# Impact of elevated urine leukocyte and bacteria count per highpower field on the in-hospital outcome of patients with liver cirrhosis

Dan Han<sup>1,2\*</sup>, Ran Wang<sup>1,2\*</sup>, Yang Yu<sup>1</sup>, Sien-Sing Yang<sup>3</sup>, Sebastian Mueller<sup>4</sup>, Fernando Gomes Romeiro<sup>5</sup>, Tingxue Song<sup>1,2</sup>, Han Deng<sup>2</sup>, Jing Li<sup>2</sup>, Zhong Peng<sup>2,6</sup>, Yibing Li<sup>7</sup>, Xiaozhong Guo<sup>1,2#</sup>, Xingshun Qi<sup>2#</sup>

<sup>1</sup>Postgraduate College, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China; <sup>2</sup>Liver Cirrhosis Study Group, Department of Gastroenterology, General Hospital of Shenyang Military Area, Shenyang 110840, China; <sup>3</sup>Liver Unit, Cathay General Hospital, Taipei, Taiwan; <sup>4</sup>Department of Medicine and Center for Alcohol Research, Salem Medical Center, University of Heidelberg, Heidelberg, Germany; <sup>5</sup>Department of Internal Medicine Botucatu Medical School, Universidade Estadual Paulista (UNESP), São Paulo State, Brazil; <sup>6</sup>Postgraduate College, Dalian Medical University, Dalian 116044, China; <sup>7</sup>Department of Nephrology, General Hospital of Shenyang Military Area, Shenyang 110840, China *Contributions:* (I) Conception and design: X Qi, X Guo; (II) Administrative support: X Guo, X Qi; (III) Provision of study materials or patients: X Guo, X Qi; (IV) Collection and assembly of data: D Han, R Wang, T Song, H Deng, J Li, Z Peng; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

\*These authors contributed equally to this work.

<sup>#</sup>These authors are the joint senior authors.

*Correspondence to:* Prof. Xiaozhong Guo; Dr. Xingshun Qi. Department of Gastroenterology, General Hospital of Shenyang Military Area, No. 83 Wenhua Road, Shenyang 110840, China. Email: guo\_xiao\_zhong@126.com; xingshunqi@126.com.

**Background:** Liver cirrhosis is prone to the development of urinary tract infection (UTI). Urine culture is a golden standard for the diagnosis of UTI, but it is often missing in routine clinical practice. Urinalysis may be an alternative. This study aimed to evaluate the prevalence of abnormal urinalysis and its impact on the in-hospital outcome of liver cirrhosis.

**Method:** Cirrhotic patients (n=2,067) who were admitted between July 2010 and June 2014 and underwent urinalyses were retrospectively enrolled. A urine leukocyte count of >4.33 and/or a urine bacteria count of >975 per high-power field were defined as abnormal urinalysis. Receiver-operator characteristic (ROC) curve analysis was performed to identify the capacity of urine leukocyte and bacteria count per high-power field for predicting the in-hospital death. The area under the ROC curve (AUROC) was calculated.

**Results:** The prevalence of elevated urine leukocyte and bacteria count per high-power field was 25.8% and 6.7%, respectively. The AUROC of urine leukocyte and bacteria count per high-power field for predicting the in-hospital death were 0.600 (P=0.015) and 0.600 (P=0.014), respectively. The best cut-off value of urine leukocyte per high-power field was 8.19 with a sensitivity of 34.5% and a specificity of 84.8%. The best cut-off value of urine bacteria per high-power field was 142.04 with a sensitivity of 38.6% and a specificity of 84.19%.

**Conclusions:** Abnormal urinalysis is common in liver cirrhosis and may be a predictor for the in-hospital death.

Keywords: Infection; liver cirrhosis; urinalysis; urine culture; death

Received: 07 June 2017; Accepted: 11 August 2017; Published: 30 August 2017. doi: 10.21037/jphe.2017.08.02 View this article at: http://dx.doi.org/10.21037/jphe.2017.08.02

## Introduction

Bacterial infection is one of the most significant complications in patients with decompensated liver cirrhosis (1). Spontaneous bacterial peritonitis (SBP) and urinary tract infection (UTI) are the most common types of bacterial infections in cirrhotic patients (2). The proportion of UTI in all bacterial infections is 20–25% (3), and the most common bacteria that cause UTI are Escherichia coli (4). Bacterial infections confer to a 4-fold increase in the mortality of cirrhosis (5). However, it remains unclear whether or not UTI increases the risk of mortality in cirrhotic patients (6).

The golden standard for diagnosis of UTI is a urine culture with significant colony counts of a single organism in a sterile manner (7). However, urine culture is not frequently used in clinical practice, especially in outpatient settings (8), for several reasons. First, a urine culture is time consuming requiring 48 hours for the growth and identification of the pathogen and additional 48–72 hours for determining its antimicrobial susceptibility. Second, a large number of cirrhotic patients with UTI are asymptomatic so that a urine culture is often not obtained (9). Third, the clinicians often use their clinical judgment rather than the standard diagnostic criteria for bacterial infections (10).

By comparison, urinalysis, microscopy, and bedside urine dipsticks are readily and rapidly available, which allows the clinicians to initiate empiric treatment for suspected UTI while awaiting urine culture results (11). Fernandez *et al.* also put forward that uncountable leukocytes can be used as a basis for the diagnosis of UTI, even without the urine culture result (1).

Considering that urine culture is hardly available in the clinical setting, the present study aimed to analyze the results of routine urinalysis, exploring the prevalence of abnormal urinalysis and its effect on the in-hospital outcome of cirrhotic patients.

## Methods

### Patients

All patients with liver cirrhosis who were consecutively admitted to our hospital between July 2010 and June 2014 and underwent urinalyses at their admission were potentially eligible, but patients with hepatocellular carcinoma and other malignancies were excluded. The study protocol was approved by the ethic committee of our hospital. The number of ethical approval was k (2017) 02. Patients' informed consents were waived. Demographic data, clinical presentation, regular laboratory tests, ChildPugh class, and model for end-stage liver diseases (MELD) score were also collected.

## Urinalyses

A clean-catch midstream urine specimen was taken to undergo the urinalyses. Data regarding urine leukocyte and bacteria count per high-power field were collected. Their reference ranges were 0.1–4.33 and 0.1–975, respectively. We defined the results of abnormal urinalysis as a urine leukocyte count per high-power field of >4.33 and/or a urine bacteria count per high-power field of >975. If two or more urinalyses were performed, the highest urine leukocyte and bacteria count per high-power field were selected.

