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Introduction

Breast cancer is the leading cause for the death of a woman 
and characterized by a high incidence, poor curativeness and 
heterogeneity. Its incidence and survival status are different 
among different ethnic groups (1). Compared with white 
people, African American are more likely to develop breast 
cancer and African American women with breast cancer 

present a higher proportion of macrophage cell infiltration 
and a worse prognosis (2,3). Triple-negative breast cancer 
is more common in younger African American women 
and they tends to die within 2 years after the diagnosis (4).  
Current ly,  surgery combined with postoperat ive 
chemotherapy, radiotherapy or endocrine therapy is the 
first choice for breast cancer, but postoperative treatment 
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methods for triple-negative breast cancer are still quite 
limited. Postoperative recurrence and metastasis are the 
main causes for the failure of breast cancer treatment.

With the continuous development of oncology, cancer 
stem cells (CSCs) have been found in different solid 
malignant tumors (5-7). Although CSC only accounts for 
a small part of tumor cells, it plays an important role in 
the process of tumorigenesis, development, invasion and 
metastasis (8). CSC studies focus on the mechanisms of the 
development, progression, metastasis, recurrence and drug 
resistance of breast cancer (9). mRNAsi is used to explore 
the similarity index between tumor cells and stem cells. The 
index which is closer to one indicates the lower degree of 
cell differentiation and the stronger characteristics of stem 
cells. With the screened key genes closely related to the 
characteristics of tumor stem cells through mRNAsi, tumor 
stem cell clusters can be easily screened and the molecular 
mechanisms regulating the growth, differentiation and cell 
migration of tumor stem cells can be further understood, 
thus improving the traditional tumor treatment strategies.

In this study, mRNAsi was used to screen key genes 
and signaling pathways related to tumor stem cells, and 
Oncomine was used to verify the differential expression of 
screened hub genes in different tissues and their correlation 
with her-2, estrogen receptor and progesterone receptor. 
In addition, the influences of hub genes on chemotherapy 
sensitivity was analyzed. The study provides the basis for 
understanding the biological behaviors of African American 
breast cancer stem cells (BCSCs) and exploring new 
targeted therapies.

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). All analyses 
were based on previous published data, thus no ethical 
approval and patient consent are required. The source of 
the data is clearly indicated in the article.

Downloading and processing data

In TCGA database (https://portal.gdc.cancer.gov/), after 
setting the search criteria, African American breast cancer 
RNA-sequencing (RNA-seq) data were downloaded. The 
clinical data of six normal samples, 174 breast cancer 
samples and 177 breast cancer patients were obtained, and 
the data without follow-up records were excluded. The raw 
data were transformed into Ensembl ID and the scripts 

were merged with Perl Language.
From the GEO database (https://www.ncbi.nlm.nih.

gov/geo/) to download GSE142102 and GSE86374 
data, obtain African American and Mexican women gene 
expression in patients with breast cancer. Among them, 
there were 226 cases of African American women with 
breast cancer, and 159 cases of Mexican breast cancer, 
including 35 cases of adjacent tissues and 124 cases of 
cancer tissues. Difference analysis was conducted on two 
microchips respectively to obtain the different genes 
of African American women with breast cancer. After 
eliminating the batch effect, the two sets of GSE data 
showed no statistical difference.

Differential expression of mRNAsi and its correlation with 
survival time

We used GraphPad to explore the prognostic value of 
mRNAsi. First, the difference in mRNAsi expression 
between normal tissues and cancer lesions was analyzed 
by log-rank tests, and then the cancer cases were divided 
into two groups (the low expression group and the high 
expression group) with the median mRNAsi score as the 
reference value. Survival analysis was performed with 
the data of the two groups to analyze the correlation of 
mRNAsi with survival time.

