
Page 1 of 13

© Journal of Public Health and Emergency. All rights reserved. J Public Health Emerg 2021;5:15 | http://dx.doi.org/10.21037/jphe-20-97

Original Article

Modelling forest degradation and risk of disease outbreaks in 
mainland Equatorial Guinea

Ophélie Poirier1, Rafael Ruiz de Castañeda2, Isabelle Bolon2, Nicolas Ray1,2^ 

1Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland; 2Institute of Global Health, Faculty of Medicine, University of 

Geneva, Geneva, Switzerland

Contributions: (I) Conception and design: O Poirier, N Ray, R Ruiz de Castañeda, I Bolon; (II) Administrative support: N Ray; (III) Provision of study 

materials or patients: None; (IV) Collection and assembly of data: O Poirier; (V) Data analysis and interpretation: O Poirier, N Ray; (VI) Manuscript 

writing: All authors; (VII) Final approval of manuscript: All authors. 

Correspondence to: Prof. Nicolas Ray. Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland.  

Email: nicolas.ray@unige.ch.

Background: Epidemiologists have testified for a rise of emerging infectious diseases (EID) events in 
the tropical areas undergoing forest clearance episodes and make the case for their association to forest 
degradation and loss. In view of this, we developed a workflow of analyses based on open data to model the 
EID risk in a context of forest degradation, integrating both exposure to hazardous areas and vulnerability 
to EID. We applied the workflow to mainland Equatorial Guinea to assess population at risk and understand 
how anthropic activities overlap with hazardous areas. 
Methods: We first modelled areas associated to spillover risk by conducting a spatio-temporal analysis of 
deforestation over the 2010–2014 period, and a modelling of ecotones considering forest margins and areas 
of transitional fragmentation. We modelled the exposure to hazardous areas as the proximity to deforested 
areas and ecotones. Second, we modelled the lack of accessibility to hospitals to represent the vulnerability 
to EID. Finally, we produced an index of EID risk combining exposure to hazardous areas and vulnerability 
to EID. Complementarily, we mapped the interfaces between hazardous areas and anthropic activities by 
overlaying forest degradation areas with anthropic activities to gain insights about their overlap.
Results: Our results highlight the areas where population is particularly exposed to hazardous areas and 
are vulnerable to the EID risk in light of their remoteness from health facilities. Zonal statistics using high-
resolution population distribution revealed that 100% of Equatorial Guinea’s population is located within 
15 minutes from the nearest hazardous areas, and that 92.2% stands within 1 hour from the closest hospital. 
Most of the population is located within the lowest EID risk levels, but 10.7% of the population is exposed 
to medium and high EID risk, with a set of settlements that could be targeted by health monitoring.
Conclusions: Our high-resolution geospatial methodology translates anthropic impact on ecosystems and 
accessibility to health infrastructures into an EID risk analysis. We demonstrated that it is possible to use 
open data to that end, providing maps for health and environmental monitoring that can be adapted in other 
countries to other specific types of hazards and vulnerability.
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Introduction

Emerging infectious diseases (EID) are those that are newly 
appearing, or which incidence or geographic range are 
rapidly increasing (1). According to Jones et al. (2008) (2), 
about 60% of EID are zoonoses, with more than two-thirds 
of them originating in wildlife [e.g., severe acute respiratory 
syndrome (SARS) virus, Ebola virus, Nipah virus]. EID may 
be caused by different types of pathogens including bacteria, 
protozoans, viruses or fungi and may be transmitted directly 
or via vectors (3). So-called spillover events can occur 
where humans, domestic animals and wildlife interact and 
where pathogens that used to be contained in wild animals 
infect domestic animals and/or humans. Recent studies 
on COVID-19 pandemic suggested that its associated 
coronavirus SARS-CoV-2 has likely originated from bats 
with subsequent spillovers eventually infecting humans (4).  
Studies have highlighted a rise in EID and zoonotic 
spillover events in the tropical areas undergoing ecological 
and environmental perturbations of their ecosystems (5), 
with repeatedly identified drivers including deforestation (6),  
agricultural expansion and other land-use changes (7,8), 
livestock breeding (9), human settlements in fragmented 
forest margins leading to increased population densities (10) 
that facilitated disease transmission (11). Extractive activities 
such as logging, mining (12), road and dam building (7), 
irrigation, urbanization (11), as well as bush meat hunting 
(9,13,14) were also identified as potential drivers. Many 
of these activities influence the transmission of diseases 
between wildlife animals and humans but also between 
wildlife and domestic animals, ultimately affecting human 
health (15-17).  