## Statistical analyses

Continuous data were expressed as the mean ± standard deviation and the median with minimum and maximum and were compared by non-parametric Mann-Whitney-Wilcoxon tests. Categorical data were expressed as the frequency (percentage) and were compared by Chi-square test. In all comparisons, a P value of <0.05 was considered statistically significant. Risk factors associated with elevated urine leukocyte and bacteria count per high-power field were assessed by logistic regression analyses. Statistically significant variables shown in univariate analyses were entered into the multivariate analyses. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Receiver-operator characteristic (ROC) curve analyses were performed to identify the capacity of the urine leukocyte and bacteria count per high-power field in predicting the inhospital mortality. Areas under the ROCs curve (AUROCs) with 95% CIs were calculated. The best cut-off value was selected as the sum of sensitivity and specificity was the maximum. Sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), positive predictive value (PPV), and negative predictive value (NPV) with 95% CIs were reported. SPSS statistics 17.0.0 and MedCalc version 11.4.2.0 were employed for all statistical analysis.

### **Results**

## Patients

A total of 2,067 cirrhotic patients underwent the urinalyses, of whom 2,056 had the data regarding urine leukocyte

count per high-power field (*Table 1*) and 2,031 had the data regarding urine bacteria count per high-power field (*Table 2*).

## Urine leukocyte count per high-power field

The prevalence of elevated urine leukocyte count per high-power field was 25.8% (530/2,056). Elevated urine leukocyte count per high-power field was significantly associated with female, etiology of liver diseases, older age, higher blood urea nitrogen (BUN), and lower albumin (ALB), potassium, and gamma-glutamyl transpeptidase (GGT) (*Table 1*). Logistic regression multivariate analysis demonstrated that female (P<0.0001, OR =4.71), ALB (P<0.0001, OR =0.97), and BUN (P<0.0001, OR =1.05) were independently associated with elevated urine leukocyte count per high-power field (*Table 3*).

Elevated urine leukocyte count per high-power field was significantly associated with higher in-hospital mortality. In ROC analysis, the AUROC of urine leukocyte count per high-power field for predicting the in-hospital death was 0.600 (95% CI: 0.579–0.622, P=0.015) (*Figure 1*). The best cut-off value of urine leukocyte count per high-power field was 8.19, with a sensitivity of 34.5% (95% CI: 22.5–48.1%) and a specificity of 84.8% (95% CI: 83.1–86.3%). PLR and NLR were 2.27 (95% CI: 1.6–3.2) and 0.77 (95% CI: 0.6–1.0), respectively. PPV and NPV were 6.2% (95% CI: 3.8–9.4%) and 97.8% (95% CI: 97.0–98.4%), respectively.

### Urine bacteria count per high-power field

The prevalence of elevated urine bacteria count per highpower field was 6.7% (137/2,031). Elevated urine bacteria count per high-power field was significantly associated with female, etiology of liver diseases, higher age and BUN, and lower red blood cells, hemoglobin, and ALB (*Table 2*). Logistic regression multivariate analysis demonstrated that female (P<0.0001, OR =3.73), age (P=0.027, OR =1.02), and ALB (P=0.019, OR =0.96) were independently associated with elevated urine bacteria count per high-power field (*Table 4*).

Elevated urine bacteria count per high-power field was significantly associated with higher in-hospital mortality. In ROC analysis, the AUROC of urine bacteria count per high-power field for predicting the in-hospital death was 0.600 (95% CI: 0.578–0.622, P=0.014) (*Figure 2*). The best cut-off value of urine bacteria count per high-power field was 142.04, with a sensitivity of 38.6% (95% CI: 26.0–52.4%) and a specificity of 84.19% (95% CI: 82.5–85.8%).

PLR and NLR were 2.44 (95% CI: 1.8–3.4) and 0.73 (95% CI: 0.6–0.9), respectively. PPV and NPV were 6.6% (95% CI: 4.2–9.8%) and 97.9% (95% CI: 97.1–98.6%), respectively.

## Discussion

We here demonstrate on a large single-center cohort a high prevalence of elevated urine leukocyte and bacteria count per high-power field of 25.8% and 6.7%, respectively. In addition, these simple screening tests predicted the in-hospital death with a moderate diagnostic accuracy. Although their sensitivity was low, they showed an excellent specificity of >80%.

Urinalysis represents a non-invasive, technically simple, and economic screening tool (12). Lee *et al.* suggested that the presence of at least 5 urine leukocyte counts per highpower field from urine specimen should be pyuria, which was observed in 67% (165/247) of patients(13). Cantey *et al.* pointed that urinalysis was positive if >10 leukocytes per oil immersion field were seen (14). Gieteling *et al.* indicated that the presence of  $\geq$ 10 leucocytes per highpower field should be helpful for a diagnosis of UTI (15). Thus, urinalysis, such as urine leukocyte and bacteria count per high-power field, may be helpful to establish a rapid diagnosis of UTI in the absence of urine culture. If possible, empirical antibiotic treatment can be rapidly guided by abnormal urinalyses.

The prevalence of UTI in liver cirrhosis patients is 20–25%, which is confirmed on our cohort (3). We included a large number of cirrhotic patients over a 4-year period of time. Therefore, our data may be more generalizable.

The association between UTI and severity of liver dysfunction remained controversial. Previous studies demonstrated that the occurrence of UTI was associated with Child-Pugh score (9,16) and ascites (6,17). By contrast, our and Amato *et al.*'s (18) studies demonstrated that the prevalence of UTI was not significantly associated with liver disease severity. This discrepancy might be explained by the heterogeneity in the sample size, the patient characteristics and the use of diuretics.

It is generally accepted that patients with cirrhosis are susceptible to the development of infectious diseases and that bacterial infection may aggravate the deterioration of patients' conditions, even leading them to death (19). Our study found a significant association between abnormal urinalysis (i.e., elevated urine leukocyte and/or bacteria count per high-power field count) and in-hospital mortality

