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Introduction

Central nervous system diffuse large B-cell lymphoma 

(CNS-DLBCL), formerly named primary CNS lymphoma 

(PCNSL),  is  an extranodal  aggressive lymphoma 

manifesting solely in the brain, spinal cord, leptomeninges 

or in the eye and represents the vast majority of CNS-

lymphoma cases (1,2). Since other articles published on the 
same special issue describe the epidemiology, the pathology, 
the clinical and therapeutic approaches for CNS-DLBCL, 
as well as of secondary central nervous system involvement, 
here we will focus on the genetics and the biology of CNS-
DLBCL cells. Remarkably, the main patho-mechanisms 
for CNS-DLBCL had already been reported before 2012 
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and were subsequently confirmed by numerus publications 
from different groups (Figure 1). Epstein-Barr virus positive 
CNS-DLBCL show a totally different pathogenesis (3), and 
we will omit this type of CNS-lymphoma from this review 
article.

CNS-DLBCL express non-switched self-reactive 
somatically mutated immunoglobulins 

Tumor cells of CNS-DLBCL present immunoglobulin 
(Ig) heavy and light chain genes with somatic mutations, 
compatible with their origin from mature B-cells that have 
encountered antigen and have undergone T-cell dependent 
somatic maturation (4-12). IGHV4 family genes are 
frequently rearranged, with a preference for the IGHV4-34 
gene segment (4,5,7-9,11).

The tumor cells do not show a successful class switch, as 
such, they express neither IgA, nor IgE, nor IgG, but only 
IgM and IgD (13).

The immunoglobulins expressed by CNS-DLBCL 
cells do not react against self-antigens commonly involved 
in autoimmune disorders, but they do bind self-proteins, 
including proteins expressed in the central nervous 

system, such as GRINL1A, ADAP2 and BAIAP2 (9), or 
N-hyperglycosylated SAMD14 and neurabin-I (11). 

In agreement with the mutated immunoglobulin heavy 
chain genes, CNS-DLBCL cells also present aberrant 
somatic hypermutation (ASHM) that affect a series of 
genes, such as BTG2, HIST1H1E, KLHL14, MYC, PAX5, 
PIM1, RHOH, or SUSD2 (10,14-16).

CNS-DLBCL have an activated B-cell like (ABC) 
DLBCL phenotype

DLBCL represents an heterogenous group of diseases 
(17-20). Studies performed in systemic DLBCL have 
first identified two main subgroups, the germinal center 
B-cell like (GCB) and the ABC DLBCL, based on their 
expression profiles suggestive of their potential cell of origin 
(COO) (21-24). GCB and ABC DLBCL have differences 
in genetics and biologic features and, importantly, in the 
clinical outcome when patients are treated with the standard 
R-CHOP treatment (18,24). The vast majority of CNS-
DLBCL are constituted by non-GCB DLBCL. This has 
been reproducibly demonstrated in many studies, largely 
performed using immunohistochemistry (15,25-42), but 
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Figure 1 Tumor cell differentiation. Depicted is the timescale of tumor cell differentiation in the pathogenesis of PCNSL and where this 
alteration could impact in the pathogenesis. MYD88 and CD79B mutations are most likely are acquired before entering a GC reaction, but 
the selective force during the GC reaction positively selected the precursor of the tumor cell. Most important as pathogenetic mechanism is 
the faulty GC reaction, during which the precursor cell accumulated mutations and expands, in contrast to the physiological GC reaction, 
the self-polyreactivity of the B cell receptor. There is no single one event, which determines the development of PCNSL. It is important to 
understand that all different time points and acquired genetic changes cumulate synergistically in the activation of different pathways and 
ultimately in the manifestation of PCNSL. PCNSL, primary central nervous system lymphoma; GC, germinal center. 
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also via gene expression profiling (33,43-46). 
Differently from what observed in systemic DLBCL, the 

prognostic impact of the COO in CNS-DLBCL seems to 
be minimal, with the vast majority of studies not finding any 
difference in the clinical outcome between patients with ABC 
or GCB CNS-DLBCL (31-43). Fukumura et al. reported an 
inferior progression-free survival (PFS) for non-GCB than 
GCB cases in a series of 39 patients (15). Shi et al. reported 
a borderline inferior 3-year overall survival (OS) for ABC 
than GCB-PCNS DLBCL when considering 77 patients 
treated half with methotrexate-based scheme and half not, 
but the difference was not maintained when they analyzed 
the outcome based on treatment modality (29). 