Several studies have sought to associate different levels of 
forest degradation to the likelihood of spillover events that 
could lead to EID. While Faust et al. in 2018 (15) identified 
areas undergoing intermediate levels of forest degradation 
as the loci of highest pathogen invasion and probability of 
individual infection, other scholars linked the emergence 
of diseases such as Ebola to areas with high levels of dense 
forest fragmentation (10,18) rather than in deforestation 
hotspots. Of particular interest are ecotones that are 
natural or anthropogenic areas of transition between two 
adjacent ecological systems, for instance between forest 
and non-forested habitat (19-21). Anthropogenic ecotones, 
especially, make breeding ground for disease transmission as 
they concentrate and intensify biophysical factors, biological 
activity and ecological evolutionary processes (19).

Geospatial analyses have been used to map hotspots 

of risk of EID emergence at different scales (22,23) or 
to visualize the distance to these hotspots (18,24). Also, 
geographical (i.e., physical) accessibility to health care is 
critical in outbreak control and mitigation efforts, where 
inadequate access to healthcare services, products or 
technologies can be responsible for a greater number of 
cases and deaths as it was for instance the case during Ebola 
outbreaks (25,26). Thus, a more appropriate approach to 
appreciate a population’s vulnerability to infectious risks 
is based on modelling geographical accessibility to health 
facilities considering realistic travel time of the population, 
as was undertaken recently on a continental scale by Hulland 
et al. (27) for areas at-risk of viral hemorrhagic fever.

EID associated to land use change pose a significant 
threat and public health concern in countries of the tropical 
area, where deforestation dynamics are currently the 
greatest (28) and where the presence of dense forest biome 
and humid climate exacerbate that threat (29). Western 
Africa and parts of Central Africa have been identified as 
major hotspots both in terms of EID events, with particular 
threat from zoonotic pathogens from wildlife and vector 
borne pathogens (2,22), and forest habitat degradation (30). 
Central Africa therefore constitutes a relevant case study 
for the issues related to the links between human health 
and ecosystem degradation, particularly those triggered by 
forest habitat loss.

To date ,  model l ing  the  EID r i sk  through the 
combination of proximity to hazardous areas (i.e., proximity 
to deforested areas and ecotones as a proxy for exposure 
to spillover events) and lack of accessibility to health 
infrastructures has not been tackled. We aim to fill this 
gap by proposing a generic approach exemplified with 
mainland Equatorial Guinea to (I) develop a framework 
of analyses based on open data to model the EID risk in a 
context of forest degradation that identifies areas where the 
population would be most vulnerable to an EID outbreak 
by incorporating realistic measures of both proximity to 
potential hazardous areas and accessibility (or lack thereof) 
to healthcare services, and to (II) apply this workflow 
to mainland Equatorial Guinea to assess population at 
risk and provide specific mapping and analysis of areas 
of interface between forest degradation and anthropic 
activities, considered potential areas of spillover occurrence. 
Our goal is to produce a complete reproducible workflow 
based on high-resolution openly accessible data, and that 
can be adapted in low- and middle-income countries from 
the tropical areas to support decision making in land use 
planning and public health surveillance for risk mitigation. 
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Our proposed methodology is enshrined in the current 
research momentum that strives to link ecosystem and 
biodiversity conservation to health (30), with the potential 
to foster upstream measures decision making and to help 
target accurate mitigation responses to potential EID 
risk. We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/jphe-20-97).

Methods

We anchor our methodology on the definition of 
environmental risk as the “probability and magnitude of 
consequences after a hazard” (31) and as the intersection 
of hazard and vulnerability (32). Considering hazards as 
threats to human communities (33) and vulnerability as the 
characteristics of a system susceptible to the damaging effect 
of a hazard (34), our methodology seeks to model spatially-
explicit EID risk by combining proximity to disease hazard 
(hazard hereafter) and vulnerability in terms of accessibility to 
hospitals. We further model the exposure of the population 
to levels of hazards, vulnerability and risks by considering 
the spatially distributed population data. A schematic of the 
overall methodology is presented in Figure 1. All workflows, 
as well as information on each data set and detailed data 
processing are described in the Supplementary file. 

Area of study: mainland Equatorial Guinea

Our analyses were applied over the mainland region of 
Equatorial Guinea where 114.2 kha of tree cover were 
removed between 2002 and 2019 (35). Deforestation in 
the country is mainly due to timber exportation towards 
Asia and Europe and agricultural expansion (32). The 
country was identified as a potential risk area for yellow 
fever (36), Ebola and Marburg fever (37,38), and harbors 
environment suitability for Zika virus (39) although our 
modelling framework was not designed to identify hotspots 
of emergence of specific diseases nor to demonstrate the 
relationship between environmental degradation and disease 
emergence.

The aforementioned characteristics and the limited 
surface area of Equatorial Guinea (compared to neighboring 
countries) made it a relevant case study to achieve our 
research aims. The area was defined via the borders of 
Equatorial Guinea from 2018, available on the GADM 
platform (40).

