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Introduction

Epstein-Barr virus (EBV) is a ubiquitous member of 
the gamma herpes virus family that is associated with a 
variety of lymphomas and lymphoproliferative disorders 
(LPD). It infects more than 90% of the adult population 
worldwide (1). Primary infection occurs in childhood as an 

asymptomatic or mild infection and/or may result in a more 
florid infectious mononucleosis syndrome in teenagers 
and young adults. In healthy seropositive individuals, virus 
neutralizing antibodies control the spread of infectious virus 
particles and EBV-specific, human leukocyte antigen (HLA) 
class I restricted, CD8+ cytotoxic T lymphocytes (CTL) 
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specific to the early lytic cycle proteins kill cells entering 
the lytic cycle before they are able to release infectious 
virus particles (2). Regardless of the initial infection, EBV 
maintains a lifelong latency in B cells and oral epithelial 
cells. During primary infection, EBV enters the oropharynx 
replicating within the epithelial cells and infect transiting 
B-lymphocytes (primarily due to their expression of CD21 
which is the major receptor for the virus). EBV can also 
infect epithelial cells via transfer from infected B cells and 
other processes (3). EBV-infected naïve B-lymphocytes 
express proteins comprising the entire EBV genome 
including the EBV nuclear antigens EBNA1, EBNA2, 
EBNA3, and EBNALP, membrane proteins LMP1, and 
LMP2 as well as BARF1 and two small non-translated 
ribonucleic acids (RNA) (Type III latency) (Figure 1). EBV-
infected B-lymphocytes then enter the lymphoid follicles 
and downregulate the immunogenic proteins to express less 
immunogenic type II latency proteins (EBNA1, LMP1 and 
LMP2) and thus rescue them into the memory compartment 
where the virus persists in latently infected B-lymphocytes 
by further downregulating expression of viral proteins 
so as to become invisible to EBV-specific T-lymphocytes 
(EBVSTs) (4). The frequency of EBV-infected B cells in a 
healthy person remains stable [approximately 0.1–50 EBV-

infected B lymphocytes per 1,000,000 peripheral blood 
mononuclear cells (PBMCs)] over their lifetime, controlled 
at these levels by a potent EBVST response (5,6). Periodic 
expansion of EBV-infected B-cells requires re-expression of 
viral antigens which restimulates the EBVST response.  

In individuals with weakened immune systems, such as 
patients with primary immunodeficiency (PID) or infection 
with human immunodeficiency virus (HIV), recipients 
of hematopoietic stem cell transplantation (HSCT) or 
solid organ transplant (SOT), the lack of a robust EBVST 
response can lead to uncontrolled proliferation of type 3 
latency EBV-infected B cells resulting in EBV-associated 
LPD and malignancies (7). The transformed B-cells in 
EBV-associated lymphoproliferative disease (EBV-LD) 
associated with latency type III present several antigenic 
viral proteins including EBNA 1-3, LMP1 and LMP2 
(Figure 1) that induce potent EBVST responses. Such 
potent T cell immunity maintains the infected B cell pool 
at <2% of total B cells in immunocompetent individuals 
but is lacking in immunosuppressed individuals leading to 
uncontrolled lymphoproliferation of the infected B cells. 
The scientific rationale for adoptive transfer of EBVSTs is 
based on harnessing the immunogenicity of type III latency 
malignancies to control the proliferation of the latently 

Figure 1 EBV latencies and associated malignancies. After primary EBV infection, most viral antigens are expressed during the lytic stage 
while the virus is replicating. In EBV-infected B-cells, there is subsequent downregulation of viral antigen expression from latency type III 
to latency type 0 which allows escape from immune surveillance. Subsequent replication requires return to the lytic stage. EBV, Epstein-Barr 
virus; EA, early antigen; MA, membrane antigen; VCA, viral capsid antigen; AN, alkaline nuclease; DLBCL, diffuse large B-cell lymphoma; 
NK, natural killer; PTLD, post-transplant lymphoproliferative disease.
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infected B cells. EBV-associated malignancies associated 
with type II latency [e.g., Hodgkin’s lymphoma (HL), 
natural killer (NK)/T-cell lymphoma, nasopharyngeal 
carcinoma (NPC)] or type I latency tumors (e.g., 
Burkitt lymphoma or gastric carcinoma) can develop in 
immunocompetent and immune deficient individuals and 
are much less immunogenic due to downregulation of the 
immunodominant (e.g., EBNA3 and EBNA2) antigens. 

