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Defining precision global health (PGH)

The concept of precision entered the health sphere with 
the advent of digital and technological innovations, as 
it holds promise to better tailor care based on a person’s 
genotype (1,2). Recently, precision public health (PPH) 
has triggered a vibrant debate. One side claims that placing 
emphasis on the individual and biological determinants 
of health risks neglecting the social and environmental 
dimensions of health (3,4). The other side argues that PPH 
simply uses the best available data to inform appropriate, 
setting-specific and timely public health interventions 
(5-7). Here, we appreciate both views and suggest the 
application of precision to broader transnational problems 
that are inherent to global health, particularly among 
marginalized populations (8-11). We theorise that using 
digital innovations will allow the generation, analysis and 
synthesis of existing and new data streams, from health 
and non-health sources, in near-real time to inform both 
public and global health interventions and improve the 
outcomes for populations. In the same fashion that public 
health provided the foundations for global health, PPH 
provides them for PGH in an increasingly globalised world 
(12,13). PGH leverages life sciences, social sciences, and 
data sciences, augmented with artificial intelligence (AI), 
in order to identify transnational problems and deliver 
targeted and impactful interventions through integrated and 
participatory approaches. 

Several high-profile failures clearly demonstrated the 
limitations of not integrating knowledge and domain 

expertise pertaining to major global health issues. For 
example, the huge overestimation of flu cases in the 2012–
2013 season in New York City by Google Flu Trends was 
partly attributed to a failure in the programme’s algorithms 
to integrate the search behaviour of its users (14). The 
current Ebola epidemic in the Democratic Republic of 
Congo offers another interesting example. Although 
important lessons have been learnt since the 2014 epidemic 
in West Africa, projecting the spread of the 2018–2019 
ongoing outbreak remains challenging because of the 
inability to integrate the complexity of the socio-political 
situation in this war zone. Indeed, medical progress to 
support patients and communities affected by Ebola is 
insufficient if social distrust is not adequately recognised 
and addressed (15).

PGH offers an opportunity to overcome these challenges 
with a big data-driven integrative approach (11,16) and 
the implication of the relevant stakeholders. With more 
than half the global population connected to the Internet, 
mainly through mobile phones, and areas such as Africa 
leading the annual growth of active mobile social users with 
over 17% in 2018, the role of local populations is more 
important than ever (17). Technology and social innovation 
can empower individuals within a population, making them 
active players in their own health and wellbeing, identifying 
challenges and working together to find solutions (18,19). 
In this paper, we advocate for PGH, a transformative 
approach that offers opportunities beyond the health sector, 
and we discuss its development and implementation, as 
well as the challenges around impact evaluation, ethics, and 
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policy. We propose a strategic road map for action focusing 
on three priority areas.

Advancing PGH

Undoubtedly, major public and global health achievements 
have resulted, at least in their initial stages, from generic 
interventions. The eradication of smallpox with large-
scale vaccination campaigns is a key example of such an 
intervention (20). The iodization of salt for the prevention 
and control of iodine deficiency disorders, and improved 
access to clean water and oral rehydration salts for 
prevention and control of diarrhoea, provide additional 
evidence of the success of large-scale generic public health 
interventions. However, “one size fits all” interventions 
tend to neglect the complexity of changing social-ecological 
systems, heterogeneity of populations and their health 
determinants (21). In the fight against HIV-AIDS in the 
early 2000s, for example, the strategy was about scaling 
up already successful interventions, but often without the 
necessary evaluation of the factors that might impede these 
interventions. The discussion was about how large disease-
specific initiatives impacted health systems (22,23). Similarly, 
global policies for both vaccination and tobacco control 
have been impactful, but even in countries where they are 
largely applied, one faces either increasing vaccine hesitancy 
or refusal, with growing pockets of unvaccinated sub-
populations (24), or plateauing in the declining prevalence 
of tobacco smoking, with an apparent impossibility to 
reach elimination (25). It is now widely accepted that often 
generic approaches are not generalizable across disease and 
health systems, and the prevention, control and elimination 
of diseases may ultimately depend on the combination 
of generic and targeted actions (26,27). Overall, we can 
hypothesise that with increased complexity in various global 
health challenges comes a need for increased precision and 
the adoption of more tailored strategies. 

