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Background and Objective: Cancer is one of the leading causes of disease-related casualties worldwide. 
More than 2 million new cases of lung cancer were detected in 2021 and this malignancy was the most 
common cause of cancer related death with 1.80 million casualties. Personalized medicine has revolutionized 
the therapeutic landscape of some hematological malignancies and solid tumors, particularly non-small 
cell lung cancer (NSCLC). Rearrangements of anaplastic lymphoma receptor tyrosine kinase, ROS 
protooncogene 1, receptor tyrosine kinase, RET proto-oncogene and neurotrophic receptor tyrosine kinase 
genes and MET proto-oncogene receptor tyrosine kinase, exon 14 splicing are present in 1–9% of NSCLC 
patients and their correct identification is key to select targeted therapies. NSCLC patients presenting these 
types of alterations can receive tyrosine kinase inhibitors (TKIs), which have demonstrated improved clinical 
benefit compared with standard chemotherapy. The nCounter system, a hybridization-based platform from 
NanoString Technology, has been tested in recent years for the detection of fusions and splicing variants in 
NSCLC. In this literature review, we summarize the published studies in this area.
Methods: We performed a search narrative of the scientific literature in PubMed database and selected all 
the articles in English from origin until October 5th, 2020 where nCounter was used for fusion and splicing 
variant detection.
Key Content and Findings: nCounter has been demonstrated to be a useful tool for fusion and splicing 
variant testing in NSCLC in the clinical setting. The technique has several advantages such as a fewer 
processing steps, short turnaround time and less hands-on time compared with gold standard methods 
[fluorescence in situ hybridization (FISH), immunohistochemistry (IHC)] or next-generation sequencing 
(NGS). In addition, it can be easily employed in formalin-fixed paraffin-embedded (FFPE) tumor samples 
and requires low quantities of tissue. Finally, nCounter has shown high sensitivity and specificity compared 
with gold standard methods for detection of clinically relevant fusions and splicing variants.
Conclusions: nCounter can be employed in the clinical setting for the detection of splicing variants and 
fusion transcripts in NSCLC.
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Introduction

Cancer of the lung is one of the most common malignancies 
and the first cause of cancer-related deaths, representing 
almost 25% (1).  Around 84% of lung tumors are 
adenocarcinomas, squamous cell carcinomas and large 
cell carcinomas, which are grouped as non-small cell lung 
cancers (NSCLCs). Several types of genetic alterations have 
been demonstrated to be oncogenic and are referred to as 
drivers, including point mutations, deletions, insertions and 
gene fusions. The 45% of driver alterations in NSCLC are 
somatic mutations in the KRAS proto-oncogene (KRAS), 
epidermal growth factor receptor (EGFR) and B-Raf proto-
oncogene (BRAF) genes, while oncogenic gene fusions and 
splicing variants are present in 5–10% of patients. 

Fusion gene and splicing variant occur when two 
different genes are juxtaposed or when particular exons 
of a mRNA are processed in different combinations, 
respectively. The most common are anaplastic lymphoma 
receptor tyrosine kinase (ALK), ROS protooncogene 1, 
receptor tyrosine kinase (ROS1), RET proto-oncogene 
(RET )  and neurotrophic receptor tyrosine kinase 
(NRTK1/2/3) fusions and the MET proto-oncogene, 
receptor tyrosine kinase splicing (METΔex14) variant being 
mutually exclusive with other drivers (2). The development 
of the first tyrosine kinase inhibitors (TKIs) targeting ALK 
fusions represented a breakthrough advance in the NSCLC 
treatment landscape in the last decade. Several pre-clinical 
and clinical studies have demonstrated the clinical benefit of 
targeted therapies with TKIs in patients with ALK, ROS1, 
NTRK1/2/3, RET fusions rearrangements or METΔex14 
splicing variant. These benefits include increased objective 
response rates (ORR), progression-free survival (PFS) 
and overall survival (OS) compared with chemotherapy 
and TKIs are currently the standard of care in first line 
treatment of the NSCLC patients harboring the alterations 
mentioned above. However, due to the emergence of drug 
resistance, patients ultimately relapse to TKIs and new 
generation inhibitors have been developed, targeting some 
mechanisms of resistance (3-6) (Table 1). 