Statistical analysis

Our analyses consisted in a series of geospatial modelling 
approaches (detailed in the following sections). First, 
to obtain exposure to hazards, we obtained areas of 

Figure 1 Risk model combining hazard associated to proximity to forest degradation and vulnerability associated to the lack of accessibility 
to hospitals.
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deforestation over the period 2010–2014 and areas of 
anthropic ecotones. We computed the proximity of the 
population to those hazardous areas, running a travel 
time accessibility model using a realistic travel scenario. 
Second, we modelled population vulnerability by running 
a travel time accessibility model to all hospitals. Third, we 
modeled the level of EID risk by combining the proximity 
to hazardous areas with population vulnerability through a 
normalized index. The population most exposed to EID risk 
was then obtained through zonal statistics overlaying EID 
risk with either the spatial distribution of the population or 
the locations of known settlements. Finally, the interfaces 
between hazardous areas and several types of anthropic 
activities were obtained by using zonal statistics tools and 
raster calculations.

Modelling exposure to hazard through proximity to areas 
of forest degradation

In order to apprehend the areas of land use change 
associated with potential spillover risk, we considered two 
types of hazardous areas associated to forest degradation: 
deforested areas and ecotones. They were ultimately 
combined together, and the hazard levels were modelled as 
the proximity (in terms of travel time) to these hazardous 
areas. The underlying hypothesis is that that living closer (in 
terms of travel time) to a hazardous area increases the risk 
of contracting a zoonotic disease.

Deforestation was analyzed over periods of five years, as 
it has been shown that consequent ecological changes can 
affect epidemiological mechanisms long after deforestation 
events, depending on the disease [e.g., four (41) or five (42)  
years after deforestation for malaria, but within the same 
year for Ebola in (10,18)]. We used the high-resolution 
Global Forest Watch data sets (28) to get a raster map 
of forest loss events over the period 2010–2014, at a 
resolution of 92.52 m. In order to represent areas with 
frequent interactions and interspecies contact, we modelled 
anthropic ecotones (19) (ecotones hereafter) considering 
and combining forest margins and areas of transitional 
fragmentation, described as “areas of intermediate level of 
habitat loss” by Faust and colleagues (15). These landscape 
elements were processed with the Guidos toolbox (43), 
and result from the combination of a Morphological 
Segmentation of binary Patterns (MSPA) (44) and a 
fragmentation analysis (43) using the land cover dataset 
described here below.

Second, using AccessMod ver. 5 (45), we assembled a 

100-m resolution landcover raster from 2015, available on 
the Copernicus Global Land Service (CGLS) portal (46) to 
be able to model travel time to hazardous areas. This raster 
combines landcover information with the road network 
from 2017 [based on Open Street Map (47) and used in 
Ouma et al. (48)] and the hydrographic network (rivers and 
water bodies) from 2018, available on OCHA’s website (49).  
We constructed a travel scenario targeting the general 
population moving over the country (see Table S2 in the 
Supplementary file), assuming motorized transport along 
the road network, and walking outside of this network. 
Rivers and water bodies were considered as complete 
barriers to movement, except in the presence of bridges 
informed by the road data set. By applying the travel 
scenario to our combined landcover raster, we obtained a 
so-called “cost raster”, with each pixel value representing 
the time to cross that cell depending on the speed of 
travel, based on a Digital Elevation Model raster at 30-m 
resolution from 2011, retrieved on the United States 
Geological Survey (USGS) web platform (50). 

Finally, we modelled the levels of hazard across the 
country by running a travel time analysis using the cost 
distance function in ArcGIS 10.3 (ESRI, Redlands, USA), 
considering the time of travelling across the landscape 
to the edge of the nearest hazardous area. The final step 
consisted in calculating the percentage of the population 
within each class of travel time, through Zonal Statistics in 
ArcGIS, in order to assess the exposure of the population 
to hazardous areas. For that we used the High Resolution 
Settlement Layer population dataset from 2018 at 30 m (51).

Modelling population vulnerability through the analysis of 
accessibility to hospitals

The vulnerability of the population to the infectious 
risk was translated with an accessibility analysis to the 
nearest hospital in terms of travel time. We considered 
the mainland country’s 13 hospitals as of 2017 from Ouma 
et al. (48), assuming their capacity to manage disease 
outbreaks, including diagnoses of zoonotic diseases and 
treatment of affected patients. We used the cost raster 
obtained in the previous step to model the travel time 
from any location in the country to the nearest hospital, 
using AccessMod ver. 5. 

The result of this analysis produced a vulnerability 
map, showing the travel times to the 13 hospitals that was 
classified into six categories of travel time. We further ran 
Zonal Statistics analysis in ArcGIS to get the percentage of 

https://cdn.amegroups.cn/static/public/JPHE-20-97-supplementary.pdf
https://cdn.amegroups.cn/static/public/JPHE-20-97-supplementary.pdf
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the population under each travel time category.