EBV-associated post-transplant lymphoproliferative 
disease (PTLD) occurs in less than 1% to 25% of HSCT 
recipients depending on the serostatus of the donor and 
patient, the degree to which the graft is T-cell depleted, 
and the post-HSCT immunosuppression (8). In solid 
organ recipients, incidence of PTLD ranges from 2% 
to 25% depending on the organ transplanted, passenger 
lymphocytes in the transplanted organ and type of 
immunosuppression. However, the biggest risk factor 
for developing EBV-associated PTLD post-SOT is EBV 
seronegativity at the time of transplant. Since most children 
are transplanted at a young age while still being EBV 
seronegative and convert to EBV seropositivity within 
2 years of transplant, EBV driven PTLD is much more 
common in pediatric SOT recipients (9). More than 90% of 
EBV-associated PTLD is of mature B-cell origin with cell 
surface expression of CD20 (10). Therefore, T-cell PTLD 
is rare and is beyond the scope of this review.

Rituximab, monoclonal antibody targeting CD20 
present on the B cells has been an effective monotherapy 
with response rates of 55% to 100% in HSCT recipients 
(11-13). Yet, it is limited by increased risk of infection and 
recurrences. Response rates to rituximab monotherapy in 
SOT recipients are generally lower and around 50% (9). 
In pediatric SOT recipients, a combination regimen using 
low dose cyclophosphamide with prednisone and rituximab 
has shown event-free survival (EFS) rates of 72% (14). 
However, these patients with chronic immunosuppression 
and often impaired organ function have poor chemotherapy 
tolerance thus there is a need for therapies that address the 
underlying immune defect, are effective and do not add 
significant toxicities.

With the expression of multiple immunodominant 
EBV antigens and the occurrence in the context of 
immunodeficiency, PTLD is highly immunogenic and 
amenable to immunotherapy with EBVSTs. Adoptively 
transferred virus-specific T cells (VSTs) have been evaluated 
for more than two decades, ranging from the use of donor 
lymphocyte infusions (DLI) to donor derived multi-antigen 

specific VSTs in the HSCT setting to autologous as well 
as allogeneic VSTs in the SOT setting (15-17). However, 
until relatively recently, this therapy has been available only 
at specialized centers in the context of single center clinical 
trials. The objectives of this review are to define current best 
manufacturing strategies for EBV-specific VSTs, summarize 
the clinical experience of their use in EBV-related LPD, 
discuss opportunities to broaden the applicability of this 
approach and to explore future strategies to enhance their 
efficacy.

Manufacturing of EBVSTs

EBVSTs can be readily produced from EBV-positive 
donors using good-manufacturing-grade (GMP) compliant 
methodologies (Figure 2). Donor types include autologous 
and allogeneic (including third party) sources which are 
reviewed in more detail below.

Over the years, several strategies have been developed to 
manufacture EBVST products with minimal alloreactivity 
and broad specificity against EBV latency proteins or as a 
multi-virus specific product with activity against multiple 
viruses (18-22). The most commonly utilized methods 
consist of ex vivo expansion of VSTs versus antigen-specific 
T cell selection [e.g., interferon γ (IFN-γ) capture].

Ex vivo expansion of EBVSTs 

Ex vivo expansion of T cells targeting viral antigens via 
native T cell receptors was established initially by Smith 
et al. where EBVSTs were selectively expanded utilizing 
irradiated EBV transformed lymphoblastoid cell lines (LCL) 
(that express a type III latency pattern of EBV antigen 
expression) as antigen presenting cells (APCs) to selectively 
expand EBVSTs (23). LCLs also express high levels of class 
I and class II HLA and co-stimulatory molecules making 
them ideal APC for this application (24). LCL-activated 
EBVSTs consist of a product with activity against early lytic 
antigens and EBNA 3A, 3B and 3C but unreliable activity 
towards LMP1 and LMP2 (25,26).