CNS-DLBCL cells belong to a specific ABC 
DLBCL cluster

In the last few years, ABC and GCB DLBCL have been 
further subclassified in additional sub-groups that share 
more homogenous genetic lesions (47-50). In particular, 
a specific ABC DLBCL subset has been recurrently 
identified, although named in different ways: C5 (47), 
MCD (48,49) or MYD88 cluster (50). These lymphomas 
are characterized by the presence of genetic events that 
activate the B-cell receptor (BCR), the Toll-like receptor 
(TLR) and NF-κB signaling (often concomitant CD79B 
mutations and MYD88 L265P mutation; PIM1 mutations), 
block the terminal B-cell differentiations (TBL1XR1 and/
or PRDM1 mutations), deregulate the cell cycle (CDKN2A/
B deletions), allow the immune escape (mutations or 
deletions of HLA-A, HLA-B, HLA-C and CD58), or 
protect from apoptosis (BCL2 gains), plus additional 
mutations in KLHL14 or ETV6 (47-50).

Importantly, CNS-DLBCL cells exactly presents a 
pattern of lesions overlapping with this newly described 
MCD subtype. Whereas CNS-DLBCL, or more general 
CNS-lymphoma, refers to a lymphoma manifestation in 
the CNS, the term CNS-DLBCL should be restricted 
for CNS-DLBCL of this MCD subtype. Different 
studies have reported a very high frequency of mutations 
occurring in CD79B, MYD88 (10,15,16,30,33,51-73), 
PIM1 (10,15,30,33,53,56-60,65,71,72) and TBL1XR 
(56,57,59,67,72), BCL2 locus gains (25,39,40,58,74,75), 
inactivation of CDKN2A (30,55,58,59,62,69,76-87), PRDM1 
(59,75,81,85-92) and ETV6 (57,58,93), and genetic lesions 
leading to immune evasion (15,56,59,78,81,85-87,94).

The BCR/TLR/NF-κB signaling is active in CNS-
DLBCL 

Multiple mechanisms sustain the constitutive activation 
of the BCR/TLR/NF-κB signaling. As in the C5/MCD/
MYD88 cluster, mutation of CD79B and MYD88 usually 
co-occur. The MYD88 mutations are mostly represented by 
the c.794T>C substitution resulting in leucine 265 replaced 
by proline (L265P). Hotspots are also observed in CD79B, 
with replacement of tyrosine 196 with either asparagine 
(Y196N), aspartic acid (Y196D), cysteine (Y196C), histidine 
(Y196H) or serine (Y196S) as the most observed. A lower 
frequency of MYD88 L265P mutations has been reported 
in PCSNL from Hispanic versus non-Hispanic patients: 
27% (5/18) vs. 66% (8/12) (53). 

The gene coding for the PIM1 serine/threonine kinase 
is among the most mutated. PIM1 is known to be involved 
in lymphomagenesis (95-98). BCL6 transgenic mouse 
models have shown that PIM1 cooperates with BCL6, 
recurrently translocated in CNS-DLBCL (99,100), to give 
lymphomas (97). Pharmacological and genetic preclinical 
experiments in cell lines derived from ABC DLBCL, 
primary mediastinal large B-cell lymphoma and from 
Hodgkin lymphoma indicate a role for PIM1 in sustaining 
the lymphoma cells survival, activating NF-κB and JAK 
STAT signaling and immune evasion (98,101,102). 

Similarly to systemic ABC DLBCL, recurrent gains 
are observed at 3q12.3 leading to the overexpression of 
NFKBIZ gene coding for the NF-κB co-activator IκB-ζ (58). 
Functional experiments performed on systemic DLBCL 
cell lines show that NFKBIZ silencing induces apoptosis and 
reduces cell proliferation and expression levels of IκBα and 
BCLXL (58). A similar role might be envisioned also for the 
NF-κB co-activators IκB-α and IκB-ε, coded by NFKBIA 
gene and NFKBIE, also recurrently mutated in DLBCL 
(103,104).

Kaulen et al. have reported mutations in SLIT2 in 3/6 
CNS-DLBCL studied by whole exome sequencing (72). 
Mutational pattern and functional experiments performed, 
in the non-lymphoma model HEL293T cells transfected 
with mutated or wild type SLIT2, suggest that the gene 
might have a tumor suppressor function, negatively 
regulating WNT- and NF-κB signaling (72). Its inactivation 
would contribute to NF-κB signaling in CNS-DLBCL.