One of the most fundamental challenges for the 
implementation of PGH is that a large part of the global 
population, especially in low- and middle-income countries 
(LMICs), remains invisible due to the unreliability or 
absence of basic electronic information systems including, 
for example, vital registration data (28). This naturally leads 
to poor data availability and quality, as well as preventing 
health system integration and regulation, which ultimately 
limits the implementation of big data or AI driven 
interventions (11).

Implementation of PGH at the systems level

High-income countries (HICs) such as Australia, 
Canada, and the UK, among others, are increasingly 
opening national data from multiple sectors, including 
demographics, education and health (e.g., Open Data 
Barometer) (29). In addition, some health systems are 
now highly digitized and interconnected, for example in 
Estonia. In India, the Aadhaar Programme, the world’s 
largest biometric identification system has registered 1 
billion of India’s 1.3 billion inhabitants (30). Meanwhile 
the INDEPTH network with a host of demographic and 
health surveillance systems (DHSS) in Africa, Asia and 
elsewhere, assembles large-scale population data with 
great potential value for public and global health. The 
Global Burden of Disease (GBD) Study and the work by 
the Institute of Health Metrics and Evaluation (IHME) on 
integrating, analysing, and visualising at a high resolution 
(e.g., precision maps) morbidity and mortality data on 
infectious and non-communicable diseases from countries 
across the world, provides foundations for the development 
of PPH and PGH (7). Similarly, the Infectious Diseases 
Data Observatory (IDDO) offers an innovative platform 
to support more precise research-driven responses in the 
context of emerging and neglected infections. PGH can 
transform the approach to reduce the burden of infectious 
diseases affecting LMICs to the same extent it has been 
achieved in HICs (6,13).

The following case examples demonstrate some specific 
applications of PGH to Rift Valley fever (RVF), tuberculosis 
(TB), non-communicable diseases, and accessibility to 
healthcare.

Using remotely sensed environmental data and 
community surveillance for risk profiling and 
control of RVF

RVF is a zoonotic arbovirus transmitted to humans through 
contact with blood or tissue of infected livestock directly 
or indirectly through mosquitos (31). These mosquitos, 
and thus the spread of RVF, are influenced by rainfall 
and flooding in the Horn of Africa, which have increased 
in frequency and severity due to climate and weather 
anomalies (32). The virus was first identified in 1931 in 
Kenya and since then major epidemics have been reported 
in different parts of Africa and in the Middle East, affecting 
both livestock and humans (33). Kenya, for example, 
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experienced major outbreaks in 1997/98 and 2006/07 
with 450 and 158 human deaths, respectively, with major 
associated economic losses (i.e., the 2007 outbreak had 
an estimated cost for Kenyan economy of over US$ 32 
million) (34-36). In 1997/1998, despite available control 
measures including an effective licensed vaccine for cattle, 
the detection of and the response to the outbreak were 
slow, mainly due to late warning signals, poorly-developed 
community surveillance, delayed aetiological diagnosis, 
and a lack of communication between veterinary and 
public health sectors (37). On the contrary, in 2006/2007 
the response was facilitated by the early predictions of risk 
of RVF due to heavy rainfall based on remotely sensed 
environmental data (32). Integration of anticipatory 
monitoring data for disease risk, in this case using a global 
information source collected from other sectors, can help 
to make better sense of different signals (e.g., expected 
rainfall, seasonality factors, vector and host range, and 
production system changes) and to target resource in real-
time. Demographic, ecological, environmental, and socio-
economic predictors (e.g., vegetation cover, precipitation, 
soil type and socio-economic status) can help to identify 
RVF hotspots and target surveillance at the right time and 
location (38). With RVF joining WHO’s Blueprint list (39), 
Kenya has been moving towards an integrated surveillance 
and response system, based on cross-sectoral collaboration 
and community participation (e.g., cattle herders) through 
digital tools. The Kenyan governmental Zoonotic Disease 
Unit has favoured data sharing across sectors and joint 
prioritization for targeted control of zoonoses (40-42). In 
collaboration with mHealth Kenya (43), mobile phone 
technologies have been integrated in surveillance systems, 
improving the country’s capacity to detect and control 
zoonotic diseases, such as RVF, more quickly and precisely 
(44,45). However, to achieve precision in the detection, 
prevention, and control of RVF, the country needs data 
intelligence: the capacity for near real-time analysis to 
understand data signals from multiple interoperable sources. 
Such data intelligence should be converted into usable tools 
such as the RVF risk-based decision-support tool intended 
to guide directors of health and veterinary services and 
partners on the decisions to prevent and control the impacts 
of RVF epizootic (46). The Kenyan approach is promising 
and could be extended and further developed regionally to 
aim for the elimination of RVF in the Horn of Africa.

