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Introduction

The oncogenic Epstein-Barr virus (EBV) is present 
in a subset of cases of classical Hodgkin lymphoma 
(cHL). Despite growing evidence of its importance in 
the pathogenesis of the subset of virus-associated cHL, 
therapies that specifically target EBV are lacking. We 
believe it is now timely to revisit the contribution of EBV 

to the pathogenesis of cHL, particularly with respect to the 
role of the viral latent genes, some of which are now being 
explored as targets of new drug and immunotherapeutic 
approaches. 

General features and pathogenesis of HL

Hodgkin lymphoma (HL) has an incidence of around 
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3/100,000 per year. Lymph nodes are the most often 
affected tissues, although extranodal disease does occur. 
Affected tissues show effacement of existing structures 
which are replaced by rare malignant cells, surrounded by 
a florid reactive infiltrate. Based on differences in histology 
and immune phenotype, HL can be classified into two 
major types; these are classical HL (cHL) and nodular 
lymphocyte predominant (NLP) HL (1). The malignant 
cells of cHL are known as Hodgkin/Reed-Sternberg (HRS) 
cells, and those of NLPHL as lymphocyte predominant 
(LP) cells. There are four major subtypes of cHL, known 
as mixed cellularity, nodular sclerosis, lymphocyte rich 
and lymphocyte depleted HL. The tumour cells of HL 
are derived from mature B lymphocytes (2), and display 
evidence of somatic hypermutation indicating that they 
develop from germinal centre, or more likely, post-
germinal centre B cells (2-5). In approximately one-
quarter of cases of cHL, the immunoglobulin genes have 
so called ‘crippling’ mutations which prevent proper 
expression of surface immunoglobulin (3). In fact it is now 
believed that the loss of B cell receptor (BCR) functions is 
probably directly involved in the pathogenesis of most, if 
not all, cases of cHL. 

Most B cells require signalling through the BCR for 
their survival, yet HRS cells do not appear to need these 
survival signals. These observations suggest that a crucial 
event must be the acquisition of mechanisms that prevent 
the apoptosis that would be the normal fate of germinal 
centre B cells lacking a functional BCR. Multiple cell 
signalling pathways are aberrantly activated in HRS 
cells, many of which contribute to this anti-apoptotic 
phenotype. For example, HRS cells display constitutive 
activation of a family of transcription factors known as 
nuclear factor kappa B (NF-κB) (6). Inhibition of NF-
κB signalling in HL cell lines increases their sensitivity to 
apoptosis and impairs tumourigenicity in severe combined 
immunodeficiency mice (7,8). HRS cells express multiple 
tumour necrosis factor receptors, including CD30, CD40, 
TACI, BCMA and RANK which can induce the activation 
of NF-κB signalling following their engagement with 
ligands expressed on immune and other cells of the tumour 
microenvironment (TME) (9,10). Constitutive NF-κB 
activation can also be caused by different genetic lesions 
in HRS cells, including amplification of the gene encoding 
the c-REL subunit of NF-κB, (11-13), mutations in genes 
encoding inhibitors, IκB alpha and IκB epsilon (14-18), 
and TNFAIP3/A20, a ubiquitin modifying enzyme that 
inhibits NF-κB signalling (19). 

The JAK/STAT signalling pathway is also critically 
involved in cHL pathogenesis and may be activated via 
the cytokines which are produced either by HRS cells 
or by cells of the TME; this in turn elevates the levels of 
phosphorylated forms of STATs (e.g., STAT3, STAT5A 
and STAT6) (20-22). JAK/STAT signalling can also 
be aberrantly stimulated by genetic lesions such as the 
amplification of JAK2 or loss-of-function mutations in 
SOCS1 and PTPN1/PTPB1 which are negative regulators 
of these pathways (23-25). 

Identification of EBV in cHL

EBV was initially suggested to be involved in the 
pathogenesis of cHL after it was shown that patients had 
raised antibody levels to EBV antigens in their blood (26). 
Moreover, elevated levels were also shown to be present in 
patients before the onset of cHL (27). 