To enhance the specificities to less immunogenic EBV 
antigens LMP1 and LMP2, several groups have made 
further modifications to this approach by transducing DC 
and LCLs with adenovirus vectors to overexpress LMP1 
or LMP2 (27). Although this approach helped improve 
the specificity, the use of LCL and gene engineered 
APC is complex and time consuming especially when 
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manufacturing from patients (19,28). Subsequently the use 
of APC such as dendritic cell (DC) pulsed with overlapping 
peptide libraries spanning whole antigen coupled with the 
use of artificial APCs [e.g., the novel antigen-presenting 
complex (KATpx)] can facilitate the rapid (10–21 days as 
opposed to 2–3 months) expansion of T cells targeting 
EBNA1, LMP1 and LMP2 from healthy donors and from 
patients with type 2 latency EBV-associated malignancies 
(27,29). A further benefit of ex vivo expansion approaches 
that utilize whole antigen, is that EBVSTs can be 
manufactured from individuals irrespective of their HLA 
type. Further, the successful manufacture of EBVSTs 
derived from EBV seronegative donors has been achieved, 
including for clinical use, using similar ex vivo expansion 
methodologies (30,31). 

Antigen-specific T cell selection 

Other rapid methods include: (I) major histocompatibility 

complex (MHC) multimer selection where oligomeric 
forms of MHC molecules are designed and conjugated 
to magnetic beads to isolate typically CD8+ T cells with 
high affinity to a specific viral epitope/peptide in an HLA 
restricted manner (32); (II) IFN-γ capture approaches 
where mononuclear cells are pulsed with antigen [e.g., 
single peptides, overlapping peptides (pepmixes), etc.] 
to isolate CD8+ and CD4+ T cells which secrete IFN-γ 
in response to the viral antigens (33-35). Although these 
methodologies can manufacture a product in 48 hours, 
they require seropositive donors with high frequency of 
circulating antigen/epitope specific T cells which may be 
technically challenging in the autologous setting. Moreover, 
the HLA-restriction requirement coupled with the 
selection of a purely CD8+ T cell product that lacks CD4+ 
T cell help (necessary for a sustained immune response) 
limits the overall applicability of the multimer-selection  
approach (36). Nevertheless, utilizing both of these 
strategies, good manufacturing practice (GMP)-grade 

Figure 2 GMP-grade EBV-specific T-cell manufacturing. Mononuclear cells are harvested from the peripheral blood of a donor. 
B-lymphocytes are infected with laboratory strain EBV and transduced with an adenoviral vector expressing LMP1 and LMP2 and 
irradiated. Monocytes are separately transduced with the same adenoviral vector and cocultured with T cells followed by a second 
stimulation by the transduced LCL to create and further expand LMP-specific T-cell product. EBV, Epstein-Barr virus; GMP, good-
manufacturing-practice; LCL, lymphoblastoid cell lines; LMP, latent membrane protein.
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EBVST products can be rapidly produced from EBV 
seropositive autologous and allogeneic donors for  
clinical use.

Post-HSCT donor-derived T cell therapy

Donor lymphocyte infusions

The earliest reported experience of cellular therapy for 
the treatment of PTLD utilized unmodified DLI derived 
from the patient’s EBV seropositive HSCT donor which 
contained effector cells with activity against EBV (37). 
Although effective in inducing remissions, this therapy 
carries a significant risk of graft-versus-host disease  
(GVHD) (19). Strategies such as selective depletion of 
T-regulatory cells (Tregs) prior to infusion enhances the 
graft versus lymphoma (GVL) effect while depletion 
of naïve T cells has been employed to lessen the risk of 
GVHD (38-40).

Donor-derived EBVSTs

There is extensive reported experience using donor derived 
EBVSTs for the prevention and treatment of EBV+ PTLD 
in the post-HSCT setting when the donor is available 
(17,22,41-47) (Table 1). 

In the original report using ex vivo expanded EBVSTs 
from healthy seropositive donors, the team at St. Jude’s 
Research Hospital treated ten allogeneic HSCT recipients, 
three with evidence of EBV reactivation and seven at high 
risk of reactivation (17). This therapy was well tolerated 
without significant complications with remarkable reduction 