| Table 1 Comparison bety              | veen norm:           | al versus abnormal u                      | rine leukocyte cou    | unt per high         | -power field in re                        | gular urine tests     |                      |                                           |                        |         |
|--------------------------------------|----------------------|-------------------------------------------|-----------------------|----------------------|-------------------------------------------|-----------------------|----------------------|-------------------------------------------|------------------------|---------|
|                                      |                      | Total (n=2,056                            | (                     |                      | Normal (n=1,5                             | 26)                   |                      | Abnormal (n=53                            | (0)                    |         |
| Variables                            | No. Pts<br>available | Mean ± SD<br>or frequency<br>(percentage) | Median<br>(range)     | No. Pts<br>available | Mean ± SD<br>or frequency<br>(percentage) | Median<br>(range)     | No. Pts<br>available | Mean ± SD<br>or frequency<br>(percentage) | Median<br>(range)      | P value |
| Sex (male/female),<br>n (%)          | 2,056                | 1,357 (66.0%)/<br>699 (34.0%)             |                       | 1,526                | 1,135 (74.4%)/<br>391 (25.6%)             |                       | 530                  | 222 (41.9%)/<br>308 (58.1%)               |                        | <0.0001 |
| Age (years)                          | 2,056                | 56.51±12.14                               | 55.96<br>(6.20–89.23) | 1,526                | 56.09±11.92                               | 55.65<br>(6.20–89.23) | 530                  | 57.73±12.70                               | 57.25<br>(14.37–86.84) | 0.002   |
| Etiology of liver<br>diseases, n (%) | 2,056                |                                           |                       | 1,526                |                                           |                       | 530                  |                                           |                        | <0.0001 |
| HBV                                  |                      | 592 (28.8%)                               |                       |                      | 443 (29.0%)                               |                       |                      | 149 (28.1%)                               |                        | 0.688   |
| НСV                                  |                      | 134 (6.5%)                                |                       |                      | 86 (5.6%)                                 |                       |                      | 48 (9.1%)                                 |                        | 0.006   |
| HBV + HCV                            |                      | 14 (0.7%)                                 |                       |                      | 8 (0.5%)                                  |                       |                      | 6 (1.1%)                                  |                        | 0.215   |
| Alcohol                              |                      | 482 (23.4%)                               |                       |                      | 405 (26.5%)                               |                       |                      | 77 (14.5%)                                |                        | <0.0001 |
| HBV + Alcohol                        |                      | 155 (7.5%)                                |                       |                      | 133 (8.7%)                                |                       |                      | 22 (4.2%)                                 |                        | 0.001   |
| HCV + Alcohol                        |                      | 23 (1.1%)                                 |                       |                      | 17 (1.1%)                                 |                       |                      | 6 (1.1%)                                  |                        | 0.973   |
| HBV + HCV + Alcohol                  |                      | 3 (0.1%)                                  |                       |                      | 1 (0.1%)                                  |                       |                      | 2 (0.4%)                                  |                        | 0.165   |
| Others                               |                      | 210 (10.2%)                               |                       |                      | 129 (8.5%)                                |                       |                      | 81 (15.3%)                                |                        | <0.0001 |
| Unknown                              |                      | 443 (21.5%)                               |                       |                      | 304 (19.9%)                               |                       |                      | 139 (26.2%)                               |                        | 0.002   |
| Ascites, n (%)                       | 2,039                |                                           |                       | 1,516                |                                           |                       | 523                  |                                           |                        | 0.635   |
| No                                   |                      | 1,034 (50.7%)                             |                       |                      | 764 (50.4%)                               |                       |                      | 270 (51.6%)                               |                        | 0.628   |
| Mild                                 |                      | 270 (13.2%)                               |                       |                      | 197 (13.0%)                               |                       |                      | 73 (14.0%)                                |                        | 0.575   |
| Moderate to severe                   |                      | 735 (36.0%)                               |                       |                      | 555 (36.6%)                               |                       |                      | 180 (34.4%)                               |                        | 0.368   |
| HE, n (%)                            | 2,039                |                                           |                       | 1,516                |                                           |                       | 523                  |                                           |                        | 0.538   |
| No                                   |                      | 1,895 (92.9%)                             |                       |                      | 1,407 (92.8%)                             |                       |                      | 488 (93.3%)                               |                        | 0.702   |
| Grade I–II                           |                      | 119 (5.8%)                                |                       |                      | 88 (5.8%)                                 |                       |                      | 31 (5.9%)                                 |                        | 0.918   |
| Grade III–IV                         |                      | 25 (1.2%)                                 |                       |                      | 21 (1.4%)                                 |                       |                      | 4 (0.8%)                                  |                        | 0.266   |
| Table 1 (continued)                  |                      |                                           |                       |                      |                                           |                       |                      |                                           |                        |         |

#### Page 4 of 13

| Table 1 (continued)       |                      |                                           |                        |                      |                                           |                         |                      |                                           |                        |         |
|---------------------------|----------------------|-------------------------------------------|------------------------|----------------------|-------------------------------------------|-------------------------|----------------------|-------------------------------------------|------------------------|---------|
|                           |                      | Total (n=2,056                            | (9                     |                      | Normal (n=1,5                             | 526)                    |                      | Abnormal (n=5                             | 30)                    |         |
| Variables                 | No. Pts<br>available | Mean ± SD<br>or frequency<br>(percentage) | Median<br>(range)      | No. Pts<br>available | Mean ± SD<br>or frequency<br>(percentage) | Median<br>(range)       | No. Pts<br>available | Mean ± SD<br>or frequency<br>(percentage) | Median<br>(range)      | P value |
| Laboratory tests          |                      |                                           |                        |                      |                                           |                         |                      |                                           |                        |         |
| RBC (10 <sup>12</sup> /L) | 2,033                | 3.13±0.84                                 | 3.06<br>(0.90–6.80)    | 1,512                | 3.15±0.85                                 | 3.10 (0.90–6.80)        | 521                  | 3.09±0.79                                 | 3 (1.10–5.90)          | 0.331   |
| Hb (g/L)                  | 2,035                | 95.18±29.37                               | 94 (23–218)            | 1,514                | 95.50±30.12                               | 94 (23–218)             | 521                  | 94.24±27.09                               | 92 (29–176)            | 0.557   |
| WBC (10 <sup>9</sup> /L)  | 2,036                | 5.24±3.89                                 | 4.20<br>(0.30–46.10)   | 1,515                | 5.15±3.75                                 | 4.10 (0.50–33)          | 521                  | 5.50±4.27                                 | 4.40 (0.30–46.10)      | 0.140   |
| РLT (10 <sup>°</sup> /L)  | 2,033                | 100.65±82.27                              | 78 (10–1,278)          | 1,512                | 100.71±83.83                              | 77 (11–1,278)           | 521                  | 100.47±77.65                              | 79 (10–545)            | 0.823   |
| TBIL (µmol/L)             | 2,027                | 40.83±65.33                               | 22.10 (2–903)          | 1,508                | 40.71±62.16                               | 22.40 (2–679.10)        | 519                  | 41.19±73.85                               | 21.50 (2.40–903)       | 0.435   |
| ALB (g/L)                 | 1,990                | 32.19±6.87                                | 32.20<br>(0.40–52.80)  | 1,483                | 32.59±6.82                                | 32.60<br>(0.40–52.80)   | 507                  | 1.03±6.87                                 | 30.80<br>(12.40–52.10) | <0.0001 |
| ALT (U/L)                 | 2,023                | 42.46±79.20                               | 27 (4–1,460)           | 1,505                | 42.56±80.31                               | 27 (5–1,460)            | 518                  | 42.19±75.98                               | 26 (4–1,064)           | 0.607   |
| AST (U/L)                 | 2,023                | 58.53±92.46                               | 37 (7–1,399)           | 1,505                | 56.12±76.77                               | 36 (7–1,366)            | 518                  | 65.53±127.38                              | 37 (9–1,399)           | 0.445   |
| Ammonia (umol/L)          | 948                  | 50.47±41.93                               | 42 (8–480)             | 707                  | 50.88±42.28                               | 43 (8–480)              | 241                  | 49.27±40.95                               | 42 (8–236)             | 0.443   |
| ALP (U/L)                 | 2,021                | 115.74±99.36                              | 87 (12.80–980)         | 1,504                | 115.01±99.09                              | 87.25<br>(12.80–980)    | 517                  | 117.87±100.21                             | 86 (17–889)            | 0.852   |
| PT (second)               | 1,996                | 16.36±4.54                                | 15.40<br>(10.50–94.60) | 1,480                | 16.26±4.03                                | 15.40<br>(10.70–62.80)  | 516                  | 16.65±5.77                                | 15.40<br>(10.50–94.60) | 0.981   |
| APTT (second)             | 1,994                | 43.17±10.34                               | 41.80<br>(21.90–181)   | 1,479                | 42.76±8.91                                | 41.70<br>(26.90–181)    | 515                  | 44.34±13.60                               | 42 (21.90–181)         | 0.148   |
| INR                       | 1,993                | 1.35±0.56                                 | 1.22<br>(0.76–13.40)   | 1,478                | 1.33±0.48                                 | 1.22 (0.76–7.96)        | 515                  | 1.39±0.76                                 | 1.22 (0.76–13.40)      | 0.902   |
| GGT (U/L)                 | 2,019                | 115.89±202.22                             | 50 (5-4,562)           | 1,502                | 121.50±216.86                             | 51 (6–4,562)            | 517                  | 99.62±150.90                              | 47 (5–1,486)           | 0.037   |
| BUN (mmol/L)              | 1,990                | 7.54±6.13                                 | 5.81<br>(1.58–62.45)   | 1,474                | 7.20±5.38                                 | 5.74<br>(1.58–61.88)    | 516                  | 8.52±7.82                                 | 6.07 (1.72–62.45)      | 0.004   |
| Cr (µmol/L)               | 1,990                | 82.17±106.60                              | 59 (15–1,473)          | 1,474                | 76.57±91.49                               | 60 (21–1473)            | 516                  | 98.16±140                                 | 58.80 (15–1,069)       | 0.993   |
| K (mmol/L)                | 2,014                | 4.04±0.53                                 | 4 (2.26–8.28)          | 1,498                | 4.05±0.52                                 | 4 (2.26–6.85)           | 516                  | 4.01±0.56                                 | 3.96 (2.27–8.28)       | 0.015   |
| Na (mmol/L)               | 2,014                | 138.40±4.40                               | 139<br>(116.30–160.80) | 1,498                | 138.40±4.16                               | 138.90 (121–<br>152.40) | 516                  | 138.37±5.06                               | 139<br>(116.30–160.80) | 0.443   |
| Ca (mmol/L)               | 983                  | 2.10±0.22                                 | 2.10<br>(1.05–2.94)    | 720                  | 2.10±0.22                                 | 2.11 (1.05–2.89)        | 263                  | 2.09±0.21                                 | 2.09 (1.35–2.94)       | 0.186   |
| Table 1 (continued)       |                      |                                           |                        |                      |                                           |                         |                      |                                           |                        |         |