The first ALK inhibitor (ALKi) approved by the Food 
and Drug Administration (FDA) for metastatic NSCLC was 
crizotinib in 2011, which targets ALK, ROS1 and c-MET (3).  
Two second-generation ALKis, ceritinib and alectinib, 
obtained FDA approval in 2014 and 2015 for patients 
progressing to crizotinib or intolerant to it (7). Based on the 
results of the randomized phase III ALEX trial, alectinib 
was also approved in November of 2017 for treatment-naïve 

ALK-positive patients (8). Thereupon, the FDA authorized 
brigatinib for those patients who had failed prior ALKi 
treatment (9,13). In this fast-growing therapeutic landscape, 
highly potent third generation ALKis, such as lorlatinib, 
have been recently developed to treat acquired resistance, 
improve the control of the disease, and target central 
nervous system (CNS) disease (10). 

Regarding the rest of oncogenic fusions, ROS1 patients 
are currently treated with two inhibitors, crizotinib and 
entrectinib, that bind to ROS1 fusion protein (3,5,11). In 
the case of RET, the first multi-kinase inhibitors tested were 
cabozantinib, vandetanib and lenvatinib, with contrasting 
results. More recently, two selective RET inhibitors, 
selpercatinib and pralsetinib, demonstrated better clinical 
efficacy and good tolerability, being approved in 2020 
(4,14,15). Finally, the kinase inhibitors larotrectinib and 
entrectinib were approved by the FDA in 2018 and 2019, 
respectively, for the treatment of patients with NTRK1-3 

Table 1 Summary of inhibitors approved for fusion-positive 
NSCLC patients

Target Alteration Frequency Drug Reference

ALK Fusion 5–7% Crizotinib (3)

Ceritinib (7)

Alectinib (8)

Brigatinib (9)

Lorlatinib (10)

ROS1 Fusion 1–2% Crizotinib (3)

Ceritinib (7)

Entrectinib (5,11)

Lorlatinib (10)

RET Fusion 1–2% Selpercatinib (4)

Pralsetinib (4)

NTRK Fusion 1% Larotrectinib (6)

Entrectinib (5,11)

METΔex14 Splicing 
variant

3–4% Crizotinib (3)

Capmatinib (12)

Tepotinib (12)

NSCLC, non-small cell lung cancer; ALK, anaplastic lymphoma 
receptor tyrosine kinase; ROS1, ROS protooncogene 1, receptor 
tyrosine kinase; RET, RET proto-oncogene; NTRK, neurotrophic 
receptor tyrosine kinase genes; MET, MET proto-oncogene 
receptor tyrosine kinase.
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fusion-positive solid tumors (6,11,16,17). 
In the case of MET exon 14 skipping mutation, several 

MET TKIs have been developed and are currently being 
tested in clinical trials (18-25). Two type Ib MET TKIs, 
tepotinib and capmatinib, have recently been approved by 
the FDA for the treatment of NSCLC patients harboring 
METΔex14 (12).

Although there are several publications of fusion 
detection using the nCounter methodology, the perception 
is that this platform has not managed to establish 
itself as a benchmark. In most clinical trials, the use of 
technologies such as next-generation sequencing (NGS), 
immunohistochemistry (IHC) or fluorescence in situ 
hybridization (FISH) is preferred or often required for 
fusion detection. However, our laboratory has been using 
nCounter for several years and we have observed that 
this technology outperforms NGS (26) and should be 
universally accepted for testing fusions and splicing variants 
in tumor samples. Consequently, we performed a narrative 
review of the scientific literature about fusion and splicing 
variant detection using nCounter to support this point 
and we present the following article in accordance with 
Narrative Review reporting checklist (available at https://
jxym.amegroups.com/article/view/10.21037/jxym-22-6/rc).