in EBV viral copy numbers within 4 weeks, including in 
a patient with immunoblastic lymphoma. None of the 7 
patients who received the EBVSTs as prophylaxis had any 
EBV reactivation or GVHD and there was evidence of 
persistence of EBVSTs by tracking of genetic markers on 
the T cells for a median of 10 weeks. This pivotal study 
established the safety and early evidence of efficacy of 
donor-derived EBVSTs for the treatment and prophylaxis 
of PTLD in transplant recipients (17). These clinical 
outcomes were replicated in a larger study that reported 
combined data obtained from St. Jude’s (Memphis, TN, 
USA), Baylor College of Medicine (BCM) (Houston, TX, 
USA) and Great Ormond Street (London, England). In this 
report, 114 patients received donor derived EBVSTs after 
allogeneic HSCT for the treatment and prevention of EBV-
related PTLD (43). None of the 101 patients who received 
this therapy as prophylaxis developed PTLD. Of the 13 
patients with active PTLD, 11 patients achieved a complete 
remission with evidence of VST persistence up to 9 years 
post-infusion (43). GVHD rates in this study were low with 
no development of de novo acute GVHD and only 8 of 51 
patients developed a recurrence of their acute GVHD all 
of whom responded to GVHD therapy. Of 108 evaluable 
patients, there were 13 patients with chronic GVHD 
but only 2 patients had extensive chronic GVHD. The 
Memorial Sloan Kettering Cancer Center (MSKCC) group 
also published their experience using adoptively transferred 
unselected T cells (i.e., donor lymphocyte infusions) or 
EBVSTs (22). Overall response rates (ORR) were 72% 
and 68% with DLI and EBVSTs, respectively. GVHD was 
occurred in 17% of patients with DLI infusions but was not 

Table 1 Summary of clinical trial data using allogeneic VSTs in EBV+ PTLD in HSCT recipients 

Institution Indication Number of patients Serious adverse events Outcome 

BCM, Houston, TX, USA 
(17,42,43,45)

Prophylaxis; 
treatment

101; 13 Recurrence of aGVHD in 8 
patients

Prophylaxis: no PTLD; 
treatment: CR 84.6%

MSKCC, New York, NY, USA (22) Treatment 19 None CR 68%, median follow-up 80 
months

Karolinska Institute, Stockholm, 
Sweden (46)

Prophylaxis 6 None Decrease in viral load in 5 
patients, 1 death from PTLD

Children’s Research Hospital, 
Kyoto, Japan (47)

Treatment 1 None No response

aGVHD, acute graft-versus-host disease; BCM, Baylor College of Medicine; CR, complete response; EBV, Epstein-Barr virus; HSCT, 
hematopoietic stem cell transplantation; MSKCC, Memorial Sloan Kettering Cancer Center; PTLD, post-transplant lymphoproliferative 
disease; VST, virus-specific T cell.
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seen in any of patients who received EBVSTs (22).

Autologous EBVSTs

Administration of autologous EBVSTs has been used for 
patients with EBV-associated malignancies outside the 
context of allogeneic HSCT and in SOT recipients with 
PTLD where donors usually are not available because of the 
use of cadaveric grafts. In the SOT setting, the production 
of autologous EBVSTs is technically more challenging 
because of the ongoing immunosuppression but this can 
be overcome with modern manufacturing approaches (48). 
In theory, autologous EBVSTs are preferrable to donor 
EBVSTs even if available in the post-SOT setting because 
PTLD is usually of recipient origin and solid organ grafts 
are not routinely HLA matched to the recipient. However, 
the challenges in production and the production time 
leading to delays in initiation of therapy in patients with a 
rapidly progressive disease impede the routine use of these 
products in this setting. Comoli et al. from Pavia in Italy 
reported the treatment of seven SOT recipients treated 
prophylactically for high EBV viral load with autologous 
EBVSTs (Table 2) (49). None of the patients developed 
PTLD. The group at BCM reported 12 SOT recipients 
treated with autologous EBVSTs (48). While EBVST 
infusion did not consistently decrease EBV viremia, none of 
the patients treated prophylactically progressed to PTLD 
and the two patients with active PTLD achieved a clinical 
response [one complete response (CR) and one partial 
response (PR)].

Autologous EBVSTs have also been used to treat type II 
latency EBV-associated malignancies including HL, T/NK 
lymphoma and NPC as adjunctive therapy to chemotherapy 
and/or in relapsed patients. Such tumors are more 
challenging targets because of the reduced expression of 
immunogenic viral antigens in these type II latency tumors 
which express a more restricted array of antigens (e.g., 
LMP1, LMP2, EBNA1 and BARF1) compared to type III 

latency tumors. 
EBVST products produced by LCL stimulation alone 

consist of T cells with specificity predominantly towards 
early lytic antigens and the immunodominant EBNA3 
antigens but less activity towards viral antigens expressed 
in latency type II (25,26). Several groups have however 
used these products for the treatment of type II latency 
EBV-associated malignancies (50,51). A pilot study of 14 
patients with relapsed EBV+ HL reported 5 patients who 
maintained a CR for up to 40 months, two of whom had 
measurable disease at the time of EBVST infusion. One 
additional patient achieved a PR and five patients had stable 
disease (SD) (52). For NPC, locoregional disease control 
was reported in three out of 4 patients with no activity in 
metastatic disease (51). Other groups reported response 
rates of 60–70%. Better responses were observed with 
EBVST products that included T cells with activity against 
LMP1 and LMP2 (44,53).

