
Page 1 of 13

© Journal of Xiangya Medicine. All rights reserved. J Xiangya Med 2022;7:15 | https://dx.doi.org/10.21037/jxym-22-2

Review Article
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Abstract: A lot of predictive biomarkers have to be tested in advanced non-small cell lung cancer (NSCLC), 
like EGFR, ALK, ROS1, BRAF, RET, NTRK, and MET. According to the 2020 European Society for Medical 
Oncology (ESMO) guidelines, all patients with advanced adenocarcinoma of the lung should be tested for 
the above-reported markers, then it is clear that multi-gene approach analyses would be more cost-effective. 
Aim of this review is to focus on the next-generation techniques currently available for the characterization 
of lung tumors in clinical practice for predictive purposes. The low amount of material available from 
fine-needle aspiration biopsy (FNAB) specimens may be successfully overcome by implementing the 
simultaneous analysis of multiple biomarkers using the same analytical technique. Moreover, liquid biopsy 
can provide valuable material for the molecular diagnosis of lung cancer. Next-generation sequencing allows 
for simultaneously screening of multiple markers starting from a small amount of DNA/RNA. Digital 
polymerase chain reaction (dPCR) is a very highly sensitive method for the analysis of alteration both 
in biopsies, cytological smears, and in circulating tumor DNA from patients with NSCLC. NanoString 
nCounter technology is a dual-probe system that allows performing direct profiling of target nucleic 
acid molecules in a single reaction, without the need for retro-transcription and amplification, and with a 
very high degree of multiplexing. NanoString has been successfully applied in NSCLC for the detection 
of rearrangement. In conclusion, nowadays a lot of “next-generation tools” are available for molecular 
characterization of NSCLC, and the laboratories should apply the best available technique for each specific 
clinical question.
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Introduction

Nowadays overall incidence of lung cancers in the world is 
22.4 cases per 100,000, with a mortality of 18.0 per 100,000, 
the highest worldwide (Figure 1) (1-3).

The principle of targeted therapy consists of the 
identification of well-defined molecules that can be used 
as targets for drug treatment, or as molecular markers that 
play a key role in tumor progression and/or survival. The 
number of target therapies in non-squamous non-small cell 
lung cancer (NSCLC) has notably increased since 2013, 
after that the U.S. Food and Drug Administration (FDA) 
approved targeted therapy for EGFR/ALK mutated lung 
adenocarcinomas (4).

A number of predictive biomarkers have to be tested in 

advanced NSCLC, like EGFR, ALK, ROS1, BRAF, RET, 
NTRK, HER2, and MET (5,6). In the half of 2021, the first 
targeted therapy (sotorasib) for patients with NSCLC and 
KRAS p.Gly12Cys (p.G12C) mutation has been approved 
by the FDA (7). According to the 2020 European Society 
for Medical Oncology (ESMO) guidelines, all patients with 
advanced adenocarcinoma of the lung should be tested for 
the above-reported markers (8,9) (Table 1). Even if single-
gene biomarker testing is still diffused in clinical practice, 
it is clear that multi-gene approach analyses would be more 
cost-effective (10,11). 

The development of these advanced techniques led to 
the concept of “personalized oncology” (12), i.e., each 
tumor in each person is unique in terms of cause, the form 

Figure 1 Incidence and mortality rate of lung cancer worldwide (https://gco.iarc.fr/today) (1-3). ASR, age-standardised rate; GLOBOCAN, 
Global Cancer Observatory; IARC, International Agency for Research on Cancer.
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of progression, and response to treatment.
The transition from an old-fashion sequential approach 

to a multi-gene strategy, due to an increasing number of 
clinically relevant markers, needs that the technologies 
used for analysis improved together with the clinical 
medical needs. The aim of this review is to focus on the 
next-generation techniques currently available for the 
characterization of lung tumors in clinical practice for 
predictive purposes. We considered as “next-generation 
techniques” those methods that overcome the technical 
limits of the standard methods usually used in molecular 
characterization of solid tumors and that have been 
considered the “gold standard” for several years, such 
as Sanger sequencing, fluorescence in situ hybridization 
(FISH), immunohistochemistry (IHC), real-time PCR, 
pyrosequencing. We then focused our attention on next-
generation sequencing (NGS), digital PCR (dPCR)/
droplet digital PCR (ddPCR), NanoString, Nanopore, and 
nonoverlapping integrated read sequencing system (NOIR-SS).

