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Gene therapy has the potential to treat more than 10,000 
human single-gene diseases and can benefit more complex 
polygenic diseases. The CRISPR/Cas system is a natural 
immune system of prokaryotes, which exists in most 
bacteria and archaea. After being invaded by a virus, a 
prokaryote can extract a small piece of viral DNA and store 
it in a specific area of its own genome. We call this area the 
CRISPR storage space. When encountering a virus invasion 
again, prokaryotes can recognize the virus based on the 
stored DNA fragments and cut the virus’s DNA to make it 
ineffective (1). 

According to the characteristics of the CRISPR/
Cas system, scientists have transformed it into the most 
efficient genome editing tool (1). Among them, CRISPR/
Cas9 is an ancient bacterial immune defense system. It 
was first identified in prokaryotes in 2002 and reapplied 
to gene editing technology, providing researchers with 
a revolutionary gene therapy tool (2). In 2012, Jennifer 
Doudna and Emmanuelle Charpentier proved that the 
CRISPR/Cas9 system can cut double-stranded DNA  
in vitro (1); in 2014, Zhang et al. used the CRISPR/Cas9 
system for the first time to edit the genome in prokaryotes 
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(E. coli) (3). But at present, there is no relevant clinical 
level application (4,5). The natural CRISPR-Cas9 system 
consists of three parts: SpCas9 (hereinafter referred to as 
Cas9), crRNA, and tracrRNA. Among them, crRNA and 
tracrRNA form gRNA (guide RNA) through local base 
pairing, and the gRNA binds to the Cas9 protein to guide 
the Cas9 protein to recognize and cut the target DNA 
sequence (Schematic representation of the Streptococcus 
pyogenes Cas9 nuclease (green) targeted to genomic DNA 
by a single-guide RNA (sgRNA) consisting of an ~20-nt  
guide sequence (blue) and a scaffold (red). The guide 
sequence is directly upstream of the protospacer adjacent 
motif (PAM), NGG (orange circles). Cas9 mediates a 
double-strand DNA break (DSB) ~3 bp upstream of 
the PAM (red triangles). The break is repaired by 1 of 2 
mechanisms: nonhomologous end joining (NHEJ) that 
creates random insertions or deletions at the target site or 
homology-directed repair (HDR). Two types of template 
can be used for HDR: small single-stranded DNA (ssDNA) 
oligonucleotide donor with short 60–70-bp homology arms 
and a linear or circular dsDNA plasmid with long homology 
arms of 1 to 3 kb (6). For Cas9 protein to successfully 
recognize the target sequence, two conditions must be 
met: (I) the base pairing between the 20 nt of the 5'end of 
the sgRNA and the target DNA; (II) the appropriate PAM 
sequence at the 3'end of the target DNA. CRISPR/Cas9 
cuts the target DNA and produces DSB (double-strand 
break) (7). The most basic technology of CRISPR/Cas9 
is gene knockout, which is to design a guide RNA (guide 
RNA1, guide RNA2) upstream and downstream of the 
gene, and transfer it into the cell together with the plasmid 
containing the Cas9 protein coding gene. The guide RNA 
passes Base complementary pairing can target the target 
sequence near PAM, and the Cas9 protein will cause DNA 
double-strand breaks in the upstream and downstream 
of the gene to achieve the knock-out of the target gene 
in the cell (NHEJ repair) (8). In addition, on the basis 
of this NHEJ repair, the repair template plasmid (donor 
DNA molecule) will be introduced into the cell, which will 
introduce fragment insertion or site-directed mutations to 
achieve gene replacement or mutation (for HDR repair), 
such as gene editing of fertilized egg cells, and introducing 
it into the surrogate mother can realize the construction of 
gene-edited animal models (9). At present, CRISPR/Cas 
technology has been widely used in gene activation, disease 
model construction, even gene therapy and other related 
fields. In the past, the efficiency of gene editing and precise 
cell editing was usually very low (10), while CRISPR/Cas9 