Differential gene screening and co-expression analysis

The differential expressions of the samples in the normal 
group and the cancer group were analyzed in the “edgeR” 
R package. Differential gene screening criteria were set 
as: |logFC| ≥1 and false discovery rate (FDR) <0.05. 
Exclusion criteria were set as: gene expression less than 
one. The expression level of the same gene was averaged. 
The differential genes expressed jointly by TCGA and 
GEO were obtained by making Venn diagram. The 
selected differential genes were displayed with heat map 
and volcano map. The co-expression of mRNAsi-related 
genes was analyzed by WGCNA R package as follows. 
Firstly, the differential gene expression data were read. 
The normal sample expression values were removed and 
the genes without ID were deleted. The samples were 
clustered and dispersed samples were deleted. Then the 
mRNAsi expression data were read and the intersection 
with differential genes was obtained. The samples were 
clustered again. The range of the pseudo-power index was 
1:20. The distances between genes were calculated and 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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then converted into topological overlap matrix (TOM) for 
the gene clustering analysis and identification of dynamic 
shear modules. Each module contained at least 50 genes. 
Less than 0.25 was used as the filter threshold of differential 
genes for clustering similar module and merging similarity 
modules. The differences between modules were analyzed 
to further explore the correlations between genes and 
modules, and the correlations between genes and mRNAsi 
(GS, gene significance, Measure the correlation between 
genes and sample traits) to display the scatter plots of 
mRNAsi and modules for screening key genes.

Analysis of key genes

After the co-expression analysis of WGCNA, key genes 
were extracted from the modules of interest, and the 
threshold of screening key genes was set as: P value 
<0.01, cor. Gene MM >0.6 and cor. Gene GS >0.5. The 
differential expression of key genes in normal tissues and 
breast cancer tissues were used compared in the ggpubr R 
package and the pheatmap R package, and the Pearson’s 
correlation between key genes were analyzed in the 
Corrplot R package. The PPI network of key genes was 
constructed with the STRING database and the combined 
score >0.4 in the interactions between proteins was 
considered to be statistically significant. After downloading 
corresponding string_interactions.tsv file, the number of 
adjacent nodes of each gene was calculated and the hub 
genes were analyzed.

Characterizing hub genes by GO enrichment, KEGG 
pathway analysis

GO enrichment and KEGG pathway analysis were 
performed for functional and pathway enrichment. The 
bar chart and bubble chart showed the results of GO 
enrichment and KEGG enrichment analysis of the first 30 
groups with statistical differences. Filter thresholds were set 
as follows: modified P value <0.01 and q value <0.05.

Data validation

The microarray database Oncomine (http://www.oncomine.
org) was used for the analysis of the differential expression 
of hub genes between normal tissues and cancer tissues 
and the correlations between hub genes and other indices 
(her-2, ER, PR status and response to chemotherapy) were 
discussed. The filter conditions was set as: cancer type: 

breast cancer, analysis type: cancer vs. normal analysis, 
treatment: chemotherapy treatment.

Results

Differential expression of mRNAsi and survival analysis

mRNAsi can indicate the similarity between tumor 
cells and stem cells and evaluate the proliferation and 
differentiation abilities of tumor stem cells. In this 
study, 1,188 mRNAsi expression samples were extracted, 
including 98 samples from normal tissues and 1,090 
samples from breast cancer tissues. The results showed 
that the mRNAsi level of breast cancer was significantly 
higher than that of normal tissues (P=1.791e–43) 
(Figure 1A). The survival analysis showed that the low 
mRNAsi group had a higher overall survival rate than 
the high mRNAsi group. The 10-year survival rate of 
the mRNAsi group was about 57% with a 95% CI of 
(0.302–1.000), whereas the high mRNAsi group had a  
10-year survival rate of about 22.4% with a 95% CI of 
(0.075–0.667) (P=0.046) (Figure 1B).

Differential gene expression analysis

In the TCGA data, a total of 3,830 differentially expressed 
genes were selected from 18,571 genes. The top 50 
differential genes are shown in the heat map, in which the 
red indicates up-regulated genes and the green indicates 
down-regulated genes. It could be judged from the heat map 
that the expression levels of differentially expressed genes 
between normal tissues and cancer tissues were significantly 
different (Figure 2A). GEO data analysis showed that 
the gene expression level of African American women 
breast cancer tissue was similar to that of Mexican breast 
cancer tissue, with no statistical difference (|logFC| <1),  
but the gene expression level of African American women 
breast cancer tissue was significantly different from that of 
Mexican pericarcinomatous tissue. A total of 317 different 
genes were obtained according to the filtering criteria 
(Figure 2B). The differential genes expressed jointly by 
TCGA and GEO were obtained by making Venn diagram, 
a total of 218 co-expressed differential genes were obtained 
(Figure 2C).