Modelling the level of EID risk

The final step of the main workflow consisted in creating 
an index of the EID risk as the combination of proximity 
to hazardous areas and the lack of accessibility to hospitals 
(vulnerability). We first normalized the cost distance raster 
values and the accessibility raster values, according to the 
methodology developed by the European Commission for 
Economic Co-operation and Development (52) which gives:

 
   

 
min

max

x xNormalized index
x x
−

=
−  [1]

We then subtracted the normalized raster of accessibility 
to hospitals to the normalized raster layers of hazard level 
and represented the results in a heat map classified in five 
categories of risk, with the highest value expressing the 
highest EID risk. Risk categories were based on quintiles 
of the range of risk values based on a geometrical interval 
classification, which allows one to better visualize the 
variations of risk throughout the country. This additive 
approach to model EID risk considers that proximity to 
hazard and hospital accessibility are likely to compensate 
each other. However, this approach implies that an area will 
be considered with a low risk only if the levels of both risk 
components (hazard and vulnerability) are low. 

Finally, in order to quantify the population most exposed 
to EID risk, we used two complementary approaches: (I) we 
carried out Zonal Statistics in ArcGIS to get the percentage 
of the population exposed to EID risk, and (II) we overlaid 
settlement locations (see Supplementary file: 2. Data sets 
used in the workflows) on top of the EID risk map, thus 
producing a map of EID risk exposure of settlements. Note 
that no population estimates are available for settlements. 

The spatial overlap between the EID risk map and 
population data was carried out considering: (I) both types 
of hazardous areas (deforested areas and ecotones); (II) 
hazardous areas linked to deforestation only; (III) hazardous 
areas linked to ecotones only.

Modelling the interfaces between hazardous areas and 
anthropic activities

Based on the assumption that forest degradation creates 
favorable conditions for pathogen spillover between 
forest matrix and areas of anthropic activities, we aimed to 
geographically locate potential areas of such event by modelling 

the interface between hazardous areas and anthropic activities. 
Using zonal statistics tools and raster calculations, we 

modelled the spatial overlap between the hazardous areas 
and the following anthropic activities over the country (see 
“3. Detailed methodology” in the Supplementary file for 
further details): spatial distribution of human population (51),  
settlements [from 2011, available on the National 
Geospatial Intelligence Agency website (53)], cropland 
areas (extracted from the landcover data set), livestock 
breeding (cattle, goat and sheep densities data combined, 
using the 1-km resolution raster data sets from the Gridded 
Livestock of the World (for cattle, goats and sheep) (54-56), 
and logging concessions [areas of forest logging concessions 
indexed between 1993 and 2013, available on the Global 
Forest Watch platform (30)]. These analyses resulted in the 
proportion of anthropic activities within hazardous areas, 
highlighting areas that maximize interactions between forest 
degradation areas and anthropic activities, as well as those 
areas with conditions likely to trigger pathogen spillover 
events and epidemic outbreak. 

Results

Exposure to hazardous areas

The map of proximity to deforested areas is displayed in 
Figure 2, and the proximity to ecotones in Figure 3. Results 
from the zonal statistics indicate that 100% of mainland 
Equatorial Guinea’s 2018 population was located within 
less than 15 minutes of travel from a hazardous area. Sixty 
percent of the population is located within a hazardous area. 

Population vulnerability through the analysis of 
accessibility to hospitals

Figure 4 shows the results of the travel time analysis to the 
18 hospitals, highlighting areas where the population would 
be most vulnerable to an EID hazard due to limited access 
to the closest hospital. Overlaying the result of this analysis 
with the distribution of the population in 2018 showed 
that 92.2% of the population is located within 1 h from the 
nearest hospital, and that less than 1% (2,717 people) stands 
very remote (>7 h and up to 13 h 36 min) from the nearest 
hospital and would be more vulnerable to EID.

EID risk level

Combining travel times to hazardous areas with the 

https://cdn.amegroups.cn/static/public/JPHE-20-97-supplementary.pdf
https://cdn.amegroups.cn/static/public/JPHE-20-97-supplementary.pdf
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Figure 2 Proximity (travel time) to deforested areas in mainland Equatorial Guinea, with zoom insets on Niefang (A) and Djibloho (B) 
cities, located within the deforested areas.