As described above, the BCM group subsequently 
developed a manufacturing process for a LMP2- and 
LMP1/2-specific T-cell product (18). In two clinical trials 
using LMP2- and LMP1/2-specific T cells, respectively, 
production of EBVSTs was successful in 91% of patients 
with LMP1 and/or LMP2-specificity detected in 66% 
of products (27,54). A total of 50 patients with EBV-
associated HL or Non-Hodgkin lymphoma (NHL) were  
treated (27). Of 29 patients receiving latent membrane 
protein (LMP)-specific T cells as adjuvant therapy after 
HSCT or chemotherapy, 28 patients remained in a 
complete remission. Thirteen objective responses, notably 
11 CRs were observed in 28 patients with active disease at 
the time of T cell infusion. These are impressive results in 
a group of patients with mostly type II latency malignancies 
which are less immunogenic tumors. LMP-specific T-cell 
infusions were associated with antigen spreading in 
responders versus non-responders (27). Specifically, there 
was a significant increase of T cells specific to lymphoma 
associated (non-viral) antigens melanoma-associated antigen 

Table 2 Summary of clinical trial data using autologous EBVSTs for EBV+ PTLD in SOT recipients

Institution Indication Number of patients Serious adverse events Outcome 

BCM, Houston, TX, USA (48) Prophylaxis; treatment 10; 2 None No PTLD; 1 CR, 1 PR, 
follow-up 1 year

IRCCS Policlinico S. Matteo, 
Pavia, Italy (49)

Prophylaxis 7 None Reduction in EBV viral load 
in 5/7

BCM, Baylor College of Medicine; CR, complete response; EBV, Epstein-Barr virus; EBVSTs, EBV-specific T-lymphocytes; PR, partial 
response; PTLD, post-transplant lymphoproliferative disease; SOT, solid organ transplant.



Annals of Lymphoma, 2022 Page 7 of 14

© Annals of Lymphoma. All rights reserved.   Ann Lymphoma 2022;6:5 | https://dx.doi.org/10.21037/aol-21-43

A4 (MAGE-A4), survivin and preferentially expressed 
antigen of melanoma (PRAME). In one of the larger studies 
that evaluated LMP-specific T cell therapy for NPC, the 
group from the Queensland Institute of Medical Research 
(QIMR) (Brisbane, Australia) reported 16 patients with 
metastatic NPC receiving adjuvant therapy with LMP1/2-
specific T cells and experiencing longer median survivals 
compared to a control of 8 patients without adoptive cell 
therapy (523 versus 220 days) (55). 

Third-party T cells

Even with “rapid” technologies, patient-specific EBVST 
product (autologous or allogeneic) manufacture can still be 
prolonged when procurement times of donor or patient are 
considered. Further, donor cells may not be available (e.g., 
recipients of umbilical cord blood transplants or cadaveric 
organ transplants). Hence, manufacture of patient-specific 
products may not be possible or may be so delayed that 
patients with rapidly progressive disease are not able to 
access these therapies. For these reasons, a readily available 
“off the shelf” T cell therapy product is desirable.

The first third-party EBVST bank of 60 EBVST 
products was established by Haque et al. in the United 
Kingdom (56). Thirty-three transplant recipients (stem cell, 
2; heart, 2; kidney, 13; liver, 10; liver and small bowel, 3; 
lung, 2; heart and lung, 1) with refractory PTLD between 
the age of 1–76 years received partially HLA matched 
EBVSTs. HLA matches ranged from 2 to 5/6 HLA alleles 
and there was a statistically significant association of 
better outcome with higher HLA matches. Overall, the 
response rate (CR and PR) was 64% at 5 weeks and 52% at  
6 months. Of note, no significant toxicities were observed, 
alleviating concerns of graft rejection and/or GVHD with 
this therapy which fueled the broadened applicability of this  
approach (20,57-62).

