciplinary  
Approach (129)

Metyrosine and 
α-blocker

Providing remarkable hemodynamic stability 
during operation

Mitsuhide Naruse 2018 Efficacy and Safety of Metyrosine in  
Pheochromocytoma/Paraganglioma:  
A Multi-center Trial in Japan (46)

Metyrosine and 
α-blocker

Improving symptoms of chronic excess  
catecholamine in metastatic and  
unresectable paraganglioma patients

Roger. R. Perry 1990 Surgical Management of Pheoclromocytoma 
with the Use of Metyrosine (33)

Metyrosine and  
phenoxybenzamine

Controlling blood pressure, reducing the  
blood loss and the need for intraoperative  
fluid replacement

Heather Wachtel 2015 Preoperative Metyrosine Improves  
Cardiovascular Outcomes for Patients  
Undergoing Surgery for Pheochromocytoma 
and Paraganglioma (130)

Metyrosine and  
phenoxybenzamine

Improving the hemodynamic stability during 
operation and decreasing the  
cardiovascular-specific complications rates

Jaime Steinsapir 1997 Metyrosine and Pheochromocytoma (131) Metyrosine and  
phenoxybenzamine

Controlling blood pressure and reducing the 
need for antihypertensive drugs or pressor

Karl Engelman 1968 Biochemical and Pharmacologic Effects of a 
-Methyltyrosine in Man (132)

Metyrosine A wide range of catecholamine synthesis  
reduction

Omar Serri 1984 Reduction in the Size of a Pheochromocytoma 
Pulmonary Metastasis (133)

Metyrosine Shrinking the size of the functional metastasis 
in lung of a paraganglioma patients
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which catalyzes the conversion from tyrosine to DOPA, 
the first and rate-limiting step in the pathway of 
catecholamine synthesis (134). Clinical trials have proved 
that metyrosine can inhibit the synthesis of catecholamines 
thus improves the symptoms caused by catecholamine 
excess such as hypertension (132,135-138). In 1979, 
metyrosine was approved by the United States Food and 
Drug Administration for preoperative preparation of 
surgical patients, management of patients during surgical 
contraindications, and treatment of patients with metastatic 
pheochromocytoma (139). However, at that time, the 
clinical researches could neither meet the regulatory 
standards of evaluating the efficacy and safety, nor provide 
sufficient evidence for them (140). Metyrosine was 
recommended for long-term treatment for patients with 
metastatic pheochromocytoma in 1981 (141).

A s  d e s c r i b e d  i n  t h e  b o o k  P a r a g a n g l i o m a - A 
Multidisciplinary Approach, using metyrosine could provide 
remarkable hemodynamic stability during operation because 
of the inhibition of excessive catecholamine production, 
as a result, it can prevent potential fluctuations in blood 
pressure during tumor resection. Because the storage 
of catecholamines is usually exhausted within 3 days of 
surgery, for those with metastatic pheochromocytoma or 
high catecholamine levels, metyrosine is especially useful. 
Due to incomplete exhaustion of the catecholamines, no 
matter how much the dose is required, it is desirable to 
use metyrosine in combination with other α-blockers. 
This combination medication reduces the instability of 
blood pressure control, the blood loss and the need for 
volume replacement perioperatively, as compared to using 
α-blockers alone (129).

A Japanese study showed the efficacy and safety of 
metyrosine in patients with malignant and unresectable 
pheochromocytoma to improve symptoms related to 
catecholamine excess. It showed that the combination 
of metyrosine and α-blocker may be one of the optional 
treatments in pheochromocytoma patients (46).

Perry et al. reviewed 25 cases of consecutive patients 
undergoing pheochromocytoma surgery.  Among 
them, 19 patients were prepared preoperatively with 
phenoxybenzamine and metyrosine while the other 6 
patients were only given phenoxybenzamine. Although this 
study was a retrospective review rather than a prospective 
randomized trial, the results could explain that for surgical 
pheochromocytoma patients, management with both 
phenoxybenzamine and metyrosine showed a better 
performance than using phenoxybenzamine alone. The 

combined medication seemed to be able to better control 
blood pressure, reduce blood loss and reduce the need for 
intraoperative fluid replacement (33).