Southern blotting for EBV DNA was first used to 
identify the presence of EBV DNA in the tissues of cHL 
patients (28). EBV was localized to HRS cells using the 
anti-complement immune fluorescence assay (29), by  
in situ hybridization (ISH) for EBV DNA (30,31), and by 
ISH for two RNA species known as Epstein-Barr virus 
encoded RNAs (EBER1 and EBER2) (32). An aetiological 
role for EBV in cHL was supported by the detection of viral 
genomes bearing identical fusion sequences in biopsies. 
These sequences are created when the circular genomes are 
formed from linear virus DNA and are unique to a single 
infection event. Thus, monoclonal viral genomes present 
in cHL indicate that infection is an early event (30). EBV is 
consistently retained during disease progression, suggesting 
it is required for maintenance of the tumour phenotype (33). 

Epidemiology of EBV-associated cHL

EBV is associated with cHL, but not with NLPHL. 
However, not all cases of cHL are EBV-positive. Moreover, 
the proportion of positive cases varies within different 
populations (34,35). Thus, in resource-rich nations, EBV-
positive rates range between 20% to 50%; here more EBV-
positive cases are seen in older people and in children, and 
fewer in young adults (36,37). In contrast, EBV positive 
rates are often substantially higher in resource-poor 
countries (38,39). EBV-positive disease is more common in 
males, in patients with mixed cellularity disease, and in some 
ethnic groups, even when taking into account potential 
confounding factors, such as socioeconomic status (40). 
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The incidence of EBV-positive cHL is also more 
common in HIV-positive individuals especially when the 
levels of immune impairment are at intermediate levels 
(41,42). Thus, declining levels of EBV-specific immunity 
in the early stages of HIV infection contribute to an 
increased risk of EBV-positive HL. However, this risk of 
developing cHL declines as CD4+ T cell numbers fall 
further, emphasising the importance of CD4+ T cells in the 
pathogenesis of cHL. 

First degree relatives of patients with cHL patients have 
between a 3-fold and 9-fold increased risk of developing the 
disease (43,44), this rises to 100-fold for monozygotic twins 
compared with dizygotic twins (45). Susceptibility loci exist 
within the human leukocyte antigen (HLA) region (46,47); 
HLA-A*01 and HLA-A*02 alleles confer an increased and 
decreased risk of EBV-positive cHL, respectively (47-49) 
(Figure 1). These findings illustrate the potential importance 
of immune control of the virus in the pathogenesis of the 
EBV-positive form of cHL (50). A prior history of infectious 
mononucleosis (IM) is associated with an increased risk 
of developing EBV-positive, but not EBV-negative, cHL 
(51-53) and some of the same HLA associations are also 
observed for IM (Figure 1).

EBV potently transforms B lymphocytes in vitro 

Before considering how EBV might contribute to the 
development of cHL, we briefly outline what is known about 
the transforming potential of EBV and how the virus might 

interact with B cells in the normal asymptomatic host.
Infection of resting B lymphocytes by EBV in vitro can 

lead to their transformation, giving rise to continuously 
growing cell lines, referred to as lymphoblastoid cell lines 
(LCL). If lymphocytes from the blood are used, the T 
lymphocytes present must be depleted or suppressed by drugs 
such as cyclosporin A (54), demonstrating the importance of 
the T cell response in controlling EBV infection in vivo.

EBV encodes a small subset of its genes in the latency 
phase of the virus life cycle which is characterized by the 
absence of virus replication. These ‘latent’ genes include 
nuclear antigens, known as EBNAs (EBNAs 1, 2, 3A, 3B, 
3C, EBNA-LP), latent membrane proteins (LMP1, LMP2), 
as well as two non-coding Epstein-Barr-encoded RNA 
(EBER1, EBER2), and viral miRNA (55,56). Some latent 
genes, for example, EBNA2 and LMP1 are necessary for 
the transformation of B cells, at least in the laboratory (57). 
Latency III is the term used to describe the type of latency 
displayed by LCL; here all known latent genes are present. 
Restricted forms of latency are observed during the ‘normal’ 
differentiation of EBV-infected B cells in vivo, as well as in 
EBV-associated malignancies, including cHL. EBV can also 
express ‘lytic’ genes when the virus shifts to its replicative 
cycle ending in the release of infectious virus particles. 