Starting material

Tissue-based specimens

To date, several clinically relevant markers have to be 
analyzed in advanced-stage NSCLCs (13). This evidence 
leads to the need of performing several molecular analyses 
in NSCLC starting from the same specimen, often 
represented by a low-amount tissue sample. Formalin-
fixed and paraffin-embedded (FFPE) specimens are usually 
the gold-standard material for performing molecular 
characterization of solid tumors, but this type of starting 
material is not so commonly available for NSCLCs. In 
fact, in the majority of routine cases, molecular laboratories 
dispose of biopsy specimens or cytological material for 
performing molecular analysis in NSCLC (14-19) (Table 2).

The low amount of material available from fine-needle 
aspiration biopsy (FNAB) specimens may be successfully 
overcome by implementing the simultaneous analysis of 
multiple biomarkers using the same analytical technique, as 

Table 1 List of genomic alterations and their levels of evidence in NSCLC 

Alteration
“Old-fashion” 

molecular markers
Actual standard of care molecular 

markers (ESCAT level I)
Future expected markers 

(ESCAT level II)
Hypothetical future expected 
markers (ESCAT level III–IV)

EGFR mutations √ √ (IA, IB) √ (IIB)§

ALK fusions √ √ (IA)

ROS1 fusions √ √ (IB)

MET exon14 skipping √ √ (IB)

BRAFV600E √ (IB)

NTRK fusions √ (IC)

RET fusions √ (IC)

KRAS √ √ (IIB)^

MET amplification √ (IIB)

ERBB2 amplifications √ (IIB)

ERBB2 mutations √ (IIB)

PIK3CA √ (IIIA)

NRG1 fusions √ (IIIB)

BRCA1/2 √ (IIIA)

FGFR alterations √

HRD genes √

MSI √
§, EGFR exon20 insertion; ^, KRAS p.G12C mutation. ESCAT, ESMO Scale for Clinical Actionability of molecular Targets; ESMO, European 
Society of Medical Oncology; HRD, homologous recombination deficiency; MSI, microsatellite instability; NSCLC, non-small cell lung cancer.
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NGS. To date, the College of American Pathologists (CAP)/
International Association for the Study of Lung Cancer 
(IASLC)/Association for Molecular Pathology (AMP) 
guidelines recommend the use of cytological specimens for 
molecular analysis in advanced-stage NSCLC samples (20).

Liquid biopsy

Liquid biopsy refers to a minimally invasive method of 
analysis of molecular neoplastic biomarkers [e.g., circulating 
tumor cells (CTC), circulating tumor DNA (ctDNA), cell-
free DNA (cfDNA)] performed starting from any type 
of patient’s body fluid, such as peripheral blood (plasma), 
bile, urine, saliva, cerebrospinal fluid, and pleural effusion 
(21,22). In cases in which the lung tumor is inaccessible 
or the patient’s performance status does not allow invasive 
tissue biopsy, liquid biopsy can provide valuable material for 
molecular diagnosis (23-26). 

The applications of liquid biopsy analysis are several 
(Table 2): (I) diagnosis of lung lesions in patients where 
it is not possible to obtain pathological material or if the 
available material is inadequate for molecular analyses; 
(II) monitoring the treatment response; (III) detection 
of minimal residual disease. Moreover, the liquid biopsy 

procedure can be serially repeated to monitor the 
development of resistance (27), the development of co-
mutations (28), and allows to detect intra- and inter-
tumoral heterogeneity that cannot be assessed by analyzing 
a biopsy specimen at a single site (29). Several scientific 
studies have demonstrated the efficacy of liquid biopsy in 
monitoring and characterizing lung tumors (23,30-37), 
and nowadays liquid biopsy analysis in NSCLC should be 
routinely integrated into molecular tests currently available 
in molecular pathology laboratories. If compared to tissue-
based specimens, liquid biopsy for NGS has the advantages 
that can be performed also in those patients where it is 
not possible to obtain a tissue biopsy, and it can be used 
for early detection, or disease recurrence using minimally 
invasive techniques. The analysis performed on liquid 
biopsy may be an early predictor of response to treatment, 
allowing to identify also possible acquired drug resistance 
(32,38). However, it should be taken into consideration 
that NGS results obtained starting from liquid biopsy 
specimens require a very careful validation, because of 
low diagnostic sensitivity in those patients with low tumor 
burden, the lack of a correlation between molecular results 
and morphological data (i.e., the type of the lung tumor), 
and the impossibility to test markers using IHC (e.g., PD-