Another retrospective study investigated patients 
undergoing initial pheochromocytoma resection. One 
group was treated using metyrosine and phenoxybenzamine 
while the other using phenoxybenzamine only.  It 
turned out that preoperative metyrosine improved the 
hemodynamic stability during operation and decreased the 
cardiovascular-specific complications rates in patients for 
pheochromocytoma resection. This report showed that the 
addition of metyrosine preoperatively may improve surgical 
outcomes (130).

In the study of Steinsapir et al., the combined use of a 
metyrosine and α-blocker showed a good result in better 
controlling blood pressure as well as reducing the need 
for antihypertensive drugs or pressor intraoperatively thus 
reducing the mortality of surgery. Using both medications 
would make patients with pheochromocytoma receive 
satisfactory hypertension treatment before operation (131).

From the data presented by Engelman et al., it was clear 
that metyrosine was useful in inhibiting catecholamine 
synthesis in human. What’s more, a wide range of 
catecholamine synthesis reduction lead to a remarkable 
improvement in pheochromocytoma patients’ clinical 
conditions. In some notable cases, metyrosine showed a 
better performance than other drugs, and seemed more 
desirable and simpler (132).

There was also a case report showing metyrosine 
effect on tumor progression. After long-term metyrosine 
treatment in a malignant pheochromocytoma patient, 
the size of the functional metastasis in lung shrunk (133). 
Because pheochromocytoma can also form spontaneous 
necrosis (142,143) metyrosine treatment may be accidental. 
However, because of no evidence to prove this phenomenon 
in pulmonary nodules, the conclusion was drawn that 
reducing the size of lung metastasis nodule may be due to 
the action of tyrosine (133).

Though with preferable usage, there are also some 
limitations reported in metyrosine. First of all, metyrosine 
is pretty expensive which limits its use in some countries. 
The cost has increased dramatically which makes the access 
and availability to this medication limitary. Secondly, the 
main side effects usually include symptoms in the central or 
peripheral nervous systems, because metyrosine can cross 
the blood-brain barrier and inhibit catecholamine synthesis. 
Other side effects usually include anxiety, sedation, fatigue, 
depression, lethargy, crystalluria and gastrointestinal 
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manifestations like diarrhea (144-146).

The treatment of pheochromocytoma with calcium channel 
blockers

Catecholamine secretion is caused by an increase in 
intracellular Ca2+ concentration, which is a result of 
increased cell membrane permeability to extracellular 
Ca2+. A variety of factors influence the Ca2+-mediated 
catecholamine release process (147-150).

In chromaff in t issues,  chromaff in cel ls  release 
catecholamines through a Ca2+-dependent extracellular 
mechanism (90). Acetylcholine releases in synapse of 
visceral chromaffin cells, causing cell depolarization and 
opening voltage-dependent Ca2+ channels (91-93). After 
that, extracellular Ca2+ enters through these channels, 
triggers the fusion of secretory vesicles with the plasma 
membrane and releases catecholamines (94).

Under pressure conflict, normal cells show a highly 
controlled secretory response, while tumor cells begin to 
secrete in an unsynchronized and uncontrolled manner, 
producing a large amount of catecholamines into the 
circulation, resulting in the typical symptoms suffered by 
pheochromocytoma patients. In these cases, using calcium 
channel blockers, which include amlodipine, nicardipine, 
verapamil and nifedipine is an effective method (147).