Figure 3 Proximity (travel time) to ecotones in mainland Equatorial Guinea (A), with zoom insets on Niefang city (B).
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Figure 4 Vulnerability map computed as the travel time to the closest hospital (A), with zoom inset on Niefang District Hospital (B).
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vulnerability analysis (travel times to hospitals), we obtained 
the EID risk level map (Figure 5A). This map allows one to 
locate “hotspots” of EID risk (in red in Figure 5), which are 
located in or close to hazardous areas where the accessibility 
to hospitals is low. EID risks maps are also presented when 
considering deforested areas only (Figure 5B) and ecotones 
only (Figure 5C). EID risk hotspots associated to ecotones 
are a bit more fragmented than the ones using deforested 
areas only, reflecting the lower number of ecotone items 
than deforested area.

When considering all hazardous areas, we note a low-
risk level for the city of Niefang (Figure 5D), which is an 
example of how the presence of a hospital in Niefang (see 
Figure 4) contributes to mitigate the high level of hazard 
associated to the proximity to deforested areas (see Figure 
2A) and ecotones (see Figure 3A). On the contrary, the city 
of Djibloho has no hospital, which translates in a high level 
of risk as illustrated in Figure 5E.

Results of the Zonal Statistics on all hazardous areas 
show that only 10.7% of the population of mainland 
Equatorial Guinea is at medium and high EID risk (levels 
3, 4 and 5), while the remaining 89.3% of the population 
is exposed to low EID risk (levels 1 and 2). When using 
only hazardous areas linked to deforestation, none of the 
population is located within the highest risk (level 5), 65.1% 
is located within areas with a high risk (level 4), 25.0% of 
the population is located within areas with a medium risk 
(level 3), and less than 10% of the population is located in 

low risk (levels 1 and 2) areas. As for the risk associated to 
the proximity to hazardous areas linked to ecotones only, 
4.7% of the population is located within the highest-risk 
levels 4 and 5, 11.7% within the medium-risk level 3, 71.9% 
is exposed to risk level 2, and 11.7% within the lowest-risk 
level 1. 

The map of the exposure of settlements to EID risk 
levels (Figure 6) points to those settlements (53) with the 
highest risk located close to forest degradation areas and far 
from a hospital. These are mostly found in the southern and 
eastern regions of the country, and south to Acoc city, in the 
middle part of mainland Equatorial Guinea.

Areas of interface between anthropic activities and 
hazardous areas

Results of the interface analyses are found in Table 1. 
The high percentage of settlements within hazardous 
areas (deforested areas and ecotones) highlight human 
encroachment and dwelling in forest fringes following 
deforestation events. Cropland and livestock breeding areas 
within ecotones flag potential areas of increased human and 
livestock exposure to potential pathogen spillover events.

The interface between logging concessions and 
deforestation events shows that only a small portion of 
deforestation can be attributed to logging activities since 
84.8% of deforestation between 2001 and 2014 was carried 
out outside logging concessions.
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Figure 5 Map of EID risk level distribution considering all hazardous areas (A), only deforested areas (B), only ecotones (C), with zoom 
insets on Niefang District Hospital (D) and Djibloho city (E). EID, emerging infectious diseases.
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Figure 6 Exposure of settlements to EID risk levels. EID, emerging infectious diseases.

Table 1 Results of the interface analyses for both deforested areas and ecotones

Anthropic activity/hazardous area Sum within the considered area % of anthropic activity within hazardous area

Population (total) 831,272

In deforested areas (2010–2014) 443,023 53.3

In ecotones 139,906 16.8

Settlements (total) 2,049  

In deforested areas (2010–2014) 1,569 76.6

In ecotones 1,583 77.3

Cropland (total m2) 2,419,040  

In deforested areas (2010–2014) 432,360 17.9

In ecotones 1,042,288 43.1

Livestock (total heads) 3,967  

In deforested areas (2001–2005) 56 1.4

In ecotones 2,077 52.3

Logging concession   

Portion of deforestation areas outside logging 
concessions (2001–2014)

 84.8

occur within this area.
Our deforestation mapping pointed out areas of 

concentrated forest disturbance and loss, and highlights 
specific, more localized areas likely to create favorable 
conditions for some pathogen spillover events. Ecotones 

appear to be more spread out over the territory, with 
areas of interaction between the remaining fragments or 
forest core and the anthropic matrix, highlighting areas 
of potential interactions between humans and wild fauna. 
Areas with most reduced EID risk combine forest fragments 

EID risk exposure of settlements
1
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4
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and high accessibility to hospitals and are located mostly on 
the western and south-eastern parts of the country.

Whereas a classic approach to modelling accessibility 
would be based on assessing the distance to deforested areas 
and ecotones, our analyses used more realistic modelling 
based on travel time combining a motorized and walking 
transport scenario. Results highlight that for the considered 
period of time, the major part of the territory was located 
within 1 h of travel to areas deforested between 2010 and 
2014 and to ecotones, which can be explained both by the 
large area covered by deforestation and ecotones and by the 
small surface area of the country. Moreover, deforestation 
areas are often located on or along the main arterial roads 
resulting in increased exposure to hazardous areas due to 
greater and easier mobility across the territory.