Table 2 Available material for performing molecular analysis in NSCLC samples

Starting material Pros Cons

Surgical FFPE specimens Huge amount of material Degradation of nucleic acids due to formalin fixation

Representative of the lesions Very rarely available in advanced NSCLC

Storable in anatomic pathology archives

Biopsy FFPE specimens More available than surgical specimens in NSCLC May be not representative of the lesion

Storable in anatomic pathology archives Low amount of material

Cytological smears Commonly available in NSCLC Small amount of starting material

Good quality DNA/RNA Not archivable

Usually not accepted for enrolment into clinical trials

Cell block material Commonly available in NSCLC Small amount of starting material

Good quality DNA/RNA Usually not accepted for enrolment into clinical trials

Storable in anatomic pathology archives

Liquid biopsy Minimally invasive method Need of very high-sensitive techniques

Possibility to perform analysis also in patients 
without biopsy/cytology material

Not feasible for in situ techniques

Serially repeatable during follow-up Technical variability in the pre-analytical and analytical steps

FFPE, formalin-fixed and paraffin-embedded; NSCLC, non-small cell lung cancer.
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L1 expression) (32,38).

Analytical techniques

NGS

NGS, also called massive parallel sequencing (MSP), is a 
multigene mutational assay that can simultaneously screen 
multiple markers starting from a small amount of DNA/
RNA. The low amount of nucleic acid input makes NGS 
a suitable technique for molecular analysis in lung biopsies 
and cytological samples. Adequacy of samples for NGS 
analysis is assessed according to tumor cellularity and 
enrichment in neoplastic cells. Both factors may, however, 
vary depending on the analytical sensitivity of the platform 
used (39). NGS allows starting not only from FFPE 
specimens (both biopsy and surgical specimens), but also 
from cell block preparations, cytological smears, liquid-
based cytology (LBC), and fluids of fine needle aspirate 
procedure (19,40-43). The minimum amount of nucleic 
acid varies according to the platform and panel used, but 
usually ranges from 10 to 50 ng for DNA or RNA input 
for amplicon-based methods, and up to 200 ng for capture-
based panels. As a general rule, before clinical applications, 
laboratories performing NGS must validate the adequacy of 
the entire pipeline analysis, from acid nucleic extraction to 
the interpretation of the output results (41,44,45). 

ESMO guidelines highlight the key role of NGS in 
the molecular characterization of patients with NSCLC 
in clinical practice (5), stating that “If available, multiplex 
platforms (NGS) for molecular testing are preferable” (5). In 
fact, NGS allows the simultaneous detection of EGFR and 
BRAF, RET, NTRK, ALK, HER2, and ROS1 rearrangements, 
and MET exon skipping, other than other potentially useful 
biomarkers (as KRAS mutations). NGS is not only a multi-
gene multi-patients technique but allows to perform these 

multiple tests at a very high depth of coverage (Table 3). This 
high analytical sensitivity is crucial mainly in those samples 
with a low enrichment in neoplastic cells. Using NGS panels 
it is then possible to investigate a set of genes in a single test, 
able to identify alterations even in the scarce biopsy tissue 
often available in everyday practice (46). 

NGS technology allows the analysis of DNA alterations, 
copy number aberrations (CNA), and gene translocations 
in the same run. NGS panels usually used for lung-
adenocarcinomas should then allow detecting at least the 
markers that are nowadays available for targeted therapy, 
such as EGFR/KRAS/BRAF/MET exon14 skipping 
mutations, ALK/ROS1/RET/NTRK rearrangements in lung 
adenocarcinoma (5).

