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Introduction

Nanotechnology was a “technology on the nanoscale” 
identified in the late 1960s at ETH Zurich (1). It employs 
single atoms and molecules form functional structures to 
improve the chemical (2), physical, biological properties, 

processes, and phenomena of the materials (3). This includes 

the design, characterization, manufacture, shape, and size-

controlled application of matters in the nanoscale (4). 

The size of nanoparticle system is ranged from a few 

nanometers (micelles) to several hundreds of nanometers 
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(liposome) and the size of nanoscale protein material is 
often between 3 to 10 nanometers (nm) (5). Its nano-
drug delivery system could interact with biomolecules 
locate inside or on the cell surface. The nanoparticle of 
the encapsulated drug would be delivered and penetrated 
into the cell. It could also be modified with fragments 
of antibodies or ligands, which targeting antigens or 
receptors on the cell surface for improving the specificity 
of drug delivery (6). The nano-drug delivery systems 
include organic nanoparticles such as nanoscale liposomes 
and micelles and inorganic nanoparticles such as gold or 
magnetic nanoparticles (7). Nanoparticles can penetrate 
the tissue system, facilitate cellular uptake of the drug, 
ensure action at the targeted location, and be affixed to the  
surface (8). This strategy applies to traditional Chinese 
medicine such as celastrol. In this mini-narrative review, 
we discuss the background of traditional Chinese medicine, 
“Celastrol” and its mechanisms of the nano-system for 
cancers as well as the toxicity and cancer targeting agent. 
We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
dx.doi.org/10.21037/lcm-20-48).

Methods

This mini-review summarized the articles on celastrol in 
nanotechnology for treating cancers through some library 
search engines such as SCI/SCIE, PubMed, and Scopus for 
at least 30–40 journals.

Background of celastrol

Celastrol is a pentacyclic triterpenoid, belongs to the family 
of quinone methides. Its formula C29H38O4 (Figure 1) with a 

molecular weight of 450.619 gmol−1, isolated from the root 
extracts of Tripterygium wilfordii and used to treat chronic 
inflammatory and autoimmune diseases (9). Celastrol 
induces apoptosis in various cancer cell lines via inhibition 
of inhibitor of kappa B kinase (IKK) (10), proteasome (11), 
topoisomerase activity (12), vascular endothelial growth 
factor (VEGF) receptor expression (13), and induction of 
heat shock proteins (14).

Accumulating evidence indicated that celastrol owns 
therapeutic potentials and diverse biological activities, 
including anti-inflammatory and anticancer properties. 
Celastrol inhibits swelling recurrence up to 55.25% 
when 10 mg/kg/day is used. It decreases immune cell 
filtration and proliferation into the synovial membrane, 
leading to decrease swelling, bone destruction as well as 
prevent inflammation. Prostate tumor weight is reduced 
by approximately 73% after administration of celastrol at  
2 mg/kg/day for 16 days (15). However, its poor water 
solubil ity (13.25±0.83 mg/mL at 37 ℃ )  (16),  low 
bioavailability (17.06%) in the oral administration (17,18), 
and poor tumor selection represent major pitfalls for its 
clinical applications.

Mechanisms

In general, celastrol inhibits cell proliferation and induces 
cell apoptosis in tumors (19). It acts as a natural inhibitor of 
proteasome for regulating the activity of NF-κB. The pro-
apoptotic protein Bax degrade the misfolding intracellular 
proteins because NF-κB transcription contributed to the 
cell migration, cell apoptosis as well as cell cycle progression 
and this is also one of the important factors for oncogenesis 
(20,21). By the deactivation of NF-κB activity, it would be 
influenced the level of proteasome leading to cell deaths 
or cancers. Thus, celastrol is an inhibitor for NF-κB 
transcription. Besides, celastrol blocks the JAK/STAT 
signaling pathway by reducing the levels of cytokines or 
growth hormones that trigger JAK/STAT protein activation. 
It inhibits STAT3 phosphorylation and STAT3-mediates IL-
17 expression, and T-helper 17 (Th17) differentiation and 
proliferation in multiple myeloma cells (22).

Nano-system

The efficacy of a nano-system in drug delivery depends on 
the size, shape, and other inherent biophysical or chemical 
characteristics. Polymeric nanomaterials act as carriers 
that exhibit high biocompatibility and biodegradability 
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Figure 1 Chemical structure of celastrol.
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properties, various synthetic polymers such as polyvinyl 
alcohol, poly-l-lactic acid, polyethylene glycol, and 
poly(lactic-co-glycolic acid), and natural polymers (e.g., 
chitosan) that are useful in targeted drug delivery (23).