Co-expression analysis of WGCNA

The co-expression network of genes was constructed 

http://www.oncomine.org
http://www.oncomine.org
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Figure 1 Differential expression of mRNAsi and its correlation with survival time. (A) Differences in mRNAsi between normal (98 samples) 
and tumor (1,090 samples) tissues; (B) Kaplan-Meier curves show that the higher corrected mRNAsi group had greater mortality than that 
of the lower mRNAsi group.

Figure 2 Differential gene expression analysis. (A) Heat map of differential gene expression in African American women breast cancer, N 
represents normal tissue and T represents tumor tissue; (B) volcanic map shows the differentially expressed genes in black breast cancer. 
Green is the down-regulated gene, red is the up-regulated gene and black is the undifferentiated expressed gene; (C) the Venn diagram was 
used to obtain the differentially expressed genes in different microarrays.
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by WGCNA and the genes with similar functions were 
clustered for analysis. After identifying the modules with 
significant biological differences, the correlation between 
genes and breast cancer mRNAsi was analyzed (Figure 3A). 
Modules were clustered and the differential genes with 
variance <0.25 were analyzed. A total of three modules 
were constructed. The analysis results of module-trait 
relationship indicated that the correlations between 
the eight gene modules and mRNAsi were statistically 
different. In the positive correlation, the blue module 

was the most closely related to mRNAsi. In the negative 
correlation, blue and turquoise module were the most 
closely related to mRNAsi (Figure 3B). Among the three 
modules, all modules were not correlated with ereg-
mRNAsi, the correlations with ereg-mRNAsi were not 
as significant as those with mRNAsi. According to the 
filtering standards cor. Gene MM >0.6 and cor. gene 
GS >0.5, 33 positively related key genes were selected 
from the blue module: KIF11, HMMR, SPC25, LMNB1, 
KIF20A, PBK, DEPDC1, ARHGAP11A, NUSAP1, BUB1, 
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RAD51AP1, CEP55, KIF23, KIF4A, NEK2, AURKA, 
MELK, CCNA2, TPX2, FOXM1, GINS1, TTK, UBE2T, 
PTTG1, PLK1, CCNB2, NCAPG, KIF2C, CCNB1, NDC80, 
CKS2, EXO1, NUF2 (Figure 3C).

Key gene expression analysis

Key genes were differentially expressed between tumor 
tissues and cancer tissues and their expression levels in 
breast cancer tissues were significantly higher than those 
in normal tissues. The bar chart (Figure 4A) and heat map 
(Figure 4B) showed statistically significant differences 
between groups. The results showed that the correlation 

of most differentially expressed genes was greater than 
0.5, which was consistent with the module cluster analysis  
(Figure 4C).

Protein interaction networks of hub genes

The protein interactions among key genes of 33 individuals 
were analyzed in STRING (https://www.string-db.org) 
version 11.0 (Figure 5A). KIF11, HMMR, SPC25, LMNB1, 
KIF20A, PBK, DEPDC1, ARHGAP11A, NUSAP1, BUB1, 
RAD51AP1, CEP55, KIF23, KIF4A, NEK2, AURKA, 
MELK, CCNA2, TPX2, FOXM1, GINS1, TTK, UBE2T, 
PTTG1, PLK1, CCNB2, NCAPG, KIF2C, CCNB1, NDC80, 

Figure 3 Co-expression analysis of WGCNA. (A) Co-expression module of breast cancer. The tree branch corresponds to three different 
gene modules, and each branch on the tree branch corresponds to one gene; (B) the correlation analysis between the gene module and 
mRNAsi shows that the turquoise indicates a positive correlation, while the blue indicates a negative correlation, and the darker the color, 
the stronger the correlation; (C) distribution characteristics of blue and turquoise scatter plots in the cluster tree.
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CKS2, EXO1, NUF2 were the most significant adjacent 
nodes in the network (Figure 5B). With the above six genes 
as the core of the interaction network, the data verification 
was conducted.

