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Review Article

Epigenetic mechanisms in cancer
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Abstract: This review aims to give a brief summary of the most common epigenetic mechanisms, and 
their possible relations with cancer initiation and progression, focusing on the possible physico-chemical 
factors that might control these epigenetic mechanisms, and giving examples of the epigenetic therapy 
approaches. Original and review articles encompassing epigenetics and inflammation were screened from 
major databases including PubMed, Medline, Science Direct, Scopus, etc. in English and analyzed for the 
writing of this review paper. The importance of epigenetics in linking the effects of environmental factors 
to changes in gene expression is gaining acceptance more and more in recent years. It is becoming more 
evident that epigenetics plays an important role in health and disease, cancer being no exception. Although 
effects of environmental factors on cancer initiation and progression have been known for decades, the 
exact mechanisms that control these interactions are yet to be discovered. The breakthrough that most 
epigenetic alterations are reversible brings out a new exciting target for cancer therapeutics. Cancer 
initiation and progression are controlled by both genetic and epigenetic events. Unlike genetic changes, 
epigenetic modulations are potentially reversible. Epigenetic drugs that inhibit DNA methylation or histone 
deacetylation enable reactivation of tumor suppressor genes and suppression of cancer cell growth. Taking 
advantage of these situations allows the reduction of malignant cell clusters. In addition, clinical results, 
such as epigenetic drugs targeting specific enzymes for cancer treatment and re-sensitizing cells that do not 
respond to treatment are promising as cancer therapeutics. To date, numerous epigenetic agents have been 
developed, several DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors have been 
definitively approved by regulatory agencies. Combined multidrug approaches for cancer treatment have 
overcome the limitations of single-agent epigenetic therapies, increased antitumor effects, and reduced drug 
resistance. It is evident that as our knowledge on epigenetic mechanisms expand, epigenomics-targeted 
treatments will become more common in cancer therapy, either as primary therapy or as complementary 
and alternative treatment options to increase the efficacy of conventional treatments for cancer patients, and 
epigenetics will maintain its increasing importance for cancer diagnostic, prognostic and therapeutic studies 
for many years to come.
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History/introduction

A decade and a half ago it would have been unthinkable 
to see the emergence of headings like “The International 
Human Epigenome Consortium”, “The NIH Roadmap 
Epigenomics Mapping Consortium”, “The ENCODE 
Project”, or the NIH’s National Human Genome Research 
Institute’s definition of Epigenome: “The epigenome 
consists of chemical compounds that modify, or mark the 
genome in a way that tells it what to do, where to do it, and 
when to do it” (1). After all, it was only 2003 when glorious 
assessments of the Human Genome Project were flooding 
scientific and popular publications alike. At the same 
time, however, the mechanisms for gene regulations were 
identified as “epigenetic” (2).

The observation that the environment influenced, or 
sculpted the phenotype of individuals, and these effects 
were represented in their descendants, goes all the way 
back, at least to 4th century BC, to Aristoteles (3). In more 
recent times it was Lamarck (beginning of 19th century), 
who, in his comprehensive framework for evolution, 
proposed the idea of inheritance of acquired characteristics, 
which nowadays is also termed as “soft inheritance” (4). 
A few years later the genius of Darwin came forward with 
his proposal on evolution by natural selection. Since those 
times Lamarckian and Darwinian formulations related to 
evolution and inheritance, with certain similarities, but also 
differences, occupied the mainstream debates in biological 
circles, with the Lamarckian line of thought steadily getting 
less and less attention (4,5). 

The related debates were not only scientific in nature, 
but were colored with philosophical, religious and 
political overtones, especially in mid-twentieth century. 
It was 1942, when C. H. Waddington, a member of the 
theoretical biology club in Cambridge, UK (6) published 
what is considered by many the first modern description of 
epigenetics (7). Ten years later, around 1953, the polemics 
between the modern synthesis followers, who excluded/
opposed the soft inheritance idea, and those who supported 
it (5) reached a point where ideological allegiances obscured 
the scientific differences; after all it was the height of the 
Cold War. 

Whereas during the last half of the 20th century the 
celebrated discovery of the DNA’s double helix structure 
catalyzed more attention to be paid to the genes and 
genomics (in 1990 the effort for the Human Genome Project 
started), in the beginning of this century more attention was 
given to a multitude of non-genetic influences in biology 

and society in general. As, unfortunately, it is usual practice 
in science sometimes to forget, or keep in oblivion important 
scientific discoveries that set the stage for specific ones to 
be the celebrated ones (8), in other cases there is a slow but 
persistent comeback, even from the grave (9).

The vast literature on epigenetics (there were more than 
17,000 papers with the root “epigene” between 2010 and 
2013) (10) is ever expanding, not only in basic biological 
systems (11) but in societal aspects, including psychology 
as well (12). Even dedicated conferences to the subject 
seem to deal with multiple aspects, from clinical epigenetics 
(epidemiology, autism) to mechanisms (RNAs as vectors of 
information transmission) (13). 

Generally speaking, epigenetics comprises the studies 
of variance of gene expression during development and 
somatic cell proliferation. Or, in other terms, epigenetic 
mechanisms allow an organism to respond to the 
environment through changes in gene expression (2). 
The three most published molecular mechanisms that 
mediate epigenetic phenomena are DNA methylation, post 
translational histone modifications, and regulation of non-
coding RNAs such as microRNA (miRNA) (14). With 
respect to cancer, epigenetic approaches to both understand 
its development, and treatment (14,15).