Growing studies showed that nanoparticle encapsulation 
improved the solubility of active components because the 
surface area increases and consequently its dissolution 
rate to have better bioavailability such as triptolide-loaded 
nanoparticles changed the solubility of triptolide, controlled 
its release, realized the target delivery of triptolide, and 
avoided the toxicity at non-target sites (24). Triptolide was 
another active component from Tripterygium wilfordii. Its 
cytotoxicity similar to the celastrol. However, celastrol is 
better in term of tolerance and efficacy in cancer since it 
was more soluble in water when combined the usage of 
nanotechnology (25). The as-prepared berberine-loaded 
chitosan nanoparticles were prepared and investigated the 
characteristics of in vitro release. Its encapsulation ratio 
of berberine-loaded chitosan nanoparticles and the total 
drug release degree are 65.4%±0.7% and 56.8%±1.7% 

respectively (26).
There are several nanosystems for celastrol that have 

been reported including: (I) The celastrol nanoparticle 
is modified to amphipathic molecules for enhancing the 
passive targeting effect on tumor through absorption 
and metabolism. Polyethylene glycol (PEG) has been 
introduced to make the celastrol dissolve in water easily (27). 
(II) Celastrol-loaded poly(ethylene glycol)-block-poly(ɛ-
caprolactone) nanopolymeric micelles were also developed 

to improve the hydrophilicity of celastrol and PEGylated 
polyaminoacid-capped celastrol-loaded mesoporous 
silica nanoparticles (CMSN-PEG) to control the in vitro 
drug release behavior which exhibited high cytotoxicity 
in different cancer cells (28). (III) Axitinib (AXT) and 

celastrol (CST) combination nanoparticles (ACML) with 
CST loaded in the mesoporous silica nanoparticles (MSN) 
and AXT in PEGylated lipidic bilayers showed effective 
inhibition on angiogenesis and mitochondrial function. It’s 
efficiently internalized in SCC-7, BT-474, and SH-SY5Y 
cells (29-31).

These celastrol nanoparticles increased water solubility 
and cellular uptake (32-34). Most of the studies focused on 
intra-peritoneal injection and oral administration (35-38). It 
mainly focused on the solubility, cellular uptake, and in vitro 
drug release behavior of celastrol nanoparticles.

Toxicity

The toxicity of several types of celastrol nanoparticles are 
based on physicochemical properties such as interaction 
within the cells and the size of nanoparticles are related 
to the cytotoxicity. Smaller nanoparticles have a large 
surface area and penetrate the cells easily lead to cellular  
damage (39). Particle surface charges are another factor 
affecting the cellular uptake of nanoparticles. It's correlated 
to cytotoxicity because of the interaction between the cell 
organelles and their biomolecules (40). The stronger the 
electrostatic attraction, the more likely is the nanoparticles 
are to be internalized and would be damaged the other 
molecules through surface charges (41). Different shapes of 
the nanoparticles are also influenced by their toxicity as they 
generate different levels of reactive oxygen species (ROS) at 
the active sites in the cells for specific functions (42).

Cancer targeting agent

Basically, folic acid (Figure 2) or folate (pteroylglutamate) 
is water-soluble and often used as a targeting agent 
that can deliver celastrol selectively to cancer cells with 
overexpression of folate receptor on the surface (43,44). 
Folate receptor undergoes endocytosis within tumors. 
When the nano-carrier is passively targeted to tumors, it 
remains within the tumor or it diffuses out of the tumor 
and back into the bloodstream due to the high interstitial 
pressure within solid tumors and random diffusion. Folate 
modification makes the nano-carriers achieve a greater 
affinity in the tumor. The nano-conjugate is internalized 
by the folate-receptor via an endocytic pathway and is 
transported to an endosome or lysosome by intracellular 
vesicle transport.

Caveolae is small (approx. within 50 nm in diameter) 
flask-shaped pits in the membrane that resembles the shape 

Figure 2 Chemical structure of folic acid.
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of a cave. It constitutes up to the plasma membrane and 
uptake extracellular molecules via the specifically mediated 
folate-receptor by potocytosis that uses caveolae vesicles to 
bring molecules of various sizes into the cell and released 
into the cytosol (45). This specific binding of folic acid 
to folate receptor on cancer cells. For instant, folic acid-
modified Doxorubicin nanoparticles (Dox-PLD-FA) 
showed a specific target to cancer cells, which overexpress 
the folate receptor (FR) (46).

Conclusions

Nanotechnology serves as an efficient tool to make 
celastrol into nanoscale and modify its physical properties. 
Incorporation of celastrol in the nano-system helps to 
increase solubility and stability, avoid toxicity, enhance 
pharmacological activity, improve tissue distribution, sustain 
delivery, and protect from physical or chemical degradation.

Some nano-systems for celastrol were developed such 
as polyethylene glycol (PEG) celastrol, celastrol-loaded 
poly(ethylene glycol)-block-poly(ɛ-caprolactone) nano-
polymeric micelles, and the combination of axitinib (AXT) 
with celastrol nanoparticles in the mesoporous silica. 
Recently, folic acid-modified Doxorubicin nanoparticles 
(Dox-PLD-FA) are designed and showed a specific target 
to cancer cells compared with the other nano-systems. 
Hopefully, nano-systems of celastrol would be further 
developed in the future to improve its therapeutic efficacy.
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