Profiling all markers in the same NGS “run” allows 
for defining the more appropriate treatment for the 
NSCLC patients. In fact, using a single analysis it is 
possible to determine if a patient should be treated using 
EGFR tyrosine kinase inhibitors (EGFR-TKIs) (gefitinib, 
erlotinib, afatinib, osimertinib, and dacomitinib) in 
tumors with EGFR mutations, using ALK-/ROS- or RET-
inhibitors (in patients with NSCLC harboring ALK/
ROS1/RET rearrangements), BRAF inhibitors (dabrafenib, 
vemurafenib) if BRAF activating mutations are detected, or 
using NTRK inhibitors (in patients whit tumors harboring 
NTRK1-2-3 rearrangements). 

The multi-gene NGS approach avoids performing 
several tests for different markers. In fact, an alternative 
to the NGS approach would force to perform real-time 
PCR for EGFR and BRAF point mutations and real-time 
PCR and/or in situ techniques [i.e., IHC—and/or in situ 
hybridization (ISH) techniques] for ALK/ROS1/NTRK/
RET rearrangements. 

Several multi-gene panels have become commercially 
available in recent years. These panels may be designed for 

Table 3 Characteristics of the three main used next-generation techniques in the characterization of NSCLC 

Platform
DNA mutation 

detection
RNA rearrangement 

detection
Input of nucleic acid Sensitivity 

Multiplexing (number of 
markers)

NGS/massive parallel 
sequencing

+++ ++ (amplicon based)/+++ 
(capture based)

10–20 ng (amplicon based)/ 
200 ng (capture based)

0.1–5% ++/+++ (depending on 
panel) 

dPCR +++ ++ 2–50 ng 0.1–1% +

NanoString N/A +++ 100–200 ng >1.5 fold (>5 
copies per cell)†

+++ (but only for gene 
fusion)

†, at least 50% of tumor cells. +, suitable for. NSCLC, non-small cell lung cancer; NGS, next-generation sequencing; dPCR, digital 
polymerase chain reaction; N/A, not available. 
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investigating specific markers for specific tumors or include 
a very high number of targets (“comprehensive” panels). 
Moreover, the NGS approach allows the set-up of custom/
laboratory-developed multi-gene panels for the selection of 
targets, according to the needs of the medical community, 
serviced by the molecular laboratory (43).

Hybridization capture and amplicon sequencing are 
the two most common types of NGS panels used in 
clinical practice. In the hybridization capture panels, 
target sequences are captured using Biotinylated probes, 
while in the amplicon-based panels a first PCR amplifies 
the desired target sequences with specific primers (47). 
The great advantages of hybridization capture panels are 
the scalability and the detecting of gene rearrangements 
without requiring prior knowledge of fusion partners. On 
the other hand, hybridization capture protocols are usually 
more laborious and may be inadequate in case of a low 
quantity of acid nucleic availability. Amplicon-based panels 
are characterized by a simpler and faster workflow and allow 
to obtain evaluable results also starting from a low amount 
of nucleic acid (up to 10 ng per reaction). The amplicon-
based panels are very efficient in DNA mutation detection 
but may suffer from PCR bias and are not optimal for the 
identification of gene rearrangements because these panels 
allow detecting only previously known rearrangements that 
have been included in the primers pool. 

The potentially very high analytical sensitivity of MPS 
allows the investigation of the actionable mutations in NSCLC 
patients also starting from liquid biopsy/cfDNA (48-51).

Another interesting point about the NGS approach 
for lung tumor analysis is that multi-gene panels allow 
analyzing also markers that nowadays are not in clinical 
practice but that would allow driving patients onto 
therapeutic trials (5). The analysis of hundreds of targets 
simultaneously has been defined as comprehensive genomic 
profiling (CGP) (4,52). If on one hand using CGP multiple 
actionable targets can be identified with small amounts of 
samples (thereby improving the success of the tests), on the 
other hand, the clinician had to manage a lot of possible 

alterations also for genes considered as “non-actionable 
targets”. However, it has been hypothesized that the routine 
use of CGP for NSCLC would: (I) improve the likelihood 
of obtaining evaluable samples for analyses, decreasing the need 
to obtain new specimens; (II) CGP tests are probably more 
sensitive for identifying actionable targets in routine tumor 
samples than traditional sequential testing techniques (4). 