EBV infection of B cells is characteristic of the 
asymptomatic carrier state

EBV has evolved to survive for the life-time of the 

Figure 1 Risk factors for the development of EBV-positive classical Hodgkin lymphoma.

RISK FACTORS

HLA type: HLA-A*01 (increased risk), HLA-A*02 (reduced risk)

Prior history of symptomatic primary infection (infectious 
mononucleosis)

Elevated antibody levels to the EBV viral capsid and early lytic 
antigens

Immune suppression (e.g. HIV infection) and/or immune 
senescence (older age)

EBV-positive Hodgkin lymphoma, 
showing LMP1 expression in HRS 

cells
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asymptomatic host, and does so using a highly evolved 
mechanism that relies on the colonisation of memory B 
cells (58). How EBV eventually gets into memory B cells 
has been difficult to fully define, mainly because primary 
infection itself largely goes unnoticed and when IM does 
occur after primary infection, by the time it becomes 
symptomatic, the early events in virus infection have already 
taken place. To further exacerbate an already difficult 
problem, the virus colonises only a minute fraction of B cells 
in asymptomatic carriers (perhaps as low as 1 in 106 B cells). 
Notwithstanding these difficulties, the favoured model of 
EBV persistence suggests that initial infection of B cells by 
EBV causes them to enter the cell cycle, and to express the 
latency III pattern of viral gene expression; in this respect 
the initially infected B cells are probably similar to LCL. 
These EBV-infected B cells may then adopt a phenotype 
more closely resembling a germinal centre (GC) B cell, this 
time they adopt a latency II programme in which EBNA1, 
but not the other EBNAs, and the latent membrane 
proteins are present (59). This pattern of virus expression 
mirrors that seen in cHL. At this stage, LMP1 and LMP2 
provide the EBV-infected B cells with surrogate CD40 
and B cell receptor (BCR) signals, respectively, and allow 
the EBV-infected GC B cells to survive and subsequently 
to differentiate into memory B cells (60,61). The EBV-
infected memory B cells no longer express virus genes (a 
state known as latency 0), but can if necessary switch on 
EBNA1 expression to allow them to proliferate (this stage is 
known as latency I) (59). EBV-infected B cells can become 
plasma cells; in this case the lytic cycle is induced, eventually 
leading to virion release in oropharyngeal secretions. This 
is probably the major way in which the virus to transmitted 
from host to host (62).

It is important to also mention here that there is an 

alternative view of the establishment of the carrier state 
which is based on the observation that EBV-infected 
cells in GCs of patients with IM show evidence of 
somatic hypermutation, but without evidence of intra-
clonal diversity; this means that these cells are no longer 
undergoing the hypermutation process (63,64). Moreover, 
LMP1 has been shown to be present in EBV-infected cells 
present outside the GC, potentially counteracting the 
argument that LMP1 is driving a GC reaction (65). Thus, 
this alternative model proposes that EBV directly infects 
memory B cells. Moreover, ‘non-switched’ memory B cells, 
which do not require GC activity can also harbour EBV 
(66-68). EBV infection can induce expression of activation-
induced cytosine deaminase (AID) to stimulate somatic 
hypermutation (69). 

EBV latent genes are important contributors to 
the pathogenesis of cHL

EBV-infected HRS cells express a restricted pattern of virus 
latency characterised by the presence of EBV’s maintenance 
protein, EBNA1, as well as both latent membrane proteins. 
A subset of viral miRNA are also expressed. While the 
contribution of the EBV latent proteins to the pathogenesis 
of cHL is increasingly better understood (70), the roles 
of the EBV miRNAs have only just begun to be explored 
(Figure 2). 