When precision becomes a global health 
instrument to improve TB care and control

Promoted by WHO between 1995 and 2006, the Directly 
Observed Treatment, Short Course (DOTS) strategy was 
implemented globally. It is an essential package covering TB 
care and control regardless of the socio-cultural and health 
systems settings (47,48). However, emerging drug resistance 
and co-morbidities have challenged this strategy, urging 
for a much more effective approach (49,50). Although 
not yet point-of-care tests, the introduction of rapid 
molecular diagnostic tools is of considerable benefit to TB 
detection and treatment, as well as surveillance and other 
programmatic needs (51-53). The increasing availability of 
genome sequencing technologies, including next-generation 
sequencing, allow for more rapid and precise detection of 
anti-TB drug resistance mutations for all first- and most of 
second-line drugs (54). One technological advance [Deeplex 
MycTB (Genoscreen©)], has already been successfully 
used in South Africa and Djibouti for surveillance purposes 
(55,56) and another kit with similar characteristics has 
been developed in the US (57,58). Once this technology 
is also proven effective on clinical grounds, one could 
design strain-specific regimens. The resistance pattern of 
the strain can then be combined, through an AI-operated 
clinical decision support system, with the patient’s data on 
co-morbidities, on concomitant use of medicines, resulting 
in pharmacovigilance, precise regimen prescription and 
care management (59). This should be first established 
at a well-resourced central level, connected to both the 
clinical care sites and the national programme as well as at 
global monitoring institutions, facilitated by rapid, easy-
to-operate and inexpensive technologies. Beyond patient 
care, this system could in fact support programmatic 
functions, such as surveillance of TB and drug resistance, 
or pharmacovigilance nationally and internationally 
through apps for care providers and patients. In concert 
with global standards like GS1 (The Global Language of 
Business) and supportive technologies like blockchain, the 
system may also facilitate less expensive, more reliable drug 
procurement and supply operations at scale. Ultimately, 
the system will need continuous feedback information 
for adjustment and refining of diagnostic and treatment 
options with global validity. This model, which relies on 
coordination of innovative but existing technologies and 
their integrated utilization, needs to be assessed under 
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operational conditions in high-burden countries to test 
feasibility, acceptability, affordability, scalability, impact, 
and long-term sustainability. Human factors such as social 
support and counselling, and the degree of standardization 
for at-scale operations, are also critical. Overall, this is an 
excellent opportunity to merge precision in individual care 
and precision in key public and global health functions such 
as disease monitoring and evaluation, drug procurement, 
and pharmacovigilance. Maintenance of a certain level 
of programmatic standardisation to facilitate expansion 
of precise care delivery is a fundamental aim that is not 
mutually exclusive with a more precise care approach and 
needs to be assessed in different settings worldwide.

Opportunities and challenges for PGH for 
diabetes and other non-communicable diseases

In 2017, there were an estimated 425 million individuals 
living with diabetes globally, with this expected to increase 
to 630 million by 2045 if current trends continue (60). In 
2012 the WHO and International Telecommunication 
Union (ITU) launched Be He@lthy, Be Mobile, an 
international initiative working with governments to 
scale up mHealth and access to health services to improve 
prevention, management, and control of non-communicable 
diseases and their risk factors. 

In this context, the opportunities for PGH vary in 
their scope, from devices that gather patient data for self-
management or for guiding clinical decisions, to broader 
approaches integrating data on upstream determinants 
of health behaviours and living environment, including 
tobacco consumption, physical activity, and diets. For 
example, the Food Monitoring Group has created a 
global, branded food composition database that serves 
as an ongoing, independent, and systematic monitoring 
and reporting system for packaged foods. Such systems 
will be imperative for monitoring success (or failure) of 
implementation of major dietary policies set by WHO, 
including the goal to eliminate artificial trans fats by 
2023 and reduce dietary sodium consumption by 30% by 
2025 (61-63). The transformation of food production, 
manufacturing, sales, and consumption recommended by 
the 2019 Lancet/EAT commission on healthy diets from 
sustainable food systems (64) requires action and large-
scale, yet granular, surveillance at every level to avoid 
exceeding predefined limits for climate change, biodiversity 
loss, freshwater use, disruptions to the global nitrogen and 
phosphorus cycles, and land-system change. Pedometers, 

affordable smart watches, an increasing number of sensors 
on phones, new means of measuring blood sugar, cuff-
less blood pressure devices, point of care diagnostics, and 
low-cost ways of capturing data from digital devices in the 
field, among other examples, generate increasing volumes 
of data on individual health and behaviour (65-67) With 
non-communicable diseases as the leading cause of death 
globally, the opportunities in PGH must be leveraged 
and developed in equitable ways to improve health and 
wellbeing in both HICs and LMICs.