Methods

We performed a search narrative of the scientific literature 
in the PubMed database using the keywords “nCounter” and 
“fusion” and “non-small cell lung cancer” or “nCounter” 

and “splicing variant” and “non-small cell lung cancer”. The 
articles listed after both searches were individually examined, 
and those actually describing the use of nCounter for fusion 
and splicing variant detection were selected (Table 2 and 
Table S1). 

The nCounter technology

The nCounter is  a  hybridizat ion-based platform 
(NanoString Technologies, Seattle, WA, USA) based 
in a fluorescent barcode that enables direct detection of 
hundreds (≤800) of different target molecules in a single 
assay. The technology can be used for gene expression 
profiling, detection of fusion and alternative splicing 
transcripts or protein analysis, can be easily incorporated 
into the diagnostic routine and is cost-effective compared 
to alternative techniques. Regarding gene expression 
and detection of altered transcripts, the panels can be 
commercial or custom-made. 

The technology can be adapted for simultaneous analysis 
of multiple fusion transcripts, using a dual strategy aimed to 
detect possible imbalances in the 3'/5' expression of the wild 
type (WT) sequences and specific fusion junction targets 
(27). The nCounter protocol has 3 basic steps: (I) the RNA 
is hybridized with the specific probe pairs (reporter probe 
and capture probe); (II) the tripartite structure coated with 
streptavidin is bound to the surface of the sample cartridge 
and reporters are aligned by an electric current and 
immobilized for data collection; (III) fluorescent barcodes 
are counted by a digital analyzer, RNAs are identified and 

Table 2 The search strategy summary

Items Specification

Date of search 2012/08/24–2020/11/27

Databases and other sources searched PubMed

Search terms used See Table S1

Timeframe 2012–2021

Inclusion and exclusion criteria Inclusion criteria: research articles and reviews about nCounter 
technology for fusion and splicing detection in NSCLC in FFPE tissue

Exclusion criteria: articles that have no performed the technique in 
FFPE tissue

Selection process It was conducted independently by Ana Giménez-Capitán and 
Miguel Ángel Molina-Vila, all authors attended a meeting to discuss 
the literature selection and obtained the consensus

FFPE, formalin-fixed paraffin-embedded; NSCLC, non-small cell lung cancer.

https://jxym.amegroups.com/article/view/10.21037/jxym-22-6/rc
https://jxym.amegroups.com/article/view/10.21037/jxym-22-6/rc
https://cdn.amegroups.cn/static/public/JXYM-22-6-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JXYM-22-6-Supplementary.pdf
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counts tabulated (27-29) (Figure 1).
The technique has several advantages compared with 

gold standard methods such as FISH and IHC or other 
techniques such as NGS, such as a short turnaround time 
and needs less hands-on time (Table 3). In addition, it 
requires low amounts of RNA, which can be easily purified 
from a single tissue or cytology slide with a minimum area 
of 1.1 mm2 (27). This aspect is particularly relevant in the 
case of NSCLC patients, since biopsies are often scarce or 
the only sample available is a cytological specimen. Often 
the mRNA from formalin-fixed paraffin-embedded (FFPE) 
is degraded and with this system the sample can be direct 
measure without amplification step avoiding any bias. All 
of these considerations made an attractive platform for the 
clinical setting implementation (30). The main disadvantage 
of nCounter is that many laboratories only dispose of NGS 
and do not have the technology and the required equipment 
available. At the technical level, an advantage of NGS over 
nCounter is that NGS can determine the specific sequence 
of the fusion point and detect any deviation from the 
standard sequence, while nCounter cannot. 

In this review, we will summarize the studies published 
using nCounter for the detection of fusion genes in 
NSCLC, which are summarized in Table 4. The same table 
also presents the sensitivity and specificity of the nCounter 
results versus orthogonal techniques such as FISH or IHC. 