Epstein-Barr virus nuclear antigen-1 (EBNA1)

EBNA1 is essential for the maintenance of EBV episomes 
in infected cells, as it is a key viral replication factor and is 
responsible for tethering viral genomes to the chromosomes 
of the host cell; loss of EBNA1 expression therefore results 

Figure 2 Morphology and EBER-positivity in classical Hodgkin lymphoma and EBV-positive mucocutaneous ulcer: HRS cells (cHL) and 
HRS-like cells (EBV + MCU) are arrowed. EBER staining is shown in the inset.

classical Hodgkin lymphoma EBV-positive mucocutaneous ulcer
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in the loss of EBV genomes during cell division (71). 
EBNA1 is also a transcription factor that can bind to viral 
and cellular promoters (72-74). EBNA1 inhibits TGFβ 
signalling, in part by modulating the levels of SMAD2. 
EBNA1 also decreases expression of the TGFβ target gene, 
PTPRK, which in turn promotes the growth and survival of 
HRS cells (75,76). 

Latent membrane protein-1

LMP1 is a constitutively active homologue of CD40 that 
has been shown to activate NF-κB, JAK/STAT, AP-1 and 
phosphatidylinositol-3 kinase (PI3K)/AKT signalling (77-79).  
While LMP1 might be responsible for activating these 
pathways in EBV-positive cHL, mutations in components 
of these signalling pathways appear to be necessary when 
the virus is absent. For example, TNFAIP3 mutations are 
more commonly seen in EBV-negative cHL, suggesting that 
mutational inactivation of TNFAIP3 and EBV infection are 
alternative pathways both leading to deregulated NF-κB 
signalling (19). The requirement for more genetic changes in 
EBV-negative cHL is supported by other studies which show 
that EBV-positive cHL has significantly fewer chromosome 
abnormalities than EBV-negative cHL (80-82). LMP1 also 
induces many of the features of the aberrant transcriptional 
programme characteristic of HRS cells, including the down-
regulation of BCR signalling components, and the increased 
expression of anti-apoptotic genes such as BCL2 and BFL-1 
(83,84). The FLICE-inhibitory protein (c-FLIP), a negative 
regulator of Fas induced apoptosis (85), is also an LMP1 
target and could be important in the rescue of pre-apoptotic 
GC B cells early in cHL pathogenesis (86). LMP1 also 
increases the expression of Programmed death ligand-1 (PD-
L1) in B cells, which might account at least in part for the 
sensitivity of cHL to immune checkpoint inhbitors targeting 
the PD-L1/PD-1 axis, although definitive studies assessing 
the sensitivity of EBV-positive versus EBV-negative cHL to 
immune checkpoint blockade have not been done (87).

Latent membrane protein-2A (LMP2A)

EBV appears to be crucial for the survival of HRS 
progenitors harbouring so called ‘crippling’ mutations in 
immunoglobulin genes; these mutations are found almost 
exclusively in EBV positive cases (88). EBV efficiently 
immortalises BCR-negative GC B cells in vitro; an effect 
that is dependent upon LMP2A which provides a BCR-
like signalling function (61,89). LMP2A also contributes 

to the transcriptional programme of cHL, for example by 
reducing the expression of numerous B cell transcription 
factors, including EBF1 and E2A (90-93). 

EBV-encoded miRNA

LCL express a subset of BART miRNA (including 
approximately half of Cluster 2) as well as 3 of the 4 
BHRF1 miRNAs, that are subsequently turned off in GC 
B cells and memory B cells. In parallel, EBV-infected GC 
B cells and memory B cells up-regulate the remaining 
BART miRNAs by 5–10 fold (94). In EBV associated 
tumours expressing a latency II phenotype, including 
cHL, the latency III associated BART but not BHRF1 
miRNAs are up-regulated (95). Among these, miR-
BART2-5p is expressed in EBV-positive cHL and can act 
as an anti-sense miRNA to the EBV DNA polymerase 
BALF5 to inhibit virus replication (96). miR-BART2-5p 
also decreases BCR-mediated NF-kappa-B activation (97). 
miR-BART13-3p is one of the most highly expressed viral 
miRNA in cHL, and can be released into the circulation 
via exosomes (98). miR-BARTs in exosomes derived from 
EBV-positive cells have been shown to induce changes in 
the phenotype of macrophages, including the increased 
production of cytokines, such TNF-α, and IL-10 (99).