Modelling geographic accessibility to healthcare 
and optimizing supply chains through drones

Measuring geographic accessibi l i ty to healthcare 
has traditionally used distance-to-model population 
catchments around health services. Time-based catchments 
integrating constraints of the landscape (e.g., topography), 
infrastructure (e.g. ,  road network),  and modes of 
transport (e.g., motorized or walking) are more realistic, 
contemporary, and precise approaches to planning for 
health systems in resource-limited settings. In sub-Saharan 
Africa, 30% of the population is over 2 hours away from 
the nearest emergency care facility (68), which motivates 
for an improved distribution of services. With increasing 
availability of high-resolution geospatial and environmental 
datasets, participatory cartography (e.g., OpenStreetMap), 
and the motivation for improving national health 
information systems (e.g., Health Data Collaborative) (69),  
accessibility modelling can be ameliorated. Further 
improvements include integrating the geolocation of health 
facility attendees’ home (70) and automatic derivation of 
their modes of transport (71). Where a lack of physical 
accessibility hampers effectiveness of supply chains, essential 
health products or tools might be delivered using drones 
(72,73). The government of Rwanda has used drones since 
2016, through the drone company Zipline, to deliver blood 
to 21 district hospitals in the country at relatively low cost, 
reducing the average blood delivery time from several hours 
to less than 45 minutes. As of April 2019, the service has 
delivered more than 13,000 units of blood, contributing 
to avoid numerous preventable deaths (74). In April 2019, 
Zipline launched the world’s most extensive drone delivery 
network in Ghana, with a revamped fleet of larger and faster 
drones able to deliver blood transfusion supplies, vaccines, 
HIV medications, antimalarials, antibiotics, lab reagents, 
and basic surgical supplies. Drones are being tested for a 
number of other health applications including support for 
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TB control (75), and delivery of snakebite antivenoms (76) 
or contraceptives (77). Although clearly in its infancy, and 
curbed by currently restrictive national air regulations, the 
field of deploying drones for medical delivery has passed the 
proof-of-concept phase in many places and appears ready 
for targeted scale-up in the PGH agenda.

Evaluating the impact of PGH

A key novelty and impact of more precise global health 
service and benefit delivery through PGH, is its potential 
to enhance effective resource allocation (4), a crucial step 
to achieving SDG10 of the Sustainable Development  
Goals (78). Improved targeting of interventions to those 
who need them most, and when and where they need them, 
maximizes impact. This would also allow us to uniquely 
identify the specific population of interest and the relevant 
barriers, comorbidities, and other factors that may affect 
expected outcomes, so that we can more precisely design 
cost-effective and efficient solutions, and those that might 
incur cost-savings, and evaluate impact (79). The impact 
of PGH can be measured at different levels using existing 
monitoring and evaluation tools but enhances our abilities 
to yield the following benefits. First, PGH might foster 
immediate and long-term health benefits through improved 
prevention, monitoring, detection, and treatment of disease, 
and provide essential population health status indicators 
such as disease incidence and prevalence, case fatality 
and recurrence rates, and their contribution to burden of  
disease (80) through better evidence-informed disease 
control priority setting. Second, PGH can help bridge gaps 
and reduce inequities in existing strategies through support 
to targeted identification of the needs of populations. At the 
same time, integrating information from relevant sectors 
may increase statistical power, allowing for more precise 
forecasting, such as in the detection of RVF risk through 
joint human and animal data collection that may be missed 
through separate, uncoordinated systems (81). Indicators 
of effectiveness or efficiency, such as reduced time for life-
saving treatment delivery or the more rapid investigation, 
diagnosis, and trace-back to the exposure source, might also 
help to interpret how well a system is functioning to inform 
disease prevention and control actions (82). Third, PGH 
might even generate financial savings. While precision 
preventive health interventions incur upfront costs, these 
should be balanced against the potential long-term savings 
that they may yield for individuals, investors, and society, 
through preventable later-stage disease management and 