The increase of knowledge on epigenetics resulted in its 
reflection on the clinic with new diagnostic and therapeutic 
strategies. Epigenetics not only offers new insights into the 
changes in gene regulation that occur during the disease 
process, but also provides the basis for epigenomics-based 
targeted therapies. There are many agents currently being 
tested in clinical trials and some of them are already in 
clinical use. In addition, drug research and development 
studies carried out to correct epigenetic errors have gained 
great speed in recent years. Targeting histone deacetylases 
(HDACs) and DNA methyltransferase (DNMT)/histone 
methyltransferase (HMT) are used as possible targets 
in the treatment of various types of cancer. There are 
FDA-approved HDAC inhibitors and DNA methylation 
inhibitors (DNMTIs). Their clinical use gives successful 
results. Apart from these, histone methylation and miRNAs 
have also attracted attention as potential therapeutic targets. 
Combined treatment options of standard chemotherapeutic 
drugs with epigenetic targeting drugs make it possible to 
reactivate genes sensitive to chemotherapeutic drugs. It is 
thought that epigenetic studies will continue for many years 
and will provide indispensable advantages in many diseases.

This review aims to give a brief summary of the most 
common epigenetic mechanisms, their possible relations 
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with cancer initiation and progression, focusing on the 
possible physico-chemical factors that might control 
these epigenetic mechanisms, and giving examples of the 
epigenetic therapy approaches. Research articles, books, 
and other published texts were examined using integrative 
methodology.

Epigenetic mechanisms of gene regulation

In cancer development, epigenetic mechanisms may directly 
alter the expression of oncogenes, tumor suppressor genes 
and other tumor-related genes. Hypermethylation or 
hypomethylation, especially in the gene promoter regions, 
global genomic hypomethylation, improper expression 
of DNMT, histone modification disorders and abnormal 
expression of non-coding RNAs are the most common 
epigenetic changes observed in cancer.

DNA and RNA methylation

Among all epigenetic mechanisms, DNA methylation is the 
most studied. DNMT enzyme catalyze DNA methylation 
reaction using S-adenosyl methionine as the methyl donor, 
resulting in 5-methylcytosine (16-18). The most important 
DNMT enzyme in cancer development is DNMT1 (19). 
Methylation usually occurs in CpG (cytosine nucleotide 
followed by a guanine nucleotide) islets clustered in 
concentrated DNA. While the promoter region that is 
located at the 5’-end of the human gene is in unmethylated 
state, the gene is active and allows expression (20). 
Methylation of this promoter region is usually results in 
“gene silencing”. Inactivation continues in the daughter cells 
(21,22). This epigenetic change appears as an alternative 
pathway to mutation or deletion, which are other causes 
of gene suppression. Aberrant promoter methylation has 
been reported to affect several genes regulating cell cycle, 
adhesion, apoptosis, signal transduction, DNA repair, 
adhesion and cell differentiation (23,24). 

A proportion of 60–80% of the ~29 million CpGs 
in the human genome are methylated. At least 98% of 
DNA methylation observed in somatic cells is at a CpG 
dinucleotide site, while in embryonic stem cells (ESCs) 
up to a quarter of methylations occur at a non-CpG site. 
Defects in DNA methylation have been shown to be related 
with cancer, but no DNMT mutation or deficiency has 
been identified as a cause of tumor development. Distinctive 
features of epigenetic changes seen in cancer include global 
DNA hypomethylation and locus-specific hypermethylation 

of CpG islands (CGIs) (25). To date, all tumor samples 
examined show reductions in global DNA methylation (26).

In  summary,  DNA hypomethylat ion i s  mainly 
observed in heavily methylated repeating body elements 
and intergenic regions, which causes instability in the 
genome and activation of oncogenes. Locus-specific 
hypermethylation, on the other hand, is usually observed 
in the promoter CGI islets of tumor suppressor genes and 
results in inherited transcriptional silencing (27).

Unlike DNA methylation, which is a transcriptional 
modification, RNA methylation is a post-transcriptional 
modulation. Although it was discovered about 50 years ago, 
RNA methylation has only recently attracted attention, 
due to lack of analytical techniques for determining, 
characterization and sequencing it. There are more than  
170 kinds of RNA modifications identified, yet more is 
expected to follow (28,29). The demethylases, or “erasers” 
(like ALKBH5, FTO), and methyltransferases, or “writers” 
(like METTL3/14, KIAA1429 WTAP), and decoder 
proteins, or “readers” (like YTH, HNRNP) have been 
discovered more recently, and have led to important 
discoveries in “epitranscriptomics”. Among other RNA 
methylations like m1A, m5C or m6Am, the most commonly 
observed and studied RNA methylation is the N6-
methyladenosine (m6A). This notation describes methylation 
of the adenosine residue at the N-6 position (28-30). These 
reversible and very dynamic modifications affect all types of 
coding and non-coding RNAs, therefore are effective in all 
fundamental cellular processes (30). So, it is no surprise that 
they have also been found to be associated to several types 
of cancers, including leukemia, breast, bladder, colorectal, 
endometrial, hepatocellular, gastrointestinal, lung, liver and 
pancreas cancers, and epithelial mesenchymal transition 
(EMT) of metastatic cancer cells (30-32). METTL3, in 
particular, is now accepted as a biomarker for cancer (30). 
RNA methylation is shown to also interact with other types 
of epigenetic modulations, pointing out its strong regulatory 
role (28). With its broad range of biological effects, RNA 
methylation modifications have a great potential for 
unraveling complex cellular mechanisms in health and 