EBV also influences host miRNA expression in cHL. 
For example, Navarro et al. observed a subset of 10 host 
miRNAs whose expression was influenced by the presence 
of EBV. Among these, miR-96, miR-128a, miR-128b were 
selectively down regulated in EBV-positive cHL. The 
authors also reported a distinctive signature of 25 miRNAs 
that were differentially expressed between cHL and reactive 
lymph nodes. Interestingly, the dysregulation of miR-21 
that favours cell survival by indirectly up-regulating anti-
apoptotic genes suggests an important role for cellular 
miRNAs in the biology of cHL (100).

Co-expression of latent genes

A drawback of many of the studies investigating the 
function of individual virus genes has been the reliance 
on single gene over-expression or knockdown/knockout 
experiments; an approach that cannot take account of the 
effects of the co-expression of virus genes. This could be 
important, particularly because some studies have shown 
that some of the latent genes, for example, LMP1 and 
LMP2A have partially overlapping, as well as counteracting, 
transcriptional programmes (101). Moreover, it has been 
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shown that when expressed in the B cells of transgenic 
mice, LMP1 is transforming, but not when LMP2A is 
co-expressed (102). In another study it was shown that 
LMP1 and LMP2A co-expression in mouse B cells led 
to tumour development, but only if the animals were 
immunosuppressed, suggesting that a background of 
immune impairment is important (103). Studies exploring 
the co-expression of virus genes in cHL at single cell 
resolution are required.

EBV and the tumour microenvironment of cHL

The TME is a defining feature of cHL and there is 
some evidence that EBV is at least partly responsible for 
reshaping this TME through expression of the latent 
genes, and also potentially through limited induction of 
the lytic cycle. For example, LMP1 an increase production 
of a diverse array of different chemokines and cytokines 
(104,105). EBNA1 can also influence the transcription 
of genes encoding key soluble factors, for example the 
chemokine CCL20 which is important in the chemo-
attraction of regulatory T cells (106). Conversely, the cHL 
TME of cHL could also modulate viral gene expression 
in tumour cells. A good example here is the expression 
of LMP1 which can be regulated by different cytokines 
(107,108). The TME could also modify EBV’s oncogenic 
functions. For example, LMP1 can increase expression of 
discoidin domain receptor 1 (DDR1), a collagen receptor 
leading to the increased survival of lymphoma cells (109).

The function of EBV-specific T cells in the TME of 
cHL might be compromised by a variety of immune evasion 
mechanisms. Thus, loss of HLA expression is frequently 
observed in HRS cells, but is more commonly found in 
EBV-negative cHL (110-112); in some cases this is caused 
by inactivating mutations in the beta-2-microglobulin 
gene (113). EBV-positive cases of cHL usually express 
normal or sometimes higher levels of HLA expression, and 
contain more activated CTLs than EBV-negative cases 
(110-112,114). EBV-positive cHL also contains more NK 
cells (115). These data suggest that EBV utilises other 
mechanisms to evade anti-tumour immune responses 
in cHL, including the induction of immune checkpoint 
molecules, such as PD-L1 (87). 

Difficulties in the diagnosis of EBV-positive cHL

The diagnosis of cHL is dependent upon morphological 
evaluation by a haematopathologist who can recognize the 

typical HRS cell morphology and the characteristic cellular 
infiltrate supported by additional immunohistochemistry 
stains for example for recognition of CD30-positive 
HRS cells. However, a number of EBV-associated 
lymphoproliferative disorders (LPD) can harbour EBV-
positive HRS-like B-cells, morphologically mimicking EBV-
positive cHL. Many of these LPD show distinct clinical 
behaviour and require radically different management 
approaches from cHL, potentially leading to over- or 
undertreatment if not recognised by the pathologist. Whilst 
cHL is typically a nodal disease, extranodal extension can 
be seen in late stage disease (116). Furthermore, extremely 
rare manifestations of primary extra-nodal cHL have been 
described (117). Similarly, many of the mimics of EBV-
positive cHL can present as nodal or extranodal disease and 
thus have to be considered in the differential diagnosis.