TERT (telomerase reverse transcriptase) mutations have 
also been reported in 16% (16/49) of CNS-DLBCL (105).  
TERT is involved in the maintenance of telomeres and it 
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is both an NF-κB target and NF-κB cofactor. Thus, the 
mutations would represent an additional mechanism to 
active BCR/NF-κB pathway (105).

PRDM1 gene, coding for the plasma cell master regulator 
BLIMP1, is mapped at 6q21, a region commonly deleted 
in CNS-DLBCL, with DNA losses that often encompass 
also TNFAIP3, coding for A20, a negative regulator of NF-
κB target, and other potential tumor suppressor genes 
(59,75,81,85-92,106). A similar pattern with a large genomic 
aberration potentially deregulating both B-cell terminal 
differentiation and NF-κB, is also observed in systemic 
ABC DLBCL. 

BAFF (B-cell activating factor of the tumor necrosis 
factor family) and APRIL (a proliferating inducing ligand) 
are among the signals that lead to activation of the NF-κB 
pathway in mature B-cells. In particular, APRIL binds to 
two receptors, TACI (transmembrane activator and CAML 
interactor) and BCMA (B-cell maturation antigen), while 
BAFF binds TACI, BCMA, and also BAFF-R (BAFF-
receptor). 

CNS-DLBCL cells express all three receptors (107,108). 
The production of the ligands by astrocytes, as shown for 
BAFF, or, possibly by the neoplastic cells themselves, would 
contribute to the survival of tumor cells (107-109). Also, 
the soluble forms of BCMA and TACI (110,111) have been 
reported elevated in the cerebrospinal fluid (CSF), but not 
in the serum of CNS-DLBCL patients (110). Similarly, 
both APRIL (112) and BAFF (111) can be detected in the 
CSF of CNS-DLBCL patients.

Muta et al. have suggested that another mechanism that 
might contribute to NF-κB activation in CNS-DLBCL 
cells is the ghrelin/GHS-R (growth hormone secretagogue 
receptor) axis (113). CNS-DLBCL cells express both 
proteins (113) and, in glioma cells, ghrelin activates NF-κB 
signaling and induces migration of the cells (114). 

Finally, the activation of the NF-κB and JAK/STAT 
signaling, characteristic of the ABC phenotype, are 
reflected by the presence of secreted factors such as 
interleukin 10 (IL-10) and of CXC chemokine ligand 13 
(CXCL13), which can be detected in CSF, representing a 
potential diagnostic biomarker and tool to follow patients 
during therapy (115-130). 

CDKN2A is frequently inactivated in CNS-DLBCL

CDKN2A inactivation is very common in CNS-DLBCL 
(30,55,58,59,62,69,76-87,131), again reflecting its 
similarities with systemic ABC DLBCL C5/MCD/

MYD88 cluster (47-50). Braggio et al. has reported over 
80% of cases with CDKN2A inactivation by mutations 
and/or deletions at 9p21.3 (56). Nayyar et al. showed 
biallelic loss in 44% of 6 CNS-DLBCL cases (69). 
Cobbers et al., reported homozygous deletion in 8/20, 
plus heterozygous loss in additional two cases (77). A 
mechanism of CDKN2A inactivation is also mediated 
by promoter hypermethylation (77,131). It is worth of 
mentioning that CDKN2A losses are matched with a high 
level of genomic complexity, including deletions at 3p14.2 
affecting the tumor suppressor FHIT (58).

TBL1XR1 mutations and reprogramming the 
differentiation

Mutations in TBL1XR1 were first described in CNS-
DLBCL by Gonzalez-Aguilar et al.  (59), and were 
considered to play a regulatory role in the NF-kB pathway. 
The underling mechanism is much more complex, because 
TBL1XR1 mutations will impair plasma cell differentiation. 
Thereby shifting the B-cell differentiation to non-class-
switched IgM memory B-cells with an aberrant cyclic 
reentry to new germinal centers (132,133), which reflects 
the phenotype of the tumor cells in CNS-DLBCL (13,44).

Epigenetic regulators are only marginally 
affected 

Mutations in genes coding for epigenetic regulators, in 
particular EZH2, CREBBP, EP300, are very uncommonly 
mutated in CNS-DLBCL (15,30,34,57,72,134), and only 
KMT2D seems to be mutated in 10-40% of the cases 
(15,30,33,71). The pattern is in agreement with what 
reported in systemic ABC DLBCL belonging to the C5/
MCD/MYD88 cluster (47-50).