Accounting for the spatial distribution of the population, 
our results show that most of the population is located 
within 1 h of travel from deforested areas or ecotones. At 
least 60% of the population could be subject to increased 
monitoring and attention for being located within 
hazardous areas.

Overlay analyses on the population distribution and the 
localization of settlements show differing risk exposure 
levels. We see these two sources of population data as 
complementary, as the former provides statistical national 
and subnational population distribution data and its level 
of exposure, while the latter the spatial localization of 
populations within mainland Equatorial Guinea accurately 
pointing out to exposed communities.

Implications for public health, forest management and 
conservation

We modelled EID risk as the combination of population 
exposure to hazardous areas and accessibility to hospitals. 
Our modeling results revealed that most of the population is 
within 1 h of the nearest hospital, and all of the population 
within 15 minutes of the nearest hazardous area. The EID 
risk is thus likely to be mitigated through improvement 
in forest management, as well as an increased number of 
infrastructures equipped to monitor, diagnose, and treat the 
associated infectious diseases.

The EID risk maps enable to localize areas where 
increased forest degradation in populated areas would result 
in a significant increase of EID risk due to low accessibility 
to health infrastructures, thus providing support for 
measures targeting forest conservation. Our results show 
that the type of considered hazard (deforested areas/

ecotones) will influence the spatial distribution of EID risk 
and thus the portion of the population exposed to this risk. 
Moreover, the modelling of interfaces between hazardous 
areas and anthropic activities can enable to point out the 
hotspots of increased human or livestock exposure where 
surveillance measures should be targeted. 

Our results highlight that urban expansion and 
settlements in recently deforested areas should especially be 
subject to increased monitoring, as a significant part of the 
population is located within areas which have undergone 
forest clearance and areas of increased interspecies contact. 
The mapping of the settlements located in hazardous areas 
can support decision making for the implementation of 
monitoring sites.

The EID risk map associated to population distribution 
and settlements can help localize potential hotspots 
enabling to identify vulnerable and populated areas where 
health infrastructures could be implemented or where 
existing ones could develop proximity outbreak surveillance 
programs. This is for instance the case in the southern and 
the north-western parts of the country which lack hospital 
infrastructures. Anisok and Nsoc Nsomo District hospitals, 
located in a “high” risk area, could be relevant candidates 
for surveillance due to their proximity to both types of 
hazardous areas.

While global hotspots of EIDs have been modelled 
(2,22,24), there is a need for a more granular approach to 
EIDs to generate actionable results and support targeted 
public health interventions by countries. To that aim, our 
proposed methodology can help prioritize preparedness at a 
higher spatial resolution. This is in line with the “precision 
global health” approach (57,58) that seeks, among other 
goals, to enhance effective resource allocation through the 
use of high-resolution geospatial data and innovative digital 
tools.

Limitations and perspectives

Our modelling framework was not designed to identify 
hotspots of emergence of specific diseases nor to 
demonstrate the relationship between environmental 
degradation and disease emergence. Based on the 
assumption that forest degradation is directly linked to 
elevated EID risk, our methodology relied on a simple, 
non-weighted index to describe this risk. Potential future 
research could test the EID index data generated through 
this framework against incidence data for different EID 
within the study area to highlight which diseases are 
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effectively captured by this risk index. 
The framework could also be refined by filtering and 

weighing the hazardous areas according to the factors 
of emergence for a specific disease (e.g., considering the 
type of forest cover (18) or the forest patch size (59), or by 
integrating population movement across the territory (27).  
Additionally, we recommend that future research look 
at tailoring this EID risk assessment factor by using 
socioeconomic, climatic and environmental factors targeted 
to the subjected disease.

Our geographical accessibility analysis relies on both a 
road infrastructure data set and a realistic travel scenario. 
There are however uncertainties on both the exhaustiveness 
of the road network and the average travel speeds on- and 
off-roads. This would warrant specific field work in country 
to lower that uncertainty, which would be particularly 
important for replication of our methodology in larger 
countries where this uncertainty can be higher due to 
heterogeneous mapping throughout the country. Sensitivity 
analyses on the travel parameters could also be performed 
to assess how they influence results. Other factors of 
exacerbation of the infectious disease risk could be included, 
such as the facilities’ capacity to diagnose and treat specific 
EID, areas of sustained increase in population densities, or 
the access to potable water and sanitation (8).

Finally, the temporal disparity between the population 
data (2018) and the rest of the data sets may have influenced 
the results of population exposure, considering that 
deforestation is likely to have increased since 2014.