provided targetable Target specific precise sites (11), and 
can interfere with targeting multiple genes at the same 
time (12), providing new possibilities for the study of 
complex polygenic diseases, especially suitable for different 
in vitro and in vivo research and has been used in many 
studies such as evaluating gene function, disease modeling, 
transcription regulation and testing new treatment  
methods (13). At present, CRISPR/Cas9 is widely used 
in the treatment of tumors and genetic diseases, such as 
small cell lung cancer, gastric cancer, and colorectal cancer. 
And rare disease treatment (14-16). Most ongoing clinical 
treatment trials for cancer use CRISPR/Cas9 to create 
chimeric antigen receptor T cell gene editing (CAR-T) for 
cancer immunotherapy (17,18). The CRISPR system is also 
used for non-gene editing purposes, such as activating and 
inhibiting gene expression, and for fluorescently positioning 
and labeling chromosomal regions and individual 
mRNAs (19). In addition, CRISPR/Cas9 gene editing has 
successfully constructed a variety of model animals, such 
as transgenic sheep and knockout pigs (20,21). That is, 
in the past ten years, the development of genome editing 
technology has fundamentally changed biomedical research. 
It has been widely used in tumor scientific research and 
clinical fields, but related research in the cardiovascular field 
is worthy of summary and discussion.

Cardiovascular disease is one of the main causes of 
morbidity and death among the elderly in our country, 
and is considered to be a major public health problem. At 
present, genome editing tools have been used to explore 
the mechanism of cardiovascular-related diseases such as 
cardiomyopathy, arrhythmia and lipid metabolism (13). And 
previous studies have shown that the specific expression of 
Cas9 in cardiomyocytes does not affect cardiac function or 
related gene expression. Cas9-specific knock-in mice have 
been used to edit cardiac genes such as Myh6, Sav1, and 
Tbx2061. However, the current research on therapeutic 
genome editing in the cardiovascular field is limited (22). 
The following will describe the related research progress of 
the two in more detail.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
dx.doi.org/10.21037/jxym-21-26).

Heart development

Before the cardiovascular system starts to operate, the 
embryo mainly obtains nutrients and oxygen through 
dif fusion.  However,  as  the embryo develops,  the 
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heart development will play an important role in the  
follow-up (23). Studies have shown that CRISPR/Cas9 
constructs a zebrafish heart development model by 
interfering with the microporous in heart regeneration, the 
migration of cardiac progenitor cells in heart development, 
and Wnt/β-Catenin signal transduction (23). In addition 
to constructing animal models, CRISPR/Cas9 can also 
participate in heart development through germline 
genome editing, and be developed as a treatment tool for 
hereditary heart disease. For example, using CRISPR/Cas9 
to correct the MYBPC3 mutation that causes hypertrophic 
cardiomyopathy in human germ cells (24). Using the 
CRISPR/Cas9 system to generate gtpbp3 gene knockout 
zebrafish, it was found that gtpbp3 knockout zebrafish 
mitochondrial tRNA metabolism is abnormal. Abnormal 
mitochondrial tRNA metabolism damages mitochondrial 
translation, produces protease inhibitory stress, changes 
the activity of respiratory chain complexes, and leads to 
embryonic heart Developmental changes, and reduce the 
shortening of the mutant zebrafish ventricles, and the 
ventricular cardiomyocytes of the zebrafish that knock 
out the gtpbp3 gene are hypertrophy and myocardial fiber 
disorders (25). It suggests that CRISPR/Cas9 participates in 
heart development by intervening in related gene editing.