TP53 can be mutated in CNS-DLBCL

TP53 mutations have been reported at very different 
frequencies across studies (15,26,33,71,76,77,82,85,90). 
Perhaps reflecting the ABC DLBCL C5/MCD/MYD88 
cluster (47-50), CNS-DLBCL shows a generally lower 
frequency of TP53 mutations than considering systemic 
DLBCL as a whole. Lauw et al. have suggested a higher 
prevalence of TP53 mutations and lower percentage of 
mutations in genes involved in BCR/TLR/ NF-κB signaling 
(e.g. MYD88, CARD11, CD79B, PIM1) in pediatric than 
adult CNS-DLBCL (135). 
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MYC, BCL2 and BCL6 rearrangements

In agreement with the ABC phenotype, chromosomal 
translocations affecting MYC  and BCL2  gene are 
uncommon (25,35,36,39,40,74,91,136-139). However, 
CNS-DLBCL often overexpress MYC and BCL2 proteins 
(29,31,32,36,38-40,91,138), and gains or amplifications of 
the genomic loci are detected in 10–30% (25,36,39) and 
20–40% (25,39,40,58,75), respectively (74). 

Differently from MYC and BCL2, BCL6 is recurrently 
translocated in CNS-DLBCL with frequencies ranging 
from 17% to 44% (25,34,39,40,58,74,91,99,100,137-139), 
perhaps more commonly than what seen in the systemic 
ABC DLBCL C5/MCD/MYD88 cluster (47-50).

The ETS transcription factor ETV6 is frequently 
inactivated 

The ETS transcription factor ETV6 appears inactivated by 
multiple mechanisms in CNS-DLBCL (57,58,93) as well 
as in systemic C5/MCD/MYD88 cluster (47-50). The gene 
is targeted by mutations in 16% (6/37) (57) and deletions 
in exons 2 or exons 2–5 in 13% (3/24) (58). Finally, the 
gene is translocated in the ETV6-IGH fusions in 18% 
(13/72) of the cases, with breakpoints leading to a truncated 
ETV6, lacking exons 1–2 (93). Albeit ETV6 is known to 
be involved in B-cell development, the contribution to 
CNS-DLBCL pathogenesis of its inactivation is still to be 
defined.

Different potential mechanism of immune 
evasion

Immune escape by loss of expression of MHC class I is a 
fundamental mechanism in DLBCL (140). Genetic events 
reported in systemic DLBCL and indeed enriched in the 
C5/MCD/MYD88 cluster (47-50,141) as mechanism 
to evade the immune system are common in CNS-
DLBCL: B2M, CD58, CIITA are often targeted by 
somatic mutations, deletions or genomic rearrangements 
(15,56,58,59,78,81,85-87,94). 

Integrating CNV and WES Braggio et al. reported 
inactivation of HLA genes by somatic mutations in 50% and 
B2M inactivation in approximately 10% of the cases (56). In 
a series of 19 CNS-DLBCL cases, Schwindt reported DNA 
losses or uniparental disomy in 74% of the cases at 6p21.32, 
the region spanning the MHC class I and II encoding  
genes (78). Fukumura et al. reported mutations in CD58 in 

17%, B2M in 10%, CIITA (17%), HLA-C (15%), and focal 
deletions of HLA locus in one case (15). 

The relevance of PDL1/PDL2 in CNS-DLBCL 
is undefined. Chapuy et al.  reported chromosomal 
translocations the PDL1 locus in 3/24 cases (13%) (58). 
Genomic amplifications of PDL1/PDL2 are uncommon 
(25,69,71,78,142), and even their effect is uncertain since 
Chapuy et al. but not Villa et al. have reported concomitant 
protein over-expression in cases with genomic gain of the 
locus (25,58).

Finally, Waldera-Lupa et al. have studied CSF proteome 
in 17 CNS-DLBCL compared to 10 non-tumor samples 
(143). HLA class II HLA-DRB1 was among the proteins 
increased in CNS-DLBCL patients, suggesting that 
shedding of the detected protein could represent a 
mechanism of immune evasion (143). 

miRNAs and CNS-DLBCL

Despite the rarity of the disease, quite a few studies have 
been published regarding the potential role of miRNAs 
(144-153). Known oncomirs such the members of the 
miR-17–92 cluster, in particular miR-17-5p, miR-155, 
miR-21 miR-196b, have been reported upregulated in 
CNS-DLBCL, similarly to other lymphoma subtypes 
(144-146,149-151). Unfortunately, due to the still 
uncharacterized function of most miRNAs, the results of the 
studies, reviewed elsewhere (154), are largely preliminary 
and descriptive. 