Detection of ALK, ROS1 and RET gene fusions 
by nCounter 

In 2012, Suehara and colleagues were the first group to 
report the detection of ALK, ROS1 and RET fusion using 
nCounter technology (35). The study included 75 lung 
adenocarcinoma RNA samples; 6 extracted from frozen 

tissue and 69 from FFPE blocks. Each sample was analyzed 
using 100 to 200 ng of total RNA using 5'/3' imbalance 
probes targeting two selected regions of 100 base pairs (pb) 
for each gene under study. Using serial dilutions of RNA 
from cell lines, they first determined that the positive tumor 
cell content should be >25% for the fusion to be detectable. 
In the case of the 75 samples, the nCounter assay correctly 
identified 24/24 positive cases. Furthermore, they identified 
aberrant 5' to 3' ratios in ROS1 and RET of novel Golgi 
associated PDZ and coiled-coil motif containing (GOPC) 
GOPC-ROS1 and kinesin family member 5B (KIF5B) 
KIF5B-RET fusions (35).

Next, Lira et al. [2013] developed an nCounter assay 
able to identify specific ALK fusions, which included 8 pairs 
of imbalance probes and 7 pairs of probes for ALK known 
fusion variants. The assay was validated in RNA (500 ng) 
isolated from 10 μm sections of FFPE blocks from 67 
NSCLC samples, 34 positive and 33 negative (29), and was 
found to be highly concordant with FISH and IHC. 

In 2014, the same group modified the technology for 
simultaneous screening of ALK, ROS1 and RET fusions. 
The new assay included 24 probe pairs targeting wild-type 
3' and 5' regions of ALK, ROS1, and RET and 27 fusion-
specific probe pairs. The assay was validated in 295 NSCLC 
specimens, ALK results were 100% and 97.8% concordant 
with FISH and IHC, respectively. Regarding ROS1 and 
RET, they observed 100% concordance with FISH (36).

In 2017, our group validated nCounter for routine 
detection of fusion transcripts (27). Our codeset included  
24 imbalance probe pairs targeting ALK, ROS1 and RET; 
and 23 fusion-specific probe pairs. Using FFPE blocks 
derived from cell lines, we determined 25 ng of total 
RNA with >10% tumor cell content was sufficient for the 
detection of fusion transcripts. The assay was retrospectively 

1 Step: 15−21 hours or overnight 2 Step: 2−3 hours, automated 3 Step: 2.5−4.5 hours, automated

5 min 
hands-on

5 min 
hands-on

5 min 
hands-onHybridization

Reported probe

Capture probe

nCounter® prep station Target 1:3

Target 2:2

Target 3:1

nCounter® digital 
analyzer

Target count

Hybridization

Purification and 
immobilization Data acquisition

Figure 1 nCounter system workflow (BioRender illustration software).
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validated in 108 FFPE samples from advanced NSCLC 
patients of them, 98 were successfully analyzed by nCounter 
(91%), which identified 55 fusion positive cases (32 ALK, 
21 ROS1, and two RET). nCounter results were highly 
concordant with IHC (98.5%, CI 91.8–99.7) and FISH 
[87.5%, confidence interval (CI): 79.0–92.9] for ALK. 
Regarding ROS1, nCounter showed a similar agreement 
with IHC and FISH (87.2% and 85.9%). 