Page 5 of 13

| Table 1 (continued) Continued                                                 |                                            |                                                                 |                                                                 |                                          |                                                       |                                                                    |                                            |                                                               |                                                              |                                     |
|-------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|
|                                                                               |                                            | Total (n=2,056                                                  | (9                                                              |                                          | Normal (n=1,                                          | 526)                                                               |                                            | Abnormal (n=53                                                | 30)                                                          |                                     |
| Variables                                                                     | No. Pts<br>available                       | Mean ± SD<br>or frequency<br>(percentage)                       | Median<br>(range)                                               | No. Pts<br>available                     | Mean ± SD<br>or frequency<br>(percentage)             | Median<br>(range)                                                  | No. Pts<br>available                       | Mean ± SD<br>or frequency<br>(percentage)                     | Median<br>(range)                                            | P value                             |
| Child-Pugh class, n (%                                                        | 1,912                                      |                                                                 |                                                                 | 1,427                                    |                                                       |                                                                    | 485                                        |                                                               |                                                              | 0.467                               |
| A                                                                             |                                            | 690 (36.1%)                                                     |                                                                 |                                          | 515 (36.1%)                                           |                                                                    |                                            | 175 (36.1%)                                                   |                                                              | 0.998                               |
| В                                                                             |                                            | 896 (46.9%)                                                     |                                                                 |                                          | 677 (47.4%)                                           |                                                                    |                                            | 219 (45.2%)                                                   |                                                              | 0.383                               |
| O                                                                             |                                            | 326 (17.1%)                                                     |                                                                 |                                          | 235 (16.5%)                                           |                                                                    |                                            | 91 (18.8%)                                                    |                                                              | 0.246                               |
| Child-Pugh score                                                              | 1,912                                      | 7.54±2.04                                                       | 7 (5–15)                                                        | 1,427                                    | 7.51±2                                                | 7 (5–15)                                                           | 485                                        | 7.63±2.16                                                     | 7 (5–14)                                                     | 0.490                               |
| MELD score                                                                    | 1,936                                      | 7.50±7.39                                                       | 6.14<br>(-9.67–54.94)                                           | 1,433                                    | 7.29±6.70                                             | 6.17<br>(-8.25-42.04)                                              | 503                                        | 8.12±9.07                                                     | 6.11<br>(-9.67-54.94)                                        | 0.769                               |
| HPF-WBC (HPF)                                                                 | 2,056                                      | 24.25±255.62                                                    | 1.46<br>(0.02–8,946.90)                                         | 1,526                                    | 1.25±1.02                                             | 0.92 (0.02–4.28)                                                   | 530                                        | 90.49±497.90                                                  | 10.95<br>(4.43–8,946.90)                                     | <0.0001                             |
| HPF-Bacteria (HPF)                                                            | 2,031                                      | 272.53±1,107.03                                                 | 7.13<br>(0.07–15,329.21)                                        | 1,506                                    | 106.16±538.29                                         | 3.98<br>(0.07–9,608.11)                                            | 525                                        | 749.75±1,899.42                                               | 42.19<br>(0.32–15,329.21)                                    | <0.0001                             |
| Death, n (%)                                                                  | 2,056                                      | 58 (2.8%)                                                       |                                                                 | 1,526                                    | 35 (2.3%)                                             |                                                                    | 530                                        | 23 (4.3%)                                                     |                                                              | 0.014                               |
| ALB, albumin; ALP, alk<br>nitrogen; Ca, calcium i<br>normalized ratio; K, por | aline phosβ<br>on; Cr, creε<br>tassium; ME | bhatase; ALT, alani<br>atinine; GGT, gamr<br>ELD, model for enc | ne aminotransfera:<br>ma-glutamyl trans<br>d stage liver diseas | se; APTT, a<br>peptidase;<br>se; Na, sod | activated partia<br>Hb, hemoglob<br>lium ion; PLT, pl | I thromboplastin ti<br>in; HE, hepatic en<br>latelet; PT, prothrol | me; AST, as<br>cephalopath<br>mbin time; F | spartate aminotran<br>iy; HPF, high-pow<br>ts, patients; RBC, | sferase; BUN, bl<br>er field; INR, inte<br>red blood cell; T | ood urea<br>rnational<br>3IL, total |

bilirubin; WBC, white blood cell.