Takashima et al. have presented a prognosis prediction 
model based on four miRNAs (miR-101, miR-548b, miR-
554, and miR-1202), identified profiling 40 CNS-DLBCL 
focusing on miRNAs that regulate immunity (147). 

Interestingly, miR-21, miR-19b, and miR-92a are more 
expressed in the CSF of patients with CNS-DLBCL than 
non-malignant brain lesions and might have a biomarker 
role (146,149-151), as also proposed for the U2 small 
nuclear RNA fragments (RNU2-1f), also detectable at high 
levels in the CSF of CNS-DLBCL (155).

Genetic lesions and clinical outcome

There are no clear associations between the presence of 
any genetic lesion and clinical outcome. This is due to the 
sample size of the series, the heterogeneity of therapies, the 
frequency of the lesions, and the different methodologies to 
define the presence of absence of the genetic event. 

Across a series of heterogeneous 54 CNS-DLBCL, 
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Zheng et al. reported a worse outcome for the four patients 
with mutated CD79B versus the 12 wild type patients (70). 
An inferior PFS for mutated CD79B cases has been seen 
also in a series of 57 cases with a mutation frequency of 
59% (30) but not in another series of 71 patients (67).

No prognostic impact has been reported for the presence 
of MYD88 mutations in different series (59,67,70,156). 

Deletions at 6q have been associated with inferior 
outcome in multiple series, also including HD-MTX 
treated patients (59,89,91,92). 

Loss at 6q22, alongside with the presence of BCL6 
translocation, was associated with inferior outcome in a 
series of 75 cases of CNS-DLBCL (38% treated with HD-
MTX) (91). 

Other genetic lesions potentially affecting the outcome 
of CNS-DLBCL patients include CDKN2A homozygous  
losses (59), BCL6 translocations (91), HLA-C mutations (15).

Munch-Petersen et al. studied TP53 in 86 CNS-DLBCL 
patients. Although the 32 mutated cases (34%) did not 
show differences in clinical outcome, a worse PFS and OS 
was seen for the nine patients bearing a TP53 mutation 
supposed to directly affect the direct protein/DNA contact 
versus all the other patients treated with combination 
chemotherapy with or without rituximab (26). 

DNA mutations can be used to track CNS-DLBCL 
cells 

The analysis of circulating tumor DNA (ctDNA) represents 
an important tool in the diagnostic and follow-up settings 
(130,157-161). As for systemic disease, tumor mutations can 
be detected in serum- or plasma-derived ctDNA of CNS-
DLBCL (51,62,64,161,162). Moreover, the analyzed ctDNA 
in CSF might be more effective in detecting the presence 

of tumor cells than flow cytometry or cytology (63,163-
166), and could be used to follow the patient during and 
after treatment (164). In the context of a prospective study, 
Ferreri et al. have detected the MYD88 L265P mutation 
in the CSF of 26/36 (72%) newly diagnosed and relapsed 
CNS-DLBCL patients, respectively (130). The combination 
of CSF IL-10 levels and MYD88 L265P appeared to 
identify disease in the CSF of 21/24 (88%) patients with 
relapsing CNS-DLBCL (130). At the 2021 Meeting 
of the American Society of Hematology, Mutter et al.  
reported the analysis of 85 tumor biopsies, 131 plasma 
samples, and 62 CSF specimens from 92 CNS-DLBCL 
patients using ultrasensitive sequencing technologies 
such CAPP-Seq (cancer personalized profiling by deep 
sequencing) and PhasED-Seq (phased variant enrichment 
and detection sequencing) (161). Genetic lesions were 
detected in 78% of plasma samples and in 100% of CSF 
specimens, and the levels of ctDNA, at baseline and 
during treatment appeared to predict PFS and OS (161). 
Moreover, the data suggest that the use of plasma or CSF 
ctDNA could be implemented in the diagnostic workflow to 
possibly avoid surgical biopsies for a subset of patients (161).

Genetic and biologic features suggest targeted 
therapies 

The enrichment of specific genetic and biologic features in 
CNS-DLBCL (Table 1) provide the rationale for potential 
targeted therapies (127,167-174), which have been explored 
in a series of phase I and II studies (Table 2).