The UK group established a cell bank of 25 donors with 
HLA alleles prevalent at high frequencies in individuals 
of European descent (58). Of ten patients treated with 
products from this bank, 8 achieved a CR. There was one 
report of grade I skin GVHD but otherwise infusions were 
well tolerated. 

Chiou et al. from Birmingham, United Kingdom published 
their experience in 10 pediatric SOT recipients with PTLD 
and reported an ORR of 80% (8 out of 10) (61). This 
favorable response in a pediatric population may indicate 
differences in the biology of EBV-driven PTLD in this 
population who is often EBV naïve at the time of transplant 

and develops PTLD in the earlier post-transplant period 
compared to the adult population.

The BCM group published extensively on their third-
party EBVST products including the use of off-the-shelf 
multi-VSTs [EBV, cytomegalovirus (CMV), adenovirus, 
+/− BK virus (BKV) and human herpes virus 6 (HHV6)] 
products (59,62,63). In a multicenter study led by BCM 
investigators, utilizing a bank of 33 VST products, 15 
products were given to 50 HSCT recipients with severe 
refractory viral disease after BMT targeting EBV, CMV 
and/or adenovirus (62). In total, 9 patients receive these 
third-party multi-VSTs for EBV-associated PTLD. Overall, 
the response rate to EBV was 66.7% at 6 weeks and only 1 
of the responders had a recurrence but achieved a CR with 
infusion of donor derived EBVSTs. Subsequently, the group 
established a third-party bank with 59 multi-VST products 
covering EBV, CMV, adenovirus, BKV and HHV6. In a 
phase II single center trial, 2 out of 38 patients were treated 
for EBV reactivation/PTLD and both achieved a CR (59). 
In both studies, no significant adverse events attributable to 
the product were observed. 

The Memorial Sloan Kettering experience utilizing a 
third-party cell bank comprising 330 GMP-grade EBVST 
products was reported by Prockop et al. (20). A total of 46 
patients post-HSCT (33) or SOT (13) and PTLD were 
treated with three weekly infusions of third-party EBVSTs. 
The ORR was 68% in HSCT recipients and 54% in SOT 
recipients with a 1-year overall survival of 88.9% in patients 
with a CR or PR and 81.9% OS in patients who achieved 
SD. Eleven patients had evidence of central nervous 
system (CNS) involvement. Of those, 5 achieved a CR 
and 4 a durable PR suggesting that EBVSTs have activity 
in the brain. Given the dismal prognosis of CNS PTLD 
with 3-year progression-free survival rates in the 30% 
range, EBVSTs represent a promising therapeutic option 
for this patient population. Based on the HLA typing of 
400 patients from the ethnically diverse New York area 
population, the investigators estimated that an EBVST 
bank with products restricted by 40 HLA alleles would be 
sufficient to cover 95% of that population. 

Third-party EBVSTs have been mostly used in the post-
transplant setting. There has been no published experience 
in patients with HIV-associated lymphomas because in the 
modern era of highly active anti-retroviral therapy (HAART) 
the incidence in the Western word has decreased (64) and 
the logistical support and specialized experience needed 
does not make EBVSTs an easily accessible option for the 
treatment of patients in the developing world.
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Surrogate markers of response have been investigated 
by several groups (52,56,62,65). Prockop et al. reported in 
their series that a 2 log10 reduction in EBV viral load was 
indicative of response, however, not all patients treated 
with third-party EBVST’s had detectable viral loads at start 
of therapy (20). Leen et al. also showed reduction of EBV 
viral load correlated with response in HSCT recipients 
with EBV-associated disease treated with third-party multi 
virus specific VSTs (62). Moreover, clinical response and 
reduction of EBV viremia correlated with an increase of 
EBVSTs (62). However, there is no standardization of EBV 
viral load measurements by polymerase chain reaction 
(PCR) making comparisons between different laboratories 
impossible. EBV viral loads can be measured in plasma or 
whole blood. Kanakry et al. compared EBV viral load in 
plasma versus PBMCs and found that cell-free (plasma) 
EBV copy number quantification was superior to PBMC 
to predict response in both immunocompetent as well 
as immunosuppressed individuals with EBV-associated 
lymphomas or lymphoproliferative disease (65). 