#### Page 6 of 13

| Table 2 Comparison betwee            | en normal            | versus abnormal ı                         | rrine bacteria count pe | r high-pow           | ver field in regula                       | r urine tests         |                      |                                           |                        |         |
|--------------------------------------|----------------------|-------------------------------------------|-------------------------|----------------------|-------------------------------------------|-----------------------|----------------------|-------------------------------------------|------------------------|---------|
|                                      |                      | Total (n=2,                               | 031)                    |                      | Normal (n=18                              | 94)                   |                      | Abnormal (n=1;                            | 37)                    |         |
| Variables                            | No. Pts<br>available | Mean ± SD<br>or frequency<br>(percentage) | Median<br>(range)       | No. Pts<br>available | Mean ± SD<br>or frequency<br>(percentage) | Median<br>(range)     | No. Pts<br>available | Mean ± SD<br>or frequency<br>(percentage) | Median<br>(range)      | P value |
| Sex (male/female), n (%)             | 2,031                | 1,342 (66.1%)/<br>689 (33.9%)             |                         | 1,894                | 1,298 (68.5%)/<br>596 (31.5%)             |                       | 137                  | 44 (32.1%)/<br>93 (67.9%)                 |                        | <0.0001 |
| Age (years)                          | 2,031                | 56.46±12.15                               | 55.96 (6.20–89.23)      | 1,894                | 56.16±12.13                               | 55.66<br>(6.20–89.23) | 137                  | 60.73±11.63                               | 61.02<br>(30.30–85.38) | <0.0001 |
| Etiology of liver diseases,<br>n (%) | 2,031                |                                           |                         | 1,894                |                                           |                       | 137                  |                                           |                        | 0.001   |
| HBV                                  |                      | 583 (28.7%)                               |                         |                      | 546 (28.8%)                               |                       |                      | 37 (27.0%)                                |                        | 0.649   |
| НСИ                                  |                      | 133 (6.5%)                                |                         |                      | 125 (6.6%)                                |                       |                      | 8 (5.8%)                                  |                        | 0.728   |
| HBV + HCV                            |                      | 14 (0.7%)                                 |                         |                      | 12 (0.6%)                                 |                       |                      | 2 (1.5%)                                  |                        | 0.243   |
| Alcohol                              |                      | 476 (23.4%)                               |                         |                      | 453 (23.9%)                               |                       |                      | 23 (16.8%)                                |                        | 0.057   |
| HBV + Alcohol                        |                      | 155 (7.6%)                                |                         |                      | 153 (8.1%)                                |                       |                      | 2 (1.5%)                                  |                        | 0.005   |
| HCV + Alcohol                        |                      | 23 (1.1%)                                 |                         |                      | 23 (1.2%)                                 |                       |                      | 0 (0.0%)                                  |                        | 0.398   |
| HBV + HCV + Alcohol                  |                      | 3 (0.1%)                                  |                         |                      | 3 (0.2%)                                  |                       |                      | 0 (0.0%)                                  |                        | 1.000   |
| Others                               |                      | 209 (10.3%)                               |                         |                      | 189 (10.0%)                               |                       |                      | 20 (14.6%)                                |                        | 0.086   |
| Unknown                              |                      | 435 (21.4%)                               |                         |                      | 390 (20.6%)                               |                       |                      | 45 (32.8%)                                |                        | 0.001   |
| Ascites, n (%)                       | 2,014                |                                           |                         | 1,878                |                                           |                       | 136                  |                                           |                        | 0.308   |
| No                                   |                      | 1,021 (50.7%)                             |                         |                      | 953 (50.7%)                               |                       |                      | 68 (50.0%)                                |                        | 0.867   |
| Mild                                 |                      | 268 (13.3%)                               |                         |                      | 255 (13.6%)                               |                       |                      | 13 (9.6%)                                 |                        | 0.183   |
| Moderate to Severe                   |                      | 725 (36.0%)                               |                         |                      | 670 (35.7%)                               |                       |                      | 55 (40.4%)                                |                        | 0.264   |
| HE, n (%)                            | 2,014                |                                           |                         | 1,879                |                                           |                       | 135                  |                                           |                        | 0.146   |
| No                                   |                      | 1,870 (92.9%)                             |                         |                      | 1,749 (93.1%)                             |                       |                      | 121 (89.6%)                               |                        | 0.133   |
| Grade I–II                           |                      | 119 (5.9%)                                |                         |                      | 106 (5.6%)                                |                       |                      | 13 (9.6%)                                 |                        | 0.058   |
| Grade III-IV                         |                      | 25 (1.2%)                                 |                         |                      | 24 (1.3%)                                 |                       |                      | 1 (0.7%)                                  |                        | 1.000   |
| Table 2 (continued)                  |                      |                                           |                         |                      |                                           |                       |                      |                                           |                        |         |