Conclusions

Our geospatial modelling methodology has combined 
exposure to hazardous areas with the vulnerability to 
infectious risks, with the consideration of the known 
mechanisms of pathogen spillover due to land use change. 
The translation of anthropic impacts on ecosystems into 
risk assessment can provide fined-grained territory analysis 
through realistic and case specific travel scenarios, and we 
further demonstrated that high-resolution maps to support 
health and environmental monitoring can be created with 
open access data, which is replicable in other countries.
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Supplementary

1. Data preparation and process workflow
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2. Data sets used in the workflows (Table S1)

Table S1 Information on all data sets used in the workflows

Data Year Source/author Description Type
Original 
raster 

resolution
URL

Equatorial 
Guinea 
borders

2018 GADM website (40) Mask created to define the extent of the 
Equatorial Guinean territory and used to 
clip out all other data sets

Shape 
file

– https://gadm.org/

Deforestation 2001–2005  
& 2010–2014

University of Maryland 
(28)

Locates the deforested pixels and 
indicates the year of deforestation

Raster 30 m http://data.
globalforestwatch.org

Landcover 2015 Copernicus Global Land 
Service (CGLS) (46)

Landcover categories for considered 
territory: evergreen broadleaf closed and 
open forest, deciduous broadleaf closed 
and open forest, herbaceous wetland, 
temporary and permanent water bodies, 
herbaceous wetland, urban areas, shrubs, 
herbaceous vegetation, cropland and 
open sea areas

Raster 100 m https://land.copernicus.
eu/global/index.html

Population 2018 HDX website (51) High-resolution density maps based on 
census data, population statistics and 
building identification

Raster 30 m https://data.humdata.
org/dataset/highresoluti
onpopulationdensityma
ps-gnq

Settlements 2011 National  
Geospatial-Intelligence 
Agency (NGA) (53)

Location and name of 2049 settlements in 
Equatorial Guinea

Shape 
point

– https://data.humdata.
org/dataset/equatorial-
guinea-settlements

Hospitals 2017 Ouma et al. (48) 18 public hospitals in Equatorial Guinea 
“targeted at a broad range of emergency 
or referral care to the general population”

Shape 
point

– Requested to the 
authors

Roads 2017 Open Street Map (47)  
and Ouma et al. (48)

Roads in Equatorial Guinea extracted 
from two different datasets and merged 
together

Shape 
line

– http://download.
geofabrik.de/africa/
equatorial-guinea-
latest-free.shp.zip

Waterways 2018 United Nations office  
for Coordination of 
Human Affairs (OCHA)

River features in Equatorial Guinea Shape 
line

– https://data.humdata.
org/dataset/

Digital 
elevation 
model (DEM)

2011 United States  
Geological Survey 
(USGS)

Various tiles combined together and 
clipped on the mask of Equatorial Guinea

Raster 30 m https://earthexplorer.
usgs.gov/

Livestock 2006 Gridded Livestock of  
the World 2 (54-56)

Cattle, goat and sheep densities data 
combined together into a unique dataset

Raster 1,000 m https://livestock.geo-
wiki.org/Application/
index.php

Logging 
concessions

1993–2013 Equatorial Guinea 
Ministry of Agriculture 
and Forests and The 
World Resource Institute 
(60)

Logging concessions localization including 
the holding company, date of exploitation, 
area and state of exploitation

Shape 
point

– http://data.
globalforestwatch.org/
datasets



© Journal of Public Health and Emergency. All rights reserved. http://dx.doi.org/10.21037/jphe-20-97

3. Detailed methodology

Areas with greater potential for spillover events occurrence

In order to translate the land use change associated with 
greater spillover risk described by the literature, we started 
by modelling forest habitat degradation through the 
identification of deforested and fragmented areas.

Deforested areas
The Global Forest Watch provides fine resolution (30 
m), locally relevant records of forest change since 2000, 
from Earth observation satellite data (28). The “Global 
forest cover loss 2000–2014” dataset maps deforestation 
considered as “a stand replacement disturbance or a change 
from a forest to non-forest state” (ibid). Forest loss data 
were extracted from this dataset for the periods 2001–2005 
and 2010–2014.

A part of this work has aimed at mapping the interface 
between the areas of forest degradation and anthropic 
activities. Therefore, the periods of study of these interfaces 
need to precede the dates (2006 and 2015) of the available 
data of proxies for anthropic activities (human and livestock 
population, land cover, settlements, etc.), as described 
hereafter.

Deforestation was analyzed over a period of five years 
(2001–2005 and 2010–2014) in order to reflect the array 

of possible ecological and epidemiological mechanisms 
described in the literature depending on the infectious 
disease studied; 4 years for malaria in (41), 5 years for 
malaria in (42), within the same year as deforestation for 
Ebola in (18,61). Another subset of deforestation events was 
extracted for the period 2001–2014 in order to compare 
them with logging concessions data which also range across 
this timeline.