Three additional groups published in 2017 their 
experiences in detection of ALK, ROS1 and RET fusions 
by nCounter. Lindquist et al. analyzed a Swedish cohort 
comprising 169 FFPE lung cancer blocks. The RNA was 
100 to 250 ng and 80% of samples yielded valid results. 
Five ALK, two ROS1 and three RET positive cases were 
detected, agreement with FISH was 100% (31). Rogers et al.  
compared three platforms with FISH; nCounter, a Lung 
Fusion array (Agena Bioscience, San Diego, CA, USA) and a 

NGS fusion panel (Thermo Fisher Scientific, Waltham, MA, 
USA) (29,36). Valid results by nCounter were obtained for 
48/51 surgically resected NSCLC samples; 17 tested were 
positive for ALK, two for ROS1 and one for RET. Overall 
agreement with FISH was 96% for nCounter, compared to 
94% for the array and 86% for the NGS panel (32). Finally, 
Evangelista et al. tested the nCounter ALK-fusion panel 
developed by Lira et al. in 43 FFPE lung cancer biopsies 
from a Brazilian cohort (29,36). A total of 100 ng RNA was 
used for the analysis. The assay detected 13 ALK-positive 
samples with 100% agreement with FISH and/or IHC (33).

Detection of MET and NTRK alterations by 
nCounter 

Li et al. [2016] pioneered the detection METΔex14 
transcripts by nCounter, incorporating to the Lira assay 

Table 4 Summary of nCounter sensibility and specificity vs. gold standard techniques

Study (author, year, country) Alteration
Type of nCounter 
panel

nCounter sensibility vs.  
FISH/IHC/PCR/NGS

nCounter specificity vs.  
FISH/IHC/RT-PCR/NGS

Lira et al., 2013, Korea (29) ALK Custom panel, 
Elements assay

FISH: 100% and IHC: 97.8% FISH and IHC: 98.8%

ROS1 FISH: 100% FISH: 100%

RET FISH: 100% FISH: 100%

Reguart et al., 2017, Spain (27) ALK Custom panel, 
Elements assay

FISH: 87.5% and IHC: 98.5% FISH: 84.9% IHC: 97.2 % 

RET Not reported not reported 

ROS1 FISH: 85.9% and IHC: 87.2% FISH: 96.1% and IHC: 88.3% 

Lindquist et al., 2017, Sweden (31) ALK Custom panel, 
Elements assay

FISH: 100% FISH: 100%

RET FISH: 100% FISH: 100%

ROS1 FISH: 100% FISH: 100%

Rogers et al., 2017, Australia (32) ALK Custom panel, 
Elements assay

FISH: 94% FISH: 97%

ROS1 FISH: 100% FISH: 100%

RET Not reported FISH: 100%

Evangelista et al., 2017, Brazil (33) ALK Custom panel, 
Elements assay

FISH and/or IHC: 100% FISH and/or IHC: 100%

Aguado C et al., 2021, Spain (26) METΔex14 Custom panel, 
Elements assay

RT-PCR: 54.2% RT-PCR: 100%

NGS: 100% NGS: 98.4%

Elfving et al., 2021, Sweden (34) NTRK TruSight Tumor  
170 RNA assay

No concordance with IHC No concordance with IHC

ALK, anaplastic lymphoma receptor tyrosine kinase; ROS1, ROS protooncogene 1, receptor tyrosine kinase; RET, RET proto-oncogene; 
MET, MET proto-oncogene receptor tyrosine kinase; IHC, immunohistochemistry; FISH, fluorescence in situ hybridization; FFPE,  
formalin-fixed paraffin-embedded; NGS, next-generation sequencing; IHC, immunohistochemistry.
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probes for MET exons 13 and 14. When used to analyze 
an Asian population cohort (n=271), the assay detected  
20 gene ALK fusions (7.4%), six ROS1 (2.2%) and RET 
(2.2%) fusions and seven MET∆ex14 skipping (2.5%) (37). 

In 2020, our group performed an extensive retrospective 
validation of nCounter for the detection of MET alterations, 
not only METΔex14 but also MET overexpression. Of the 
474 advanced NSCLC samples analyzed, 422 (89%) yielded 
valid results by nCounter, which identified 13 patients (3%) 
with METΔex14 and 15 (3.2%) overexpressing MET. The 
two subgroups displayed distinct phenotypes and rarely 
coexisted with other drivers. NGS failed to detect 3/8 
(37.5%) METΔex14 samples positive by nCounter (26). 
Regarding patients with overexpressing MET mRNA, 92% 
had MET amplification by FISH and/or NGS. However, 
three FISH-negative patients showed high MET RNA 
expression by nCounter, one of them received MET TKI 
treatment deriving clinical benefit.