Page 7 of 13

| Table 2 (continued)       |                      |                                           |                         |                      |                                           |                         |                      |                                           |                        |         |
|---------------------------|----------------------|-------------------------------------------|-------------------------|----------------------|-------------------------------------------|-------------------------|----------------------|-------------------------------------------|------------------------|---------|
|                           |                      | Total (n=2,                               | ,031)                   |                      | Normal (n=18                              | 394)                    |                      | Abnormal (n=1                             | 37)                    |         |
| Variables                 | No. Pts<br>available | Mean ± SD<br>or frequency<br>(percentage) | Median<br>(range)       | No. Pts<br>available | Mean ± SD<br>or frequency<br>(percentage) | Median<br>(range)       | No. Pts<br>available | Mean ± SD<br>or frequency<br>(percentage) | Median<br>(range)      | P value |
| Laboratory tests          |                      |                                           |                         |                      |                                           |                         |                      |                                           |                        |         |
| RBC (10 <sup>12</sup> /L) | 2,008                | 3.13±0.84                                 | 3.06 (0.93–6.78)        | 1,876                | 3.14±0.84                                 | 3.08 (0.93–6.78)        | 132                  | 2.98±0.81                                 | 2.88 (1.25–5.57)       | 0.028   |
| Hb (g/L)                  | 2,008                | 95.13±29.33                               | 93 (23–218)             | 1,876                | 95.56±29.40                               | 94 (23–218)             | 132                  | 88.97±27.73                               | 86 (29–159)            | 0.011   |
| WBC (10 <sup>9</sup> /L)  | 2,008                | 5.24±3.90                                 | 4.20 (0.30–46.10)       | 1,876                | 5.25±3.92                                 | 4.20 (0.50–46.10)       | 132                  | 5.17±3.72                                 | 4.20<br>(0.30–26.30)   | 0.661   |
| РLT (10 <sup>°</sup> /L)  | 2,008                | 100.70±82.38                              | 77.50 (10–1278)         | 1,876                | 101.10±83.23                              | 78 (10–1278)            | 132                  | 94.99±69.23                               | 74.50 (13–443)         | 0.641   |
| TBIL (µmol/L)             | 2,003                | 40.56±64.85                               | 22 (2–903)              | 1,869                | 39.99±64.12                               | 22.20 (2–903)           | 134                  | 48.58±74.14                               | 20.70<br>(5.30–383.20) | 0.827   |
| ALB (g/L)                 | 1,967                | 32.22±6.84                                | 32.20 (0.40–52.80)      | 1,837                | 32.33±6.85                                | 32.40<br>(0.40–52.80)   | 130                  | 30.60±6.48                                | 30.50<br>(15.20–47.30) | 0.004   |
| ALT (U/L)                 | 1,999                | 42.49±79.62                               | 27 (4–1,460)            | 1,865                | 42.17±77.74                               | 27 (4–1460)             | 134                  | 46.94±102.54                              | 24 (7–748)             | 0.186   |
| AST (U/L)                 | 1,999                | 58.35±92.63                               | 37 (7–1,399)            | 1,865                | 57.04±82.75                               | 37 (7–1366)             | 134                  | 76.56±180.47                              | 36 (10–1,399)          | 0.801   |
| Ammonia (µmol/L)          | 1,999                | 58.35±92.63                               | 37 (7–1,399)            | 1,865                | 57.04±82.75                               | 37 (7–1366)             | 134                  | 76.56±180.47                              | 36 (10–1,399)          | 0.801   |
| ALP (U/L)                 | 803                  | 52.05±42.15                               | 43 (9–480)              | 847                  | 51.68±42.05                               | 43 (9–480)              | 56                   | 57.70±43.63                               | 48 (9–236)             | 0.241   |
| PT (second)               | 1,973                | 16.35±4.51                                | 15.40 (10.50–94.60)     | 1,838                | 16.35±4.56                                | 15.40<br>(10.50–94.60)  | 135                  | 16.39±3.76                                | 15.50<br>(11.50–38.90) | 0.598   |
| APTT (second)             | 1,968                | 42.96±8.87                                | 41.80<br>(21.90–152.70) | 1,834                | 42.92±8.84                                | 41.80<br>(21.90–152.70) | 134                  | 43.53±9.31                                | 41.50<br>(28–81.70)    | 0.610   |
| INR                       | 1,970                | 1.35±0.56                                 | 1.22 (0.76–13.40)       | 1,835                | 1.35±0.57                                 | 1.22 (0.76–13.40)       | 135                  | 1.34±0.43                                 | 1.23 (0.84–4.13)       | 0.615   |
| GGT (U/L)                 | 1,994                | 115.94±203.16                             | 50 (5–4,562)            | 1,860                | 117.91±208.15                             | 50 (5–4,562)            | 134                  | 88.59±110.11                              | 51.50 (8–709)          | 0.348   |
| BUN (mmol/L)              | 1,967                | 7.55±6.14                                 | 5.82 (1.58–62.45)       | 1,835                | 7.48±6.05                                 | 5.80 (1.58–62.45)       | 132                  | 8.53±7.28                                 | 6.25<br>(1.95–44.34)   | 0.035   |
| Cr (µmol/L)               | 1,967                | 81.72±105.07                              | 59 (15–1,473)           | 1,835                | 81.35±103.68                              | 60 (15–1,473)           | 132                  | 86.99±123.10                              | 56 (29–919)            | 0.301   |
| K (mmol/L)                | 1,992                | 4.04±0.53                                 | 4 (2.26–8.28)           | 1,858                | $4.04\pm0.53$                             | 4 (2.27–8.28)           | 134                  | 3.96±0.47                                 | 3.96 (2.26–5.38)       | 0.075   |
| Na (mmol/L)               | 1,992                | 138.38±4.56                               | 139 (83–160.80)         | 1,858                | 138.42±4.50                               | 139 (83–160.80)         | 134                  | 137.85±5.37                               | 138.90<br>(116.30–148) | 0.484   |
| Ca (mmol/L)               | 970                  | 2.10±0.22                                 | 2.10 (1.05–2.94)        | 895                  | 2.09±0.22                                 | 2.10 (1.05–2.94)        | 75                   | 2.12±0.20                                 | 2.10 (1.76–2.62)       | 0.341   |
| Table 2 (continued)       |                      |                                           |                         |                      |                                           |                         |                      |                                           |                        |         |

| Table 2 (continued)                                    |                         |                                           |                                                 |                                   |                                           |                         |                           |                                            |                                      |                     |
|--------------------------------------------------------|-------------------------|-------------------------------------------|-------------------------------------------------|-----------------------------------|-------------------------------------------|-------------------------|---------------------------|--------------------------------------------|--------------------------------------|---------------------|
|                                                        |                         | Total (n=2,                               | 031)                                            |                                   | Normal (n=18                              | 394)                    |                           | Abnormal (n=13                             | 7)                                   |                     |
| Variables                                              | No. Pts<br>available    | Mean ± SD<br>or frequency<br>(percentage) | Median<br>(range)                               | No. P <del>t</del> s<br>available | Mean ± SD<br>or frequency<br>(percentage) | Median<br>(range)       | No. Pts<br>available      | Mean ± SD<br>or frequency<br>(percentage)  | Median<br>(range)                    | P value             |
| Child-Pugh class, n (%)                                | 1,891                   |                                           |                                                 | 1,764                             |                                           |                         | 127                       |                                            |                                      | 0.516               |
| А                                                      |                         | 685 (36.2%)                               |                                                 |                                   | 643 (36.5%)                               |                         |                           | 42 (33.1%)                                 |                                      | 0.444               |
| В                                                      |                         | 884 (46.7%)                               |                                                 |                                   | 825 (46.8%)                               |                         |                           | 59 (46.5%)                                 |                                      | 0.946               |
| O                                                      |                         | 322 (17.0%)                               |                                                 |                                   | 296 (16.8%)                               |                         |                           | 26 (20.5%)                                 |                                      | 0.285               |
| Child-Pugh score                                       | 1,891                   | 7.54±2.04                                 | 7 (5–15)                                        | 1,764                             | 7.52±2.03                                 | 7 (5–15)                | 127                       | 7.83±2.18                                  | 8 (5–14)                             | 0.149               |
| MELD score                                             | 1,915                   | 7.46±7.35                                 | 6.11 (-9.67–54.94)                              | 1,787                             | 7.43±7.31                                 | 6.12<br>(-9.67–54.94)   | 128                       | 7.90±7.93                                  | 6.11<br>(-4.56-35.30)                | 0.795               |
| HPF-WBC (HPF)                                          | 2,031                   | 24.50±257.18                              | 1.44 (0.02–8,946.90)                            | 1,894                             | 10.69±74.88                               | 1.35<br>(0.02–2,417.09) | 137                       | 215.38±932.64                              | 14.09<br>(0.20–8,946.90)             | <0.0001             |
| HPF-Bacteria (HPF)                                     | 2,031                   | 272.53±1,107.05                           | \$7.13<br>(0.07–15,329.21)                      | 1,894                             | 56.18±139.60                              | 5.58<br>(0.07–965.90)   | 137                       | 3,263.51±2,890.99                          | 2,213.55<br>(992.68–<br>15,329.21)   | <0.0001             |
| Death, n (%)                                           | 2,031                   | 57 (2.8%)                                 |                                                 | 1,894                             | 47 (2.5%)                                 |                         | 137                       | 10 (7.3%)                                  |                                      | 0.004               |
| ALB, albumin; ALP, alkali<br>nitrogen; Ca, calcium ion | ne phospl<br>; Cr, crea | hatase; ALT, alani<br>tinine; GGT, gamr   | ne aminotransferase; /<br>na-glutamyl transpept | APTT, acti<br>idase; Ht           | ivated partial thr                        | romboplastin time       | e; AST, asp<br>phalopathy | oartate aminotransfe<br>/; HPF, high-power | erase; BUN, blo<br>field; INR, inter | od urea<br>national |