CNS-DLBCL are highly enriched of MYD88 L265P 
and CD79B mutations that provide the strong rationale 
for testing BTK inhibitors (94,164,176,178,187). Indeed, 
in systemic ABC DLBCL, these genetic features have 

Table 1 Main genetic and biologic features of CNS-DLBCL

Cell of origin ABC-DLBCL

Genetic subtype C5/MCD

Immunoglobulin genes rearrangement Non-switched self-reactive somatically mutated immunoglobulins 

Recurrent mutations CD79B, MYD88, ETV6, PIM1, SLIT2, TERT (BCR/TLR/NF-κB), HLA-A, B2M, CD58 (immune 
escape), ETV6, TBL1XR1, PRDM1 (B cell differentiation), KMT2D (chromatin remodeling)

Recurrent genomic gains +18q (BCL2, MALT1), +3q (NFKBIZ), +18p, +3p, +19q13.42, +19q

Recurrent genomic losses -6p21.32 (MHC), -6q21 (PRDM1), -9p21.3 (CDKN2A)

Recurrent fusions and translocations 3q27 (BCL6)

CNS-DLBCL, central nervous system diffuse large B-cell lymphoma; ABC, activated B-cell like.
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been associated with higher sensitivity to this therapeutic 
approach (188). Since CNS-DLBCL are highly enriched 
of these features, it made sense to test the use of the BTK 
inhibitor ibrutinib (94,164,176,178,187). Preclinical and 
clinical data show that ibrutinib passes the blood brain 
barrier (176,189,190), and the drug has been tested 
both as single agent (94) and in combination (164,176). 
Interestingly, the relationship between genetic status and 
clinical responses is intriguing with responses observed 
also in patients lacking MYD88/CD79B mutations, or 
in patients with tumors with genetic lesions, such as 
CARD11 mutations, expected to cause ibrutinib resistance 
(164,176,178). For example, in the study reported 
by Grommes et al., non-responders were enriched of 
lesions supposed to give resistance to ibrutinib (CARD11 
mutations, TNFAIP3 inactivation), but, differently from 
systemic DLBCL (99), there were no complete remissions 
(CR) in patients with tumors bearing both MYD88 and 
CD79B mutations (three partial response and one stable 
disease) (94). Two of three CR cases had MYD88 L265P but 
lacked CD79B mutations and one was wild type for both 
MYD88 and CD79B (94). 

In vitro evidence obtained in cell lines derived from the 
systemic ABC DLBCL C5/MCD/MYD88 cluster showed 
a strong synergism for the combination of ibrutinib with 
DNA damaging agents (doxorubicin, etoposide, cytarabine, 
and mitomycin C) and antagonism when the BTK inhibitor 
was combined with multiple anti-folates, apparently 
not supporting a combination with methotrexate-based 
regimens (176). However, clinically, a similar overall 
response rate (ORR) has been achieved with ibrutinib 
combined with both DNA damaging agents (176) and 
methotrexate-based regimens (164).

It must be mentioned that in the phase I combining 
ibrutinib with DNA damaging agents in 18 CNS-DLBCL 
patients, major infections were common: five cases of 
pulmonary aspergillosis, one case of pulmonary Pneumocystis 
jiroveci, and three pneumonitis of undetermined etiology, 
two cases of CNS aspergillosis, and one case of enterocolitis 
(176). Eight of the 18 patients died, three from disease 
progression, two due to Aspergillus infection during the 
ibrutinib window, and one due to neutropenic sepsis during 
chemotherapy (176). Preliminary data from the ongoing 
follow-up study suggest that the introduction of fungal 
prophylaxis seems to avoid aspergillosis (186).

Clinical studies are now exploring BTK inhibitors 
also in combination with additional targeted agents such 

immunomodulatory drugs (IMiDs), anti-CD20 monoclonal 
antibodies against CD20 or checkpoint modulators. Among 
the first 15 patients (11 with CNS-DLBCL, four with 
secondary CNS lymphoma) enrolled in a phase I study 
combining ibrutinib, with the IMID lenalidomide and the 
anti-CD20 monoclonal antibody rituximab, no Aspergillosis 
infect ion was  observed,  with thrombocytopenia , 
lymphopenia, and rash as the most adverse events (177). 