Overal l ,  these  reports  are  highly  encouraging 
demonstrating the feasibility of third-party cell banks 
able to cover a majority of the referred patient population 
while also achieving impressive response rates (Table 3). 
These promising results led to the first cell therapy trial 
run through a cooperative group with the Children’s 
Oncology Group piloting third-party EBVSTs for the 
treatment of newly diagnosed PTLD in pediatric SOT 

recipients (NCT02900976). This study was recently closed 
and analysis is ongoing. The same group at Children’s 
National Hospital supplied another multi-center phase I/
II consortium study (PBMTC SUP1701, NCT 03475212) 
with third-party EBVSTs through the Pediatric Bone 
Marrow Transplant Consortium (66). This trial had two 
arms, one for pediatric patients with refractory CMV, 
EBV and or adenoviral infections post-HSCT and another 
for pediatric patients with PID disorders suffering from 
refractory viral infections prior to HSCT. 

Modification of EBVSTs to enhance activity

Overcoming the immune suppressive effects of TGF-β to 
enhance EBVST activity in vivo

As previously discussed, the efficacy of EBVSTs is 
dependent on the expression of viral antigens and limited 
by the paucity of EBV antigen expression in malignancies 
of latency type I and II. Furthermore, the immune evasion 
strategies (e.g., TGF-β secretion) employed by the tumor 
microenvironment in the immunocompetent host suppresses 
functional antitumor T cell responses in vivo (67,68). 
TGF-β can be released into the tumor microenvironment 
by tumor cells, fibroblasts and immune cells and creates 
an immunosuppressive environment by impeding T-cell 
activation, proliferation and migration. In addition, it affects 
DC and macrophage antigen presentation and chemotaxis. 

Table 3 Summary of third-party EBVSTs and multi-VSTs in PTLD

Institution Specificity Indication Number of patients Serious adverse events Outcome 

University of Edinburgh, 
Edinburgh, UK (56)

EBV Treatment 2 (HSCT); 31 (SOT) None ORR 51.5% (14 CR + 
3 PR) at 6 months with 
2 subsequent relapses, 
follow-up 1–7.5 years

MSKCC, New York, NY, USA (20) EBV Treatment 33 (HSCT); 13 (SOT) 1 grade I skin GVHD ORR 68% (19 CR and 3 
PR) in HSCT and 54% 
(2 CR and 5 PR) in SOT, 
follow-up 6–115 months

Birmingham Woman’s and 
Children’s Hospital Foundation 
NHS Trust, Birmingham, UK (58)

EBV Treatment 10 (SOT) None ORR 80% (7 CR and 1 
PR), 5-year OS 85.7%

BCM, Houston, TX, USA (62) Multi-VST Treatment 9 (HSCT) 2 TMA, 1 GI hemorrhage, 
all deemed unrelated

ORR 66.6% (2 CR and 4 
PR)

CR, complete response; EBV, Epstein-Barr virus; EBVSTs, EBV-specific T-lymphocytes; GI, gastrointestinal; GVHD, graft-versus-host 
disease; HSCT, hematopoietic stem cell transplantation; MSKCC, Memorial Sloan Kettering Cancer Center; ORR, overall response rate; 
OS, overall survival; PR, partial response; PTLD, post-transplant lymphoproliferative disease; SOT, solid organ transplant; TMA, thrombotic 
microangiopathy; VST, virus-specific T cell.
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The potential to overcome the immunosuppressive 
properties of TGF-β has been studied in EBV-positive 
HL. The Baylor group developed an EBV/LMP-specific 
T-cell (LST) product expressing a dominant negative 
TGF-β receptor type II (DNRII) (69). The DNRII-LSTs 
were resistant to otherwise inhibitory concentrations of 
TGF-β. In a phase I dose escalating study, 8 patients with 
relapsed EBV-positive HL were treated with 2 to 12 doses 
of TGF-β resistant LSTs with 4 of the 7 evaluable patients 
with active disease achieving clinical responses that were 
complete and sustained in two patients greater than 4 years  
post-infusion (70). Moreover, DNRII-LSTs expanded  
in vivo and could be detected in the peripheral blood from 2 
to 51+ months post-infusion.

Calcineurin resistance to enhance EBVSTs

Given the concerns regarding EBVST persistence in 
patients who require ongoing immune suppression (e.g., 
patient post-SOT), several groups have explored gene 
engineering of virus specific T cells to render them 
resistant to immune suppressive agents including steroids 
and calcineurin inhibitors (71-74). In one such example 
of a proof of principle preclinical study, EBVSTs were 
genetically engineered to express a mutant form of 
calcineurin thus rendering them calcineurin inhibitor (CNI) 
resistant (75). In mouse xenograft models bearing human 
B-cell lymphoma, treatment with CNI-resistant EBVSTs 
persisted with enhanced activity in the presence of CNI 
compared to control EBVSTs.