normalized ratio; K, potassium; MELD, model for end stage liver disease; Na, sodium ion; PLT, platelet; PT, prothrombin time; Pts, patients; RBC, red blood cell; TBIL, total bilirubin; WBC, white blood cell.

#### Journal of Public Health and Emergency, 2017

## Page 10 of 13

| Table 3 Univariable and multivariable | e logistic analysis of abnormal   | l urine leukocvte count | per high-power field |
|---------------------------------------|-----------------------------------|-------------------------|----------------------|
|                                       | e logiotie analysis of abilistina | arme reamoey te count   | per mgn poner mera   |

|                             | Univariable a         | nalysis | Multivaria       | ble analysis |  |
|-----------------------------|-----------------------|---------|------------------|--------------|--|
| Variables                   | OR (95% CI)           | Р       | OR (95% CI)      | P            |  |
| HCV as an etiology of live  | r diseases            |         |                  |              |  |
| Sex                         | 4.03 (3.27–4.96)      | <0.0001 | 4.76 (3.77–6.00) | <0.0001      |  |
| Age                         | 1.01 (1.00–1.02)      | 0.007   | 0.99 (0.98–1.00) | 0.071        |  |
| HCV                         | 0.60 (0.42–0.87)      | 0.006   | 0.77 (0.51–1.15) | 0.195        |  |
| ALB                         | 0.97 (0.95–0.98)      | <0.0001 | 0.97 (0.95–0.98) | <0.0001      |  |
| GGT                         | 0.99 (0.99–1.00)      | 0.032   | 1.00 (0.99–1.00) | 0.311        |  |
| BUN                         | 1.03 (1.02–1.05)      | <0.0001 | 1.05 (1.03–1.06) | <0.0001      |  |
| К                           | 0.85 (0.70–1.02)      | 0.086   |                  |              |  |
| Alcohol as an etiology of I | iver diseases         |         |                  |              |  |
| Sex                         | 4.03 (3.27–4.96)      | <0.0001 | 4.64 (3.62–5.95) | <0.0001      |  |
| Age                         | 1.01 (1.00–1.02)      | 0.007   | 0.99 (0.98–1.00) | 0.085        |  |
| Alcohol                     | 2.13 (1.63–2.78)      | <0.0001 | 1.13 (0.83–1.55) | 0.436        |  |
| ALB                         | 0.97 (0.95–0.98)      | <0.0001 | 0.97 (0.95–0.98) | <0.0001      |  |
| GGT                         | 0.99 (0.99–1.00)      | 0.032   | 1.00 (0.99–1.00) | 0.322        |  |
| BUN                         | 1.03 (1.02–1.05)      | <0.0001 | 1.05 (1.03–1.06) | <0.0001      |  |
| К                           | 0.85 (0.70–1.02)      | 0.086   |                  |              |  |
| HBV + Alcohol as an etiol   | ogy of liver diseases |         |                  |              |  |
| Sex                         | 4.03 (3.27–4.96)      | <0.0001 | 4.74 (3.75–6.01) | <0.0001      |  |
| Age                         | 1.01 (1.00–1.02)      | 0.007   | 0.99 (0.98–1.00) | 0.080        |  |
| HBV + Alcohol               | 2.21 (1.39–3.50)      | 0.001   | 1.16 (0.71–1.89) | 0.563        |  |
| ALB                         | 0.97 (0.95–0.98)      | <0.0001 | 0.97 (0.95–0.98) | <0.0001      |  |
| GGT                         | 0.99 (0.99–1.00)      | 0.032   | 1.00 (0.99–1.00) | 0.260        |  |
| BUN                         | 1.03 (1.02–1.05)      | <0.0001 | 1.05 (1.03–1.06) | <0.0001      |  |
| К                           | 0.85 (0.70-1.02)      | 0.086   |                  |              |  |

ALB, albumin; BUN, blood urea nitrogen; GGT, gamma-glutamyl transpeptidase; HBV, hepatitis B virus; HCV, hepatitis C virus; K, potassium.

of cirrhotic patients. Indeed, in our patients, 23 of 58 deaths had an elevated urine leukocyte count per high-power field. Similarly, a retrospective observational cohort study also demonstrated an association of UTI with increased shortterm mortality in patients with advanced cirrhosis (6). Despite the direct contribution of UTI to the risk of death in cirrhotic patients remained uncertain, abnormal urinalysis might be a predictor of worse prognosis. Evidence suggested that 42% of advanced liver disease patients with UTI have systemic inflammatory response syndrome (20) and that UTI is a strong reason for progressive renal failure in cirrhosis (21).

Our study had some limitations. First, we recorded urine leukocyte count per high-power field of >4.33. Abnormal urinalysis is not exactly equal to positive urine culture (22). Thus, our study could not accurately identify the diagnosis of UTI. Second, there was a potential risk of urine specimens' contamination. Third, the symptoms related to UTI (i.e., fever, urinary frequency, and urinary urgency) were missing.