economies of scale. Screening for non-communicable 
diseases and the application of mass customization principles 
are two examples where cost savings would result from 
effective early intervention (83,84). Fourth, PGH might 
also drive large geographic scale and multi-sectoral benefits 
for society and the environment by identifying and targeting 
resources where they can deliver greatest value. The need 
to assess options, both in terms of trade-offs and gains, 
supports the need for a community-based, participatory and 
multi-sectoral approach that can be achieved by capturing 
wider societal outcomes linked to health interventions and 
improvements when considering cost-effectiveness (82-85). 
In addition to health sector-relevant outcomes, evaluation 
should be meaningful to other stakeholders to incentivise 
their contributions to disease risk reduction activities. 
Fifth, PGH will enhance the dissemination of lessons 
learned and of best practices. The digital innovations that 
PGH embraces should not overshadow the importance 
of other outputs, such as knowledge sharing, capacity 
building and development of coordination mechanisms, 
which remain important for ensuring that policies and 
interventions are effective and are disseminated in order 
to contribute to the broader global good through lessons 
learned (in fact, digital pathways may help make these more 
accessible). Impact should also be measured by established 
frameworks for evaluating intervention effectiveness; 
these include approaches like the Reach, Effectiveness, 
Adoption, Implementation, and Maintenance (RE-AIM) 
framework (86,87) and the Consolidated Framework for 
Implementation of Research (88).

Ethics and policy of PGH: unresolved issues and 
emerging opportunities

PGH is intimately connected to the data life cycle. As such, 
questions about the origin of these data, conditions of their 
use, the type of analyses performed on them, and the purpose 
of analyses are of critical ethical and legal relevance (11).  
A fundamental challenge for data-related projects is to 
ensure that data utilisation does not inadvertently harm 
individuals or groups. Violation of privacy, for example, 
can severely affect well-being if it results in discrimination, 
stigmatisation and social exclusion, particularly in regions 
where legal protection from such privacy related harms 
are less robust. Global health has traditionally been 
afforded legal exemptions that allow the public interest to 
override individual liberties including privacy rights. While 
emergencies can activate such ethical and legal allowances, 
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these are not generally extended to all aspects of global 
health work nor are they automatically extended to all types 
of data sets that PGH might access. Protection of privacy is 
often seen as an obstacle to data access; however, perceiving 
privacy and data utilisation as a zero-sum game is flawed 
(89,90). Data access and sharing in global health have been 
recurring challenges attributed not only to privacy concerns, 
but also to unaligned incentives, ambiguous data ownership, 
and attribution of credit. Adhering to principles of research 
partnership, innovative data governance models, and 
oversight mechanisms that promote accountability can help 
overcome such challenges and can prevent the exploitation 
of privacy or data ownership claims that obstruct legitimate 
and ethically justified data access for global health purposes. 
Such governance models are rooted in partnership 
principles and data fairness, with the latter prescribing the 
utilisation of data for the promotion of public good (91).

As PGH includes non-traditional health data sources (92),  
potentially relevant data (e.g., from social media sources) 
are often under the control of powerful non-state actors 
who also possess analytical capabilities that can surpass 
those of the state. Exclusive access to these data sources and 
development of proprietary algorithms for their analysis 
poses several challenging questions. We refer specifically 
to the responsibilities and obligations of these non-
state actors in contributing to the PGH approach. The 
2014/2015 Ebola crisis in West Africa highlighted some of 
these concerns when access to private telecommunication 
data was sought to support control of the outbreak. The 
time lag between request and access to data reflected the 
lack of clarity about the role of private data controllers, 
their obligations to global health, as well as their liability 
risks (93). As argued in the United Nations Guiding 
Principles on Business and Human Rights, non-state 
actors such as corporations, have responsibilities towards 
global justice and human rights independent of their legal 
duties (94). Hence, some non-state actors may bear specific 
responsibilities to contribute to global health activities (e.g., 
corporations collecting data that can be used for monitoring 
in a country that is lacking a state monitoring system) while 
simultaneously having a duty to respect individual rights. A 
specific framework of how this can be achieved in the health 
domain is missing; yet, it is urgently needed.

The speed of digital transformation across the globe may 
lead to the assumption that data relevant to global health are 
also generated by all those in need of better health services. 
This assumption is reinforced by a closing digital divide, 
demonstrated by the increase in Internet penetration. 