EBV-positive diffuse large B-cell lymphoma (DLBCL), 
NOS, is systemic lymphoma typically presenting with 
prominent extranodal involvement in the elderly, although 
younger patients can also be affected (118). EBV-positive 
DLBCL, NOS, can show large pleomorphic HRS-like 
lesional B-cells which can associated with a prominent 
inflammatory milieu. On immunophenotyping, CD30 
expression is usually seen in the lesional cells and can co-exist 
with CD15 expression in 68% of cases (119). Expression 
of CD20 is an important marker in distinguishing EBV+ 
DLBCL, NOS, from EBV+ cHL. However, CD20 can 
show variable expression in EBV+ DLBCL, NOS, as over 
50% of lesional cells are typically positive. 

EBV-positive mucocutaneous ulcer (EBVMCU) is a 
localised ulcerating EBV-positive LPD affecting the skin 
or mucous membranes (120) (Figure 3). EBVMCU are 
usually solitary but multi-focal manifestations have been 
described (121). The lesions are typically associated with 
immunosuppression or in older patients, are assumed to be 
consequence of immunosenescence (120). EBVMCU is an 
indolent disease and usually resolves upon once the source 
of immunosuppression is removed. Rituximab has been used 
with some success in refractory cases. 

Some lymphomas, not in themselves associated with 
EBV, can show EBV-positive HRS-like B-cells in the 
background. The archetypal example is angioimmunoblastic 
lymphoma (AIL), a T-cell lymphoma with a T-follicular 
helper(Tfh) cell phenotype (118). Up to 95% of AIL can 
show EBV+ B-cell blasts in the background. In some 
cases, the B-cell component in the background of AIL can 
progress to EBV+ DLBCL or EBV+ cHL (122). Other 
lymphomas accompanied by EBV+ B-cell blasts have also 
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been described in the background of other EBV-negative 
lymphomas including chronic lymphocytic leukaemia and 
mantle zone lymphoma (123,124). 

EBV-positive manifestations of lymphomas, traditionally 
considered not to be associated with EBV, have now 
been described, thus broadening the range of potential 
differential diagnoses. Rare examples of EBV-positive 
nodular lymphocyte predominant Hodgkin lymphoma, 
primary mediastinal B-cell lymphoma and EBV-positive 
mediastinal grey-zone lymphoma (PMGZL) (intermediate 
features between primary mediastinal lymphoma and 
Hodgkin lymphoma) have been described (125,126). 
The diagnosis of mediastinal grey-zone lymphoma is 
further complicated, as both cHL and PMGZL can occur 
in the same vicinity (composite lymphoma), or develop 
sequentially, where EBV status has been reported to change 
from the initial to subsequent biopsy. The diagnosis of these 
entities necessitates the presence of all the typical diagnostic 
features of the EBV-negative variant to be present in order 
to make the diagnosis. Nonetheless, the recognition of these 
entities can make distinction between the various EBV-
positive LPD extremely difficult. 

Concluding remarks

A subset of cHL patients harbor EBV in their tumour cells. 
Although the contribution of EBV to the pathogenesis 
of cHL has been debated, we argue that differences in 
the epidemiology, genetics, and biology of EBV-positive 
compared with EBV-negative cHL strongly suggest a key 
role for the virus. Notwithstanding debate over EBV’s exact 
contribution to the oncogenic process in cHL, there is 
undoubtedly an opportunity to exploit the presence of EBV 
in tumours for patient benefit. In some LPD and in other 
EBV-associated tumours such as nasopharyngeal carcinoma, 
EBV detection in blood and other tissues can be a useful 
biomarker. However, as yet routine blood testing for EBV 
is not employed in the management of the majority of 
EBV-associated malignancies, including cHL. Moreover, 
the development of new approaches to specifically target 
EBV, for example, by reactivating the virus into the lytic 
cycle (and thereby killing the infected cell, or making it 
susceptible to drugs such as ganciclovir) (127-129), gene 
therapy (130), EBNA1 inhibitors (131,132), and therapeutic 
vaccination/T cell therapies (133,134) are provide exciting 
new opportunities to improve outcomes for patients.

Figure 3 Contribution of EBV latent genes to the pathogenesis of classical Hodgkin lymphoma.
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