In addition to an active BTK signaling, CNS-DLBCL 
cells also depend on the PI3K/AKT/mTOR and RAS/
MAPK signaling (94,191-193). Active mTOR signaling 
has been reported in over 70% of 24 CNS-DLBCL cases, 
using phospho-4E-BP1 (Thr 37/46) and phospho-S6 
(Ser235/236) as downstream markers of activity (192). 
The transcriptome of CNS-DLBCL cases with CD79B 
mutations is enriched of gene expression signatures 
associated with PI3K and mTOR signaling, while NFKB 
signatures are under-represented (94). The need of 
targeting of multiple proteins is suggested also by the 
preclinical observation that the killing of CD79B-mutant 
CNS-DLBCL patient-derived xenografts is not achieved 
using ibrutinib or isoform specific PI3K inhibitors as single 
agents, but only with pan PI3K inhibitors, dual PI3Kα/δ 
inhibition, or combining low concentrations of the BTK 
inhibitor with dual PI3Kα/δ or mTOR inhibitors (94). 
Phase I–II studies performed in the relapsed/refractory (R/
R) setting have so far reported only modest single agent 
activity with the mTOR inhibitor temsirolimus (179) or the 
pan-PI3K inhibitor buparlisib (182). No data have yet been 
reported with the dual PI3K/mTOR inhibitor bimiralisib. 
Albeit based on the very first six patients treated in the 
escalation phase (164), the combination of ibrutinib and the 
PI3Kα/δ inhibitor copanlisib seems safe but not associated 
with much better results, at least in terms of response rate, 
than what seen with single BTK inhibition. It must also 
be mentioned that the observed phospho-S6 might be 
downstream to an additional kinase, PASK, and not mTOR, 
suggesting different therapeutic targets (193).

The typical MCD phenotype of CNS-DLBCL cells, the 
role of IMIDS in targeting the IRF4/SPIB axis in systemic 
MCD DLBCL models as well as the reported synergisms 
with IMDS and ibrutinib (194) represent the rationale to 
the clinical studies with lenalidomide or pomalidomide as 
single agents and in combination (123,177,180,181). 

There are a whole lot of additional targets that have not 
yet been clinically explored in the CNS-DLBCL setting.

Jiménez et al. reported preclinical synergism combining 
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ibrutinib with selinexor, a selective inhibitor of nuclear 
export (SINE) compound that specifically blocks Exportin 1 
(XPO1) (195). The combination of the two small molecules 
has a direct anti-tumor effect but it also able to modulate 
the tumor microenvironment pushing toward a pro-
inflammatory M1-like macrophages and reducing PD1 and 
SIRPα expression on M2-like macrophages (195).

Using orthotopic patient derived xenografts, Tateishi 
et al. have shown the therapeutic potential of the direct 
NF-κB inhibition using BAY11-7082 and of the natural 
compound juglone, an inhibitor of peptidyl-prolyl isomerase 
PIN1, as anti-lymphoma agents and to sensitize cells to 
chemotherapy (16). Since NF-κB activation has been 
associated to low sensitivity to chemotherapy, including 
high-dose (HD) methotrexate (MTX) (16), inhibition of 
the pathway, as also achieved with BTK inhibitors, might 
improve the patient’s outcome.

The frequent inactivation of CDKN2A and the high 
genomic instability suggest the possible benefit of using 
aurora kinase inhibitors, CDK4/6 inhibitors (196) or 
PRMT5 inhibitors (197).

As previously mentioned, CNS-DLBCL cells from 
different patients still recognize the same antigens, and in 
particular SAMD14 and neurabin-I (11). Bewarder et al. 
applied the B-cell receptor Antigen for Reverse targeting 
(BAR) approach to develop a molecule that resembles an 
IgG1 antibody and contains the BCR-binding epitope 
of the common CNS-DLBCL antigens SAMD14 and 
neurabin-I instead of variable regions to target the B-cell 
receptors with specificity for neurabin-I (198). The IgG1-
format neurabin-I BAR-body shows in vitro ability to induce 
antibody-dependent cell-mediated cytotoxicity and, based 
on in vivo data obtained with a similar molecule, it might 
represent a future therapeutic approach (199), although its 

efficacy and safety still require extensive validations (200). 
Due to the expression of BAFF-R on CNS-DLBCL 

cells and on the role of BAFF signaling in sustaining their 
growth, antibodies against the soluble BAFF of against 
BAFF-R have been proposed as potential therapeutic tools 
for CNS-DLBCL patients (109). 