Since 2011 more than 200 scientific papers have been 
published about the use of NGS in lung tumors, with 
an ever-increasing number in the last years (Figure 2).  
Turnaround time (TAT) is a crucial aspect in the 
management of molecular tests of NSLC. Guidelines 
by CAP/IASLC/AMP, as well as local guidelines (20), 
recommend that molecular testing TAT should not exceed 
10 working days. However, in real-world clinical practice, 
some delays in NGS TAT may be observed. Molecular 
laboratories must be equipped with different platforms, that 
prove themselves to be useful in case of NGS would fail 
due to pre-analytical tissues or for orthogonal confirmation. 
In fact, single-gene testing approaches may be adopted as 
orthogonal techniques useful to confirm challenging cases, 
while broader NGS testing for patients with advanced 
NSCLC should be the best strategy (53,54). The cost of 
a multi-gene panel for NSCLC is strongly dependent on 
the choice of the panel. However, a recent study about 
the feasibility of NGS in NSCLC revealed a median cost 
for reagents of about €500 per sample (55). Moreover, 
comparing the total cost per patient (i.e., reagents, 
consumables, personnel time, equipment investment and 
maintenance, and overheads) the authors have observed 
that the median cost for the NGS strategy was lower 
(about €1,400) if compared to that of standard strategies 
(about €3,000) in the current NSCLC scenario (55). 
These differences are going to increase if we consider the 
increasing number of useful markers in NSCLC. To date, 
ESMO guidelines recommend that an NSCLC specimen 
is profiled using NGS. Moreover, the guidelines suggest 
that those medical centers that perform development 
programs and clinical trials use multigene sequencing in the 

Figure 2 Number of scientific articles published on Next-generation sequencing in lung tumors (source: PubMed; Query: “(Next generation 
sequencing[Title]) AND (Lung[Title]) AND (cancer[Title] OR carcinoma[Title])”).

2011 2022

202 resultsRESULTS BY YEAR Page 1 of 21
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context of molecular screening programs, even if it should 
be considered that using NGS it is not possible to evaluate 
the protein expression and localization (e.g., it is not 
possible to evaluate PD-L1 expression) (5). In the future, 
the role of NGS multi-gene testing will be always more 
crucial for the characterization and clinical management 
of advanced NSCLC. In fact, the number of emerging 
biomarkers that need to be tested in the clinical practice 
of NSLC is expected to highly increase within the next 3 
years, including for example microsatellite instability (MSI), 
FGFR, BRCA, and homologous recombination deficiency 
(HRD) genes (Table 1). 

dPCR/ddPCR

dPCR is a very highly sensitive method for the analysis 
of alteration both in solid tissue specimens (biopsy or 
cytological smears) and in ctDNA from patients with 
NSCLC (56,57). The dPCR maybe then also used 
in liquid biopsy specimens for therapy monitoring of 
NSCLC patients (57). dPCR has been successfully used 
for ctDNA detection of EGFR mutations in advanced lung 
adenocarcinomas (48,49), allowing to detect mutations 
in cfDNA with a fractional abundance of at least 0.1% 
(58-82) (Table 3). dPCR may be also used for quantitative 
measurements of T790M mutant copy number in plasma 
cfDNA to predict treatment response and survival outcomes 
in NCSLC patients (48,83,84).

dPCR also allows the use of multiplex assays for 
simultaneous detection of multiple EGFR tyrosine-kinase 
inhibitor-sensitizing mutations (85-90). Interestingly, using 
dPCR it has been demonstrated that the detection rates of 
EGFR mutations were higher in bronchial washing fluid than 
in the plasma of patients with lung adenocarcinoma (91).  
Even if nowadays ddPCR has been mainly used for EGFR 
detection in cfDNA, this technique may also be used for the 
detection of alterations in other clinical biomarkers, such 
as ALK alterations, KRAS mutations, and Myc amplification 
(88,92-96). Intriguingly has been used for quantifying  
PD-L1 levels in NSCLC biopsy specimens (97). As 
reported above, liquid biopsy refers to any type of patient’s 
body fluid. dPCR has been used for evaluating EGFR 
mutations in sputum samples of patients with advanced 
EGFR-mutated NSCLC (98).