Chimeric antigen receptor T cells

CD19-chimeric antigen T cells (CD19-CART) have shown 
impressive efficacy in acute B-lymphoblastic leukemia and 
in B-cell lymphomas (76-80). In addition to viral antigens, 
EBV-LD expresses a variety of B-cell antigens targetable by 
CARTs including CD19, CD20 and CD30. However, their 
use in EBV-lymphoproliferation is limited by the patient’s 
immunosuppressive state impeding T cell manufacture and 
the length of production time. 

CD19-CART have been administered in three adult 
SOT recipients with refractory PTLD (81). All patients 
developed complications to CART therapy including 
cytokine release syndrome (CRS), neurotoxicity and 
acute kidney injury. None responded and all ultimately 
succumbed to their disease. Therefore, while some 
anecdotal case reports have been published, the wider use 

of the CART platform for PTLD will likely require an off-
the-shelf product (81,82).

Potential for combination strategies administering 
EBVSTs with other therapeutic modalities to enhance 
EBVST activity in vivo

Demethylating agents
Newly EBV-infected B-cells express up to 90 viral genes; 
however rapid CpG-methylation of viral antigens leads 
to downregulation of viral protein expression and the 
latency (83-85). Azacytidine and decitabine are potent CpG 
demethylating agents. In a mouse xenograft of latency type 
I Burkitt lymphoma, pretreatment with decitabine induced 
expression of LMP1 and ENBA3 associated with latency 
type 3 which sensitized tumor cells to subsequent therapy 
with EBVSTs (86). In contrast, azacytidine did not increase 
expression of those proteins.

Checkpoint inhibitors
LMP1 has been shown to induce expression of the 
checkpoint protein PD-L1 in classic HL (CHL) without 
9p24.1 alteration (87). When comparing EBV-positive with 
EBV-negative CHL, EBV-positive CHL had significant 
higher PD-L1 expression (88). PD-L1 expression scores 
were inversely correlated with outcome. Similarly, 76–100% 
of EBV-positive diffuse large B-cell lymphoma (DLBCL) 
were found to express PD-L1 (89,90). PD-L1 is expressed 
in 73% of EBV-positive PTLD (87). There have been 
several trials using checkpoint blockade in DLBCL hinting 
at single agent activity (91). A phase I study at BCM is 
exploring combination therapy of checkpoint inhibitors 
with EBV directed T cells for EBV+ HL and NHL 
(NCT02973113). Even though there is a rationale for also 
combining them with EBVSTs for EBV+ PTLD, the risk 
of graft rejection and autoimmunity limits their use in that 
setting.

BCL-2 inhibitors
Latently EBV-infected cells inhibit proapoptotic signals 
thus ensuring immortality (92). LMP1 upregulates the 
expression of the anti-apoptotic protein BCL-2 (93). The 
INSERM group showed that the BCL-2 inhibitor ABT-
737 induce remission in approximately 70% of mice PTLD 
xenografts (94). In preclinical, in vitro studies, pretreatment 
of malignant B-cell lines with the BCL-2 inhibitor 
venetoclax increased proapoptotic proteins and sensitivity 
to CD19-CART; however, co-culture and post-treatment 
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adversely affected the number of CART (95). Further 
studies are needed to elucidate whether there is a role in 
EBV lymphoproliferation.

Conclusions

The use of adoptive immunotherapy, particularly using 
third-party “off the shelf” EBVSTs for the treatment of 
EBV-LD has shown promise in several studies conducted 
at specialized centers (20,56,62). More recently, EBVSTs 
have become more widely available including in industry 
led multi-center studies and consortium and cooperative 
group studies (20,66). Further work is however needed 
to create widely available and commercialized third-party 
cell banks to broaden the applicability of this approach 
beyond boutique centers. In addition, strategies need to 
be explored to enhance the anti-tumor activity of EBVST 
therapies especially for the less immunogenic type I and 
II latency tumors. Preclinical work and early clinical trials 
are in process exploring various gene engineering and 
combination therapy approaches to improve the potency of 
EBVSTs in vivo.
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