Promoter methylation affecting specific genes can 
predict the response to specific drugs. Hypermethylation 
of O6-methylguanine- DNA methyltransferase (MGMT) 
promoter region has been reported in 30-60% of CNS-
DLBCL cases (70,77,84,201,202) and suggests a higher 
sensitivity to alkylating agents as reported for temozolomide 
or carmustine (BCNU) in glioma patients (203,204). In five 
relapsed CNS-DLBCL patients treated with temozolomide, 
the four responders had methylated MGMT promoter, 
while the only non-responders had no methylation 
(202). In a series of 15 CNS-DLBCL cases treated with 
temozolomide and analyzed for MGMT protein expression, 
all patients with low expression achieved CR or PR and only 
one with high MGMT expression responded to treatment 
(205).

Inversely to MGMT, methylation in the promoter of the 
gene coding for RFC (reduced folate carrier), involved in 
MTX cellular uptake, seems to be associated with decreased 
response to HD-MTX (206). In a series of 37 CNS-
DLBCL patients, RFC promoter methylation was detected 
in 24% of the cases (206). None of patients with promoter 
methylation were relapse-free at three years and all the 
patients alive at 3 years had unmethylated RFC (206). 

Somatic mutations in the CD19 gene have not yet been 
reported in CNS-DLBCL patients but the increase in use 
of anti-CD19 chimeric antigen-receptor (CAR) T-cells 
in these patients population (Table 3), sustained by initial 
promising reports (207-209), will require its inclusion 

Table 3 On-going trials exploring the use of anti-CD19 CAR T-cells in patients with PCNSL (based on https://clinicaltrials.gov accessed in June 
2021)

Clinical phase Compound Mechanism of action Population ORR CRR NCT number Status

I CD19CAT-41BBζ CAR T-cells Anti-CD19 CAR T-cells R/R n.a. n.a. NCT04443829 Recruiting

I Tisagenlecleucel Anti-CD19 CAR T-cells R/R, 1st line n.a. n.a. NCT04134117 Recruiting

I Axicabtagene ciloleucel Anti-CD19 CAR T-cells R/R n.a. n.a. NCT04608487 Recruiting

I 19(T2)28z1xx CAR T cells Anti-CD19 CAR T-cells R/R n.a. n.a. NCT04464200 Recruiting

I CAR T-cells Anti-CD19 CAR T-cells R/R n.a. n.a. NCT04532203 Recruiting

II Lisocabtagene maraleucel Anti-CD19 CAR T-cells R/R n.a. n.a. NCT03484702 Recruiting

ORR, overall response rate; R/R, refractory/relapsed; CRR, complete remission rate; CAR, chimeric antigen-receptor.
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especially in targeted DNA sequencing, especially in follow-
up analyses. 

It is important to highlight that mutation/methylation 
screening approach does not identify all the potential 
therapeutic targets by ignoring surrogate marker. These 
markers are always expressed by the tumor cells (but not 
exclusively) and with CD20 as one example are already used 
as target molecule in therapies. another surrogate marker 
in CNS-DLBCL is CXCR4, which is always expressed by 
the tumor cells (210), and never reported mutated in the 
setting of CNS-DLBCL (211). The ligand CXCL12 is 
expressed by endothelial cells, microglia cells (only in the 
infiltration zone) and by the tumor cells itself (210). Perhaps 
it provides a crucial signal leading to a permissive tumor 
microenvironment and immune evasion, as described for 
other cancer types (212), and its targeting might be helpful. 
Future therapy concepts will indeed focus on personalized 
targeting. Brain biopsy remains the gold standard for 
the diagnostic of CNS-DLBCL and it will become the 
foundation for clinical decisions, although it is important to 
remind that no single CNS-DLBCL biopsy contains all the 
hereby described genetic aberrations (Figure 2). 

In conclusion, our knowledge on the genetic and 

epigenetic alteration sustaining CNS-DLBCL cells has 
increased, strengthening the diagnostic criteria and making 
this disorder a more homogenous disease. Its close link with 
the systemic MCD/C5 genetic clusters and specific biologic 
features now provides new opportunities. Novel agents with 
the capacity to cross the BBB and targeting CNS-DLBCL 
cells or their tumor microenvironment can be tested and 
included in future therapeutic schemes. Innovative follow-
up approaches can be explored with the use of liquid 
biopsies and the detection of secreted factors in serum/
plasma and/or CSF. 
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