NanoString

NanoString nCounter technology is a dual-probe system 

that allows performing direct profiling of target nucleic acid 
molecules in a single reaction, without the need for retro-
transcription and amplification, and with a very high degree 
of multiplexing (99-101). Using NanoString nCounter it 
is possible to analyze up to 800 target genes per reaction. 
The quantification of target molecules is performed without 
reverse transcription or amplification steps. In this way, it is 
possible to obtain faithful and reliable data not influenced 
by any type of bias, inevitably introduced by enzymatic 
reactions. This analysis can be then performed starting 
from degraded clinical samples, as tissues FFPE specimens, 
allowing the numerous samples preserved in the archives of 
pathological anatomies to be used retrospectively. In fact, 
the direct counting of messenger RNA (mRNA) molecules 
leads NanoString to be less sensitive to the preanalytic 
treatment of samples (102). The advantages of this technology 
are (Table 3): (I) the low amount of input RNA (less than  
200 ng) needed for the evaluation of expression of a huge 
number of genes; (II) the evaluation of gene rearrangement 
does not require prior knowledge of fusion alterations. 

The NanoString technology represents then a potentially 
useful genomic platform for the detection of gene fusions 
in clinical practice with high sensitivity, reproducibility, and 
technical robustness (99).

In NSCLC NanoString technology has been successfully 
used to characterize druggable rearrangements as those 
in ALK, ROS1, and RET genes, with high accuracy and 
sensitivity (103-108).

NanoString analysis performed on a cohort of 214 lung 
squamous cell carcinomas detected no ALK, ROS1, or RET 
gene rearrangements, confirming that these rearrangements 
are very rare in lung squamous cancer (109).

NanoString has been successfully applied in NSCLCs for 
the detection of rearrangement not only in FFPE but also in 
cytological specimens (102). The efficacy of NanoString also on 
cytological specimens put this platform even more as one of the 
molecular tools applicable in the routine practice of lung cancer.

Other techniques

Nanopore
Nanopore is one of the so-called third-generation 
sequencing techniques allowing a single molecule of nucleic 
acid (DNA or RNA) to be sequenced without the need 
for PCR pre-amplification. Nanopore works recording a 
sequence-dependent electrical signal when DNA molecules 
pass through a pore. To date, Nanopore technology is used 
in clinical practice for rapid identification of viral pathogens, 
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environmental and food safety monitoring, plant genome 
sequencing, and monitoring of antibiotic resistance (110).  
Nanopore technology is nowadays optimized for long-
read sequencing, and then not ideal for analysis from  
ex vivo neoplastic samples, but in the next future could be 
also implemented in the characterization of tumors in the 
pathology laboratories. In a recent study performed on 
cfDNA from 6 lung cancer patients and 5 healthy subjects, 
Martignano and colleagues demonstrated the technical 
feasibility of Nanopore sequencing for copy number 
variation (CNV) analysis of short plasmatic cfDNA (111).

NOIR-SS
NOIR-SS is a sequencing method that uses molecular 
barcodes. This method allows a high-fidelity target 
sequencing system of individual molecules in plasma  
cfDNA (112).  NOIR-SS enables a  more accurate 
quantification and measurement of allele fractions than 
conventional barcode sequencing by removing erroneous 
barcode tags during data analysis and then reducing the 
number of false positives. NOIR-SS technology has been 
successfully adopted for targeting EGFR p.L858R ctDNA 
mutation in plasma of patients with lung adenocarcinoma (113).

Conclusions

The advent of next-generation techniques (e.g., NGS) into 
clinical practice of lung tumors has allowed to introduce 
molecularly driven treatment choices. Moreover, an 
integrated morphological and molecular characterization 
of the lung tumors is now performed for the diagnosis. It 
should be then considered that it has become increasingly 
crucial to have sufficient material for histological, 
immunohistochemical, and molecular characterization. For 
this reason, it is mandatory to dispose of highly sensitive and 
specific techniques that allow the molecular characterization 
of the lung tumors in a robust way starting also from a low 
amount of tissue specimens. In our experience, to date, the 
multi-gene approach using an NGS technique is preferable 
to sequential testing. The proper application of the best 
suitable technique for specific clinical requests and for the 
availability of biological material provides a powerful tool to 
laboratory and physicians for having the best management 
of patients affected by lung tumors. 
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