Next, our group performed a prospective study to 
demonstrate the feasibility and usefulness of embedding the 
RNA tissue-based nCounter panel described by Aguado  
et al. (26) in the clinical routine. In a cohort of 224 advanced 
NSCLC patients, nCounter testing yielded an informative result 
in 207 patients (92%). Driver alterations for ALK (n=7, 4%) and 
MET∆ex14 (n=9, 5%) were detected and patients treated with 
ALK or MET TKIs based on the nCounter results (38). 

Novaes et al. (39) published in 2021 a new study in a 
Brazilian cohort lung of 142 FFPE lung adenocarcinoma 
samples, incorporating specific probes for NRTK1 fusion 
detection. Of them, 134 (94.4%) yielded valid results. 
ALK rearrangements were detected in 6.5% samples 
(21/325), while the frequency observed for RET and ROS1 
rearrangements was 0.6% (2/325) and 0.3% (1/325), 
respectively. NTRK1 fusion results were not reported (39). 

A more extensive study for NTRK rearrangements was 
published in 2021 by Elfving et al. comparing detection 
by IHC assay with nCounter and NGS (TruSight Tumor 
170 RNA assay, Illumina, San Diego, CA, USA). A total 
of 688 NSCLC samples were first stained with the pan-
TRK antibody clone EPR17341. Positive cases were further 
analyzed by the other techniques. However, nCounter or 
NGS could not confirm an NTRK fusion in any of the IHC 
positive cases (34).

In summary, all the studies conclude that nCounter 
platform is particularly useful for fusions and splicing variants 
detection. However, some of the published articles offer 
limited evidence at this respect and only a few of them report 
an extensive validation of the technique, not only using 

FFPE blocks obtained from cell lines but also comparing the 
nCounter results with gold standard techniques (NGS, FISH, 
IHC) in FFPE tumor samples [i.e., (27,29,36); see Table 4].  
Also, the minimum amount of tissue sample, the limit of 
detection, the sensitivity and the specificity of nCounter 
for fusion and splicing variant detection are all described, 
being these data particularly useful for the reproducible 
implementation of the technique in the clinical setting. 

Summary

The nCounter technique has demonstrated high sensitivity 
and specificity for detection of clinically relevant fusions 
and splicing variants compared with gold standard (FISH, 
IHC) and can be easily implemented in the clinical setting 
for multiplex detection of these alterations. nCounter can 
be used in FFPE tumor samples, requires low quantities of 
RNA, has a short turnaround time and needs less hands-on 
time than other techniques. 
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Supplementary

Table S1 Search terms used

Search terms used

(“Fusion variants in lung cancer” [Mesh]) and “nCounter” [Mesh]

(“Splicing variants in lung cancer” [Mesh]) and “nCounter” [Mesh]

(“Lung cancer” [Mesh]) and “nCounter” [Mesh]

(“ALK, ROS1, RET fusions” [Mesh]) and “nCounter” [Mesh]

(“MET ex 14 skipping” [Mesh]) and “nCounter” [Mesh]

“Fusion variants in FFPE tissue” [Mesh]

“MET ex 14 skipping in FFPE tissue” [Mesh]

ALK, anaplastic lymphoma receptor tyrosine kinase; ROS1, ROS protooncogene 1, receptor tyrosine kinase; RET, RET proto-oncogene; 
MET, MET proto-oncogene receptor tyrosine kinase; FFPE, frozen formalin paraffin tissue.

https://www.google.com/search?q=FFPE+frozen+formalin+paraffin+tissue&spell=1&sa=X&ved=2ahUKEwjR4Z2Amv_3AhVOOBoKHfEzCnEQkeECKAB6BAgBEDc