Calcium channel blockers is commonly used for patents 
with hypertension and maintain the blood pressure by 
decreasing the pressure of peripheral vessels. While 
in some studies, calcium channel blockers may inhibit 
norepinephrine-mediated calcium fluxes into vascular 
smooth muscle cells for the purpose of controlling blood 
pressure and arrhythmia. They also prevent catecholamine-
related coronary artery spasm and help improve cardiac 
function (151) without causing orthostatic hypotension 
(152-154). Due to the pharmacological action of the 
calcium antagonist, its use alone does not improve all the 
hemodynamic changes brought by pheochromocytoma, 
and only in the following three conditions, calcium channel 
blockers can be used combining with or replacing the 
α-blocker (155,156), (I) when single use of α-blocker, blood 
pressure control is not satisfactory, calcium channel blockers 
can be used in combination to improve efficacy. Besides, 
the dose of α-blocker can be reduced; (II) when patients 
cannot tolerate α-blockers having serious side effects, it 
can be replaced by calcium channel blockers; (III) when 
blood pressure is normal or only intermittently elevated, 
calcium channel blockers can replace α-blocker to prevent 

hypotension or orthostatic hypotension. 

Use of magnesium sulfate during the perioperative period 
of pheochromocytoma

Magnesium sulfate is mainly used for perioperative 
hypertension or anesthesia. The mechanism of magnesium 
sulfate to lower blood pressure is mainly: (I) relaxation of 
vascular smooth muscle and expansion of vascular wall, (II) 
inhibition of adrenal medulla and adrenergic nerve endings 
to secrete catecholamine, and (III) direct inhibition of 
catecholamine receptors (157).

Reducing tyrosine-rich food intake

Tyrosine is one of the raw materials for the synthesis of 
catecholamines. Preoperative reduction of tyrosine-rich 
food intake may be important in reducing the increase of 
blood pressure caused by intraoperative catecholamine 
secretion. Tyrosine-rich foods include pickled fish, milk, 
lactic acid drinks, cheese, animal liver, beef, fermented food, 
broad beans, as well as beer.

Conclusion and expectations

Synthesis ,  conversion,  release,  as  well  as  type of 
catecholamines produced are heterogeneous among 
patients with pheochromocytoma. These differences 
in catecholamine precursors, metabolites and their 
accompanying variations can offer useful information about 
pheochromocytoma, which includes potential mutations, 
locations either inside or outside the adrenal gland, tumor 
size and the degree of metastasis (51).

Catecholamines are catalyzed by tyrosine via tyrosine 
hydroxylase to produce DOPA, and then gradually reacts 
to produce dopamine, norepinephrine and epinephrine. 
Catecholamines are metabolized mainly through MAO and 
COMT pathways. Understanding its related characteristics 
and pay attention to the protection show good effect on the 
nursing and treatment of pheochromocytoma.

Preoperative pretreatment with α-blockers was routine 
before pheochromocytoma surgery, which showed a 
good result in improving the perioperative progression 
and reducing arrhythmias (38-40). However, there are a 
lot of limitations in the use of α-blockers. In our review, 
we summarized the articles that tried the therapies using 
metyrosine or combining α-blocker and metyrosine, the 
results showed remarkable clinical effect in the treatment 
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of pheochromocytoma. However, there are still some 
limitations in the use of metyrosine and the clinical trials 
are insufficient. More prospective randomized trials need 
to be done to provide more evidence proving the effect of 
metyrosine.

When the cell membrane increases the permeability 
of extracellular Ca2+ by different causes, the intracellular 
Ca2+ concentration increases and the catecholamine 
is secreted afterward. Calcium channel blockers show 
good effect in these cases and can use in company with 
or replace the α-blocker. Magnesium sulfate can also be 
used for perioperative hypotension or anesthesia with the 
mechanism of relaxing vascular smooth muscle, inhibiting 
catecholamine secretion, and inhibiting catecholamine 
receptors.

As for catecholamine metabolism, there are still many 
unexplained mechanisms and many potential metabolic 
targets. For example, do different gene mutations cause 
different levels of catecholamine secretion, and what are the 
mechanisms involved? There are many important enzymes 
in catecholamine metabolism pathway. Can useful drugs be 
developed to inhibit the production of catecholamines or 
accelerate their metabolism so as to reduce the incidence of 
hypertension in patients with pheochromocytoma before 
operation? These are expected to be addressed in future 
studies.
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