However, Internet penetration is a limited informative 
metric alone. If the digital divide is understood as mental 
access (i.e., fear of or disinterest in technology), material 
access (i.e., no ownership of hard- or software, or lack of 
network coverage), skills access (i.e. lack of knowledge or 
education on how to use technologies), and usage access 
(i.e., lack of useful applications) (95-97), disadvantaged 
populations are more likely to be excluded and be least 
represented in population health datasets (98). Other 
important factors include gender, age, education, consumer 
behaviour, cultural norms around who accesses digital tools, 
and health seeking patterns (99-102). This lack of diversity 
is well-documented in most health research data with 
genomic-based data being a more recent and well-described 
example. Currently, the greatest proportion of genomic data 
comes from individuals of Caucasian and Chinese origin 
with Africans being grossly underrepresented (102). This 
lack of diversity in data sources can distort findings, increase 
biases in machine learning-based algorithms, maintain or 
worsen inequities, and curtail the contributions PGH could 
make.

For PGH to develop as an impactful approach, ethical 
considerations related to fair data processing and benefit 
sharing are paramount (103). Many big data processing 
activities related to global health have focused on outbreak 
detection and disease monitoring as components of health 
security more broadly, which prioritises public health 
emergencies. Despite the immediacy and magnitude of the 
threat these emergencies pose, they should not monopolise 
the focus of PGH. If the benefit of PGH is to be equitably 
distributed, then it should encompass broader aspects of 
global health and regional needs based on disease burden 
and local priorities. This locally-driven prioritization is an 
ethical imperative for PHG and represents an opportunity 
to reduce health disparities. Moving forward, PGH must be 
integrated into existing ethical frameworks as must embrace 
emerging ones in the digital health era. The latter have a 
stronger focus on data processing needs and can therefore 
address some of the most fundamental ethical issues in 
PGH. For example, a recent proposal includes the systemic 
oversight approach, which responds to the features of the 
evolving health data ecosystem including its temporal 
dimension, the multiplicity of data uses, the limitation of 
informed consent, and the presence of diverse stakeholders 
with misaligned aims (104). Such approaches have a better 
chance of creating reliable conditions for the development 
of PGH and the sustainability of public trust in PGH-based 
approaches for health promotion and disease surveillance, 
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prevention, and control activities (105).

Road map to PGH

Our group firmly believes that leveraging digital tools to have 
more precision in global health can lead to improved health 
and wellbeing (106). In order to stimulate progress we propose 
a road map for action focusing on three main priority areas:

Develop awareness, build capacity, and create a 
commitment to PGH

	Promote and develop PGH in educational and 
research programmes that integrate data sciences, 
life sciences, and social sciences to advance the PGH 
workforce;

	Advocate for PGH in national and international 
political fora, involving international organisations, 
particularly the WHO, to develop awareness and 
to create political and financial commitment for 
implementation by member states; 

	Build capacity in the use of digital devices (e.g., 
tablets and smartphone) and associated software 
(e.g., apps, diagnostic management algorithms) 
across the health system, particularly among 
health professionals working in the field, and 
across communities using citizen science and other 
participatory approaches.

Identify and agree on needs and opportunities for 
implementation of PGH 

	Identify opportunities and challenges of the 
global health agenda, grounded in the Sustainable 
Development Goals (taking into account issues 
related to planetary health), where PGH can 
facilitate the achievement of specific targets (e.g., 
elimination of disease; access to health care facility 
and medical and preventive services) to improve 
health and wellbeing for all;

	Engage and empower populations for their active 
participation in problem identification and solving 
through citizen science and digital tools.

Establish a learning global health system for the practice 
and evaluation of PGH: mechanisms, tools and resources

	Engage key stakeholders to foster the development 

and implementation of innovative tools and 
mechanisms for the practice of PGH;

	Develop participatory approaches (e.g., citizen 
science) and open data policies when collecting, 
sharing, and utilising all relevant data, produced for 
both health and non-health purposes;

	Develop an evaluation framework and assess the 
impact of PGH interventions;

	Integrate life sciences with data sciences and social 
sciences by developing mathematical models, and 
subject them to a continuous learning process based 
on experiences;

	Develop, evaluate and maintain real-time nowcasting 
and forecasting platforms for emerging health issues 
and implement policies and preparedness plans 
to support and guide early warning systems and 
precision response;

	Establish legal and ethical frameworks that facilitate 
the implementation and development of PGH in 
countries with different levels of digitalization of 
health systems;

	Ensure  funds  for  educa t ion ,  re search  and 
implementation of PGH using existing initiatives 
and through innovative mechanisms such as the 
creation of a global fund for PGH. 
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