GO and KEGG enrichment analysis

The biological functions of key genes in the blue module 

was explored through GO analysis in three modes: BP, 

Figure 4 Key gene expression analysis. (A) Bar chart of differential expression of key genes. Red is cancer tissue, blue is normal tissue  
(*, P<0.5; **, P<0.01; ***, P<0.001); (B) heat map of differential expression of key genes, N represents normal tissue and T represents tumor 
tissue, green indicates low expression, and red indicates high expression; (C) correlation analysis between key genes. The darker the blue 
circle, the stronger the correlation.

Figure 5 Protein interaction networks of hub genes. (A) Key gene interaction protein network; (B) statistical map of adjacent nodes of key 
genes.
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Figure 6 GO enrichment and KEGG pathway analysis. (A) GO enrichment analysis; (B) barplot bar graph of KEGG enrichment analysis.
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CC, and MF. Each model displayed the top 10 statistically 
significant functional groups. GO analysis suggested that 
the basic biological functions of the turquoise module 
included mitotic nuclear division, chromosome segregation, 
nuclear division, centromeric region and histone/serine/
threonine/tyrosine kinase activity (Figure 6A). The KEGG 
analysis indicated that the biological functions of the 
turquoise module mainly involved cell cycle, progesterone-
mediated oocyte maturation and oocyte meiosis (Figure 6B). 
Therefore, the functions of genes significantly associated 
with mRNAsi affected cell proliferation.

Differential expression of hub genes and sensitivity to 
chemotherapy drugs

The Stickecker Breast dataset from Oncomine was 
selected for Oncomine analysis. The dataset was included 
in Oncol Rep 2011/10/01. It contains 57 samples and 
involves 19,189 measurement genes. Three of the 33 key 
genes were selected for data validation. The expression 
levels of TTK, NCAPG, KIF2C in breast cancer tissues 
were higher than those in normal tissues. However, the 
expressions of key genes in triple-negative breast cancer 
tissues were higher than those in ERBB2-, ER- and PR-
positive samples (Figure 7A). In addition, the response to 
epirubicin/cyclophosphamide + docetaxel in patients with 
the overexpression levels of TTK, NCAPG, KIF2C was 

better than that in the low expression group (Figure 7B).

Discussion

Breast cancer is a highly heterogeneous and invasive disease. 
Tumor heterogeneity affects the target selection of drug 
therapy, weakens the therapeutic effect, and reduces patients' 
quality of life and survival rate. Compared with non-triple-
negative breast cancer patients, triple-negative breast cancer 
patients showed the significantly decreased health status (10).  
Due to the lack of effective targets for endocrine 
therapy and targeted therapy in clinical practices (11),  
TNBC postoperative chemotherapy is still the main way 
to improve the survival rate in clinical practices (12,13), 
although the chemotherapy resistance exists (14). New 
study advances indicated that the high heterogeneity of 
breast cancer was ascribed to BCSCs and that the failure 
of chemotherapy and tumor recurrence and metastasis 
was ascribed to the proliferation and self-renewal abilities 
of BCSCs (15). Therefore, innovative treatment methods 
targeting BCSCs may be a new breakthrough point to 
improve the efficacy of breast cancer (16).

In this study, the key genes closely related to the 
characteristics of CSCs in WGCNA were screened 
based on mRNAsi. The higher mRNAsi correction score 
indicated that the stronger stem cell characteristics and the 
more significant dedifferentiation characteristics, which also 
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suggested the lower overall survival of patients (17). The data 
analysis results showed that mRNAsi expression in tumor 
tissues was significantly higher than that in normal tissues. 
The key genes associated with mRNAsi were significantly 
up-regulated in cancer tissues, indicating that key genes 
played an important role in maintaining the characteristics 
of tumor stem cells and affected the formation, recurrence, 
metastasis and drug resistance of tumors (18).