In conclusion, an elevated urine leukocyte and/or

| Veriables     | Univariable ana   | lysis   | Multivariable analy | ysis    |
|---------------|-------------------|---------|---------------------|---------|
| variables -   | OR (95% CI)       | Р       | OR (95% CI)         | Р       |
| Sex           | 4.60 (3.18–6.67)  | <0.0001 | 3.73 (2.50–5.58)    | <0.0001 |
| Age           | 1.03 (1.02–1.05)  | <0.0001 | 1.02 (1.00–1.03)    | 0.027   |
| HBV + Alcohol | 5.93 (1.45–24.19) | 0.013   | 2.34 (0.56–9.82)    | 0.245   |
| ALB           | 0.96 (0.94–0.99)  | 0.005   | 0.96 (0.93–0.99)    | 0.019   |
| RBC           | 0.79 (0.64–0.99)  | 0.037   | 1.33 (0.81–2.19)    | 0.262   |
| Hb            | 0.99 (0.99–1.00)  | 0.013   | 0.99 (0.98–1.00)    | 0.095   |
| BUN           | 1.02 (0.99–1.05)  | 0.062   |                     |         |

Table 4 Univariable and multivariable logistic analysis of abnormal urine bacteria count per high-power field

ALB, albumin; BUN, blood urea nitrogen; Hb, hemoglobin; HBV, hepatitis B virus; RBC, red blood cell.



**Figure 1** ROC analysis of the urine leukocyte count per highpower field for predicting the in-hospital mortality. ROC, receiveroperator characteristic.

bacteria count per high-power field may be an adjuvant diagnostic criterion for UTI and should be a predictor for the in-hospital death in patients with liver cirrhosis. In future, some novel noninvasive screening tools for liver damage, such as M30 levels (23), or for liver fibrosis, such as transient elastography (24), should be combined with UTI to further evaluate the disease progression and outcome of liver cirrhosis.

## **Acknowledgments**

Funding: This study was partially supported by the



**Figure 2** ROC analysis of the urine bacteria count per high-power field for predicting the in-hospital mortality. ROC, receiver-operator characteristic.

grants from the Natural Science Foundation of Liaoning Province (no. 2015020409) and China Postdoctoral Science Foundation (2015M582886) for Dr Xingshun Qi.

#### Footnote

*Conflicts of Interest:* All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi. org/10.21037/jphe.2017.08.02). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all

## Page 12 of 13

aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). The study protocol was approved by the ethic committee of our hospital. The number of ethical approval was k (2017) 02. Patients' informed consents were waived.

*Open Access Statement:* This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

# References

- Fernandez J, Navasa M, Gomez J, et al. Bacterial infections in cirrhosis: epidemiological changes with invasive procedures and norfloxacin prophylaxis. Hepatology 2002;35:140-8.
- 2. Bajaj JS, O'Leary JG, Wong F, et al. Bacterial infections in end-stage liver disease: current challenges and future directions. Gut 2012;61:1219-25.
- Bunchorntavakul C, Chamroonkul N, Chavalitdhamrong D. Bacterial infections in cirrhosis: A critical review and practical guidance. World J Hepatol 2016;8:307-21.
- Xu Y, Wang JB, Wang S. [Association between chronic urinary tract infection and primary biliary cirrhosis]. Zhonghua Gan Zang Bing Za Zhi 2016;24:478-80.
- Arvaniti V, D'Amico G, Fede G, et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology 2010;139:1246-56, 1256.e1-5.
- Reuken PA, Stallmach A, Bruns T. Mortality after urinary tract infections in patients with advanced cirrhosis -Relevance of acute kidney injury and comorbidities. Liver Int 2013;33:220-30.
- Yamasaki Y, Uemura O, Nagai T, et al. Pitfalls of diagnosing urinary tract infection in infants and young children. Pediatr Int 2017.
- 8. Foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med 2002;113 Suppl 1A:5S-13S.

- Borzio M, Salerno F, Piantoni L, et al. Bacterial infection in patients with advanced cirrhosis: a multicentre prospective study. Dig Liver Dis 2001;33:41-8.
- Caterino JM, Leininger R, Kline DM, et al. Accuracy of Current Diagnostic Criteria for Acute Bacterial Infection in Older Adults in the Emergency Department. J Am Geriatr Soc 2017.
- Felt JR, Yurkovich C, Garshott DM, et al. The Utility of Real-Time Quantitative Polymerase Chain Reaction Genotype Detection in the Diagnosis of Urinary Tract Infections in Children. Clin Pediatr (Phila) 2017:9922817706144.
- 12. Sidler D, Huynh-Do U. Urinalysis in the 21st century: anything but obsolete! Praxis (Bern 1994) 2015;104:349-52.
- Lee JR, Bang H, Dadhania D, et al. Independent risk factors for urinary tract infection and for subsequent bacteremia or acute cellular rejection: a single-center report of 1166 kidney allograft recipients. Transplantation 2013;96:732-8.
- Cantey JB, Gaviria-Agudelo C, McElvania TeKippe E, et al. Lack of clinical utility of urine gram stain for suspected urinary tract infection in pediatric patients. J Clin Microbiol 2015;53:1282-5.
- 15. Gieteling E, van de Leur JJ, Stegeman CA, et al. Accurate and fast diagnostic algorithm for febrile urinary tract infections in humans. Neth J Med 2014;72:356-62.
- Cadranel JF, Denis J, Pauwels A, et al. Prevalence and risk factors of bacteriuria in cirrhotic patients: a prospective case-control multicenter study in 244 patients. J Hepatol 1999;31:464-8.
- 17. Bercoff E, Dechelotte P, Weber J, et al. Urinary tract infection in cirrhotic patients, a urodynamic explanation. Lancet 1985;1:987.
- Amato A, Precone DF, Carannante N, et al. [Prevalence and risk factors for bacteriuria in patients with cirrhosis]. Infez Med 2005;13:103-8.
- Christou L, Pappas G, Falagas ME. Bacterial infectionrelated morbidity and mortality in cirrhosis. Am J Gastroenterol 2007;102:1510-7.
- 20. Cazzaniga M, Dionigi E, Gobbo G, et al. The systemic inflammatory response syndrome in cirrhotic patients: relationship with their in-hospital outcome. J Hepatol 2009;51:475-82.
- 21. Kim JH, Lee JS, Lee SH, et al. Renal Dysfunction Induced by Bacterial Infection other than Spontaneous Bacterial Peritonitis in Patients with Cirrhosis: Incidence and Risk Factor. Gut Liver 2009;3:292-7.
- 22. Waseem M, Chen J, Paudel G, et al. Can a simple

urinalysis predict the causative agent and the antibiotic sensitivities? Pediatr Emerg Care 2014;30:244-7.

23. Mueller S, Nahon P, Rausch V, et al. Caspase-cleaved keratin-18 fragments increase during alcohol withdrawal

doi: 10.21037/jphe.2017.08.02

**Cite this article as:** Han D, Wang R, Yu Y, Yang SS, Mueller S, Romeiro FG, Song T, Deng H, Li J, Peng Z, Li Y, Guo X, Qi X. Impact of elevated urine leukocyte and bacteria count per highpower field on the in-hospital outcome of patients with liver cirrhosis. J Public Health Emerg 2017;1:73. and predict liver-related death in patients with alcoholic liver disease. Hepatology 2017;66:96-107.

24. Mueller S, Sandrin L. Liver stiffness: a novel parameter for the diagnosis of liver disease. Hepat Med 2010;2:49-67.