Binary masks of deforestation were created by assigning 
a common value to all the deforested pixels. These masks 
were resampled using a majority technique in order to 
match the resolution of the proxies for anthropic activities; 
925.18 m for the livestock densities and 92.52 for all the 
other layers. These resolutions were chosen to match the 
population and the livestock layers. The majority technique 
of resampling was chosen because it minimized the pixel 
loss between the original and the final resolutions. All these 
processes were executed using ArcGIS.

Ecotones and areas of transitional fragmentation
The Morphological Segmentation of binary Patterns 
(MSPA) processing first consisted in identifying areas of 
interspecies contact, which correspond to forest margins, 
forest islet, loop and branch, bridge, perforation and edges 
such as described in Figure S1 below. Faust et al.’s (15) 
methodology considered the area within 200 m on each 

Figure S1 MSPA: overview of the various foreground and background MSPA, extracted with permission from Vogt (2018).
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Table S2 Travel scenario

Landcover element Speed (km/h) Mode of transportation Time to travel across the 92.52 m cell (min)

Road types

Tertiary road 20 Motorized 0.2776

Major arterial 60 Motorized 0.0925

Minor arterial 60 Motorized 0.0925

Primary highway 80 Motorized 0.0694

Secondary road 70 Motorized 0.0793

Motorway 100 Motorized 0.0555

Landscape elements (from the 2015 land cover)

Shrubs 4 Foot 1.3878

Herbaceous vegetation 5 Foot 1.1102

Cropland 4 Foot 1.3878

Urban 5 Foot 1.1102

Permanent water bodies 0 None Infinite

Temporary water bodies 3 Foot 1.8504

Herbaceous wetland 3 Foot 1.8504

Evergreen broadleaf closed forest 2 Foot 2.7755

Deciduous broadleaf closed forest 2 Foot 2.7755

Evergreen broadleaf open forest 4 Foot 1.3878

Deciduous broadleaf open forest 4 Foot 1.3878

side of the forest edge. This was reflected in our analysis 
by setting up the edge width to 5 pixels, in order to span 
equally on both sides of the originally 1-pixel wide forest 
edge.

The fragmentation analysis developed in Vogt and 
Riitters (62) consisted in identifying the different levels of 
fragmentation of an area based on spatial density of forest 
cover. The smallest observation window available (7×7 
pixels) was used in order to get a localized assessment of the 
fragmentation and best reflect the creation of interspecies 
contact at the finest scale. The analysis was conducted on a 
recoded land cover layer (4 bytes) to indicate foreground, 
background and non-fragmenting background pixels. This 
process enabled to assess the fragmentation level of the 
country and extract the areas with transitional levels of 
fragmentation (between 40% and 60%).

Both the MSPA and the fragmentation analysis 
processing were based on the 2015 land cover layer.  

Cost raster

Table S2 describes the travel scenario that was applied to 
the cost raster. The speed on major and minor arterial, 
primary and secondary roads were drawn from Ouma  
et al. (48). The other speeds were inspired from the 
World Health Organization (63) and the World Road 
Transport Organisation (64) platforms. Considering an 
average walking speed of 5 km/h for an average adult, each 
landscape element was assigned a scaled down average 
walking speed, depending on the relative difficulty to walk 
through it. Waterways and permanent water bodies were 
considered as barriers to travelling (unless a road crosses 
over) and were assigned a NoData value by AccessMod in 
order to translate infinite costs of travel.

Accessibility analysis to hospitals

AccessMod’s accessibility analysis used the merged land 
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cover produced and described in the previous section, the 
vector points layer of hospital facilities and the travelling 
scenario described in Table S2. The analysis may either be 
anisotropic (reflects the influence of slope on travel time) 
or isotropic (ignores it). In this analysis, the travel time was 
computed over the whole territory and without considering 
the effect of slope in order to enable the comparison with 
the analysis conducted in ArcMap that cannot take it into 
account similarly.

Mapping risk levels

The simple normalization of the cost distance to hazardous 
areas and of the accessibility hospitals levels enables to bring 
the information of hazard exposure and of vulnerability to a 
comparable range and to combine them together.

Areas of interfaces: hazardous areas and anthropic 
activities

Interface between each risk defined area (deforested or 
anthropic-ecotones) and anthropic activities were computed 
and modelled in ArcGIS 10.3 (ESRI, Redlands, USA) 
using zonal statistics coverage tools and raster calculations. 
All these analyses were conducted with the 2000–2014 

deforestation areas except for the livestock data for which 
the 2001–2005 deforestation areas were used since the data 
relative to these densities were only available for 2006. 
Prior to the interface analyses, the proxy layers had been 
resampled to match the population density layers, using the 
nearest neighbor technique.
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