Atherosclerosis/heart failure

CRISPR/Cas9 gene editing to regulate the progress of 
cardiovascular-related diseases is currently a research 
hotspot. For example, knocking out the ApoE/ApoC3 
gene by CRISPR/Cas9 can construct a rat model of 
atherosclerosis (26,27); in vivo AAV-CRISPR/Cas9-
mediated LDLR gene editing can partially rescue LDLR 
expression and effectively improve LDLR mutations Body-
induced atherosclerosis phenotype9 (28,29). Transfect Cas9 
with lentiviral vector, and guide RNA to introduce Tet2 and 
Dnmt3a inactivating mutations into lineage-negative bone 
marrow cells, implant the cells into chemotherapy mice, and 
continue to inject Ang II (angiotensin II), Tet2 or Dnmt3a 
Mice with inactivating mutations showed greater myocardial 
hypertrophy, weakened heart function, and more severe 
heart and kidney fibrosis (30). The gRNA vector expressed 
by CRISPR/Cas9 targeting Mef2d can effectively construct 
the myocardial hypertrophy phenotype (31). Combining 
CRISPR/Cas9 with short template oligonucleotides 
produces ATP-sensitive potassium channels for human 
cardiovascular diseases that cause human cardiovascular 
diseases in zebrafish homologous genes and are related to 

Cantu syndrome (CS) (Kir6.1, KCNJ8, SUR2, ABCC9) gene 
mutations in the subunits, resulting in significantly enlarged 
ventricles, increased cardiac output and contractile function, 
and significantly dilated cerebral blood vessels (32). The 
above shows that gene editing plays an important role in 
inducing cardiovascular diseases, and it also plays an equal 
role in basic research on the treatment of cardiovascular 
diseases, such as: CRISPR/Cas9-mediated FKBP5 gene 
deletion enhances the effect of FKBP5 on NF-κB through 
a positive feedback loop Response, has the effect of treating 
acute myocardial infarction (33). CRISPR/Cas9 knock-
in MSCs expressing dual chemokines GCP-2 and SDF-
1α may be an alternative treatment option for ischemic 
vascular disease (34). That is, CRISPR/Cas9 provides a 
new methodology for the research of cardiovascular related 
diseases.

Cardiovascular preclinical gene therapy research

At the current clinical level, two types of cardiovascular 
diseases can be treated or prevented through genome 
editing. The first type is cardiovascular diseases associated 
with inheritance, such as hypertrophic cardiomyopathy 
(HCM), dilated cardiomyopathy (DCM), long QT 
syndrome (LQTS) and muscular dystrophy that cause 
cardiac dysfunction, and the second type It is diseases 
such as Marfan syndrome and familial  pulmonary 
hypertension (1,10,22). In addition, with the development 
of human induced pluripotent stem cells (hiPSC), the 
generation of human cell lines with CRISPR/Cas9 
knockout and knock-in specific genes can significantly 
increase the possibility of treating cardiovascular  
diseases (6). For example, using CRISPR/Cas9 technology 
to knock the TALEN gene into cardiomyocytes derived 
from human-induced pluripotent stem cells to correct gene 
mutations related to dilated cardiomyopathy in the PLN 
gene, and in vivo (via adeno-associated virus) to mice The 
administration of this system has been shown to improve 
heart function during pressure overload or after induced 
myocardial infarction (22,28). Proprotein convertase 
subtilisin/kexin type 9 (PCSK9) gene plays an important 
role in regulating cholesterol homeostasis. Gain-of-function 
mutations in PCSK9 gene can lead to hypercholesterolemia 
and related in arteriosclerosis, CRISPR-Cas9 knocking out 
the PCSK9 gene will increase the expression of low-density 
lipoprotein receptor (LDLR) in adult mice and achieve 
clinical therapeutic effects (23). It suggests that CRISPR/
Cas9 plays an effective role in basic research and treatment 
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of cardiovascular diseases, but there is no direct clinical 
application in the field of cardiovascular disease.

In summary, CRISPR/Cas9 represents a breakthrough 
in genome editing technology, opening up a new way to 
manipulate genomes in vitro and in vivo. Although research 
on small animal models has been stable so far, there are still 
some off-target effects of genes, which will be prolonged. 
Basic research and clinical treatment time, it is currently 
not possible to carry out gene correction in human heart. 
The application in cardiovascular is mainly focused on 
direct therapeutic intervention and basic research in 
preclinical animal models of hereditary heart disease (35), 
so it can be combined with related Subject related research, 
after discovering new key targets for diseases, gene editing 
technology is used to intervene related genes to realize 
possible programs for gene therapy of cardiovascular 
diseases. All the protein targets discussed in this article and 
treatment methods in other fields can be used for reference.
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