According to the filtering criteria of GS and MM, the 
hub genes with similar functions were selected from the 
blue module. The selected genes were positively correlated 
with mRNAsi. Functional enrichment analysis suggested 
that the key genes were related to the self-renewal and 
proliferation characteristics of tumor stem cells. In the 
whole PPI network, TTK, NCAPG, KIF2C, and other 
genes had the most adjacent nodes. These genes were the 
key genes of the whole network. Oncomine meta-analysis 
also verified that the overexpression levels of these genes 
were closely related to the occurrence and development 
of invasive breast cancer. The high expression level of 
TTK was related to the mesenchymal and proliferative 
phenotypes of TNBC cells and the abnormal expression of 
TTK kinase was related to the occurrence, development 
and drug resistance in breast cancer and other cancers (19).  
NCAPG is mainly involved in the proliferation and 
metastasis of cancer cells (20,21). KIF2C is a prognostic 
indicator for a variety of tumors. KIF2C knockout can 
effectively inhibit the proliferation and metastasis of cancer 
cells (21). Therefore, TTK, NCAPG, KIF2C, and other 
genes were considered as hub genes of TNBC and might be 
the new targets for the treatment of TNBC.

Several studies showed that BCSCs had a variety of 
signaling pathways to regulate self-renewal and proliferation, 
such as Hedgehog, Notch, and PI3K/AKT/mTOR (22-24). 
In this study, GO and KEGG enrichment analysis revealed 
that the key genes not only affected the differentiation of 
BCSCs through the cell cycle and chromosome abnormalities, 
but also regulated the activity of histone kinase. BCSCs 
mainly exist in the G0 stage, when DNA synthesis or cell 
division does not occur. BCSCs do not enter the cell cycle 
unless the cell was stimulated. BCSCs enable damaged cells 
to have sufficient time for self-repair and achieve sustainable 
survival through DNA repair and anti-apoptotic ability (25).  
Cancer cells are characterized by multiple genomic 
defects, including extra chromosomes, chromosomal 
deletions, abnormal number of centrosomes (26).  
Loss of cancer-related gene heterozygosity in stem cells 
may result in the genetic instability of progeny cells and 

the occurrence of cancer (27). Abnormal chromosome 
separation during mitosis is a way for tumor cells to 
accumulate many abnormal genetic information needed for 
tumorigenesis (28). The mechanism of dynamic chromatin 
remodeling includes covalent histone modifications, histone 
variations, etc. Dynamic chromatin remodeling is the basis 
of many biological processes, including DNA replication 
and repair, chromosome condensation and separation, etc. 
Abnormalities in these processes are closely related to the 
development and progression of cancer (29). Epigenetic 
modifications of histones occur in key oncogenes, tumor 
suppressor genes and transcription factors, mediate gene 
expression and silencing, and regulate the plasticity of 
CSCs, and tumorigenesis (29,30).

Although TTK, NCAPG, KIF2C, and other genes were 
highly expressed in TNBC, compared with the breast 
cancer subtypes with the low expression of such genes, the 
highly expressed subtypes all responded better to docetaxel, 
suggesting that it was necessary to optimize the classification 
of TNBC subtypes for the clinical development of 
personalized chemotherapy (31). Keam found that TNBC 
with the high expression of Ki-67 was more responsive to 
docetaxel/doxorubicin and could obtain the better complete 
response rate (32). Lehmann found that different TNBC 
subtypes had significant differences in response to similar 
chemotherapy regimens (33). Therefore, the detection of 
the expression and proliferation of key genes is helpful for 
the preclinical prediction of the effect of chemotherapy.

In summary, 33 key genes were screened and determined 
to play an important role in maintaining the characteristics 
of BCSCs. The analysis of key genes is helpful to 
understand the characteristics of TNBC stem cells, optimize 
TNBC typing, guide the selection of chemotherapy 
regimens, and determine clinical outcomes. These genes 
are also potential therapeutic targets for the characteristics 
of BCSCs. The above conclusions should be further verified 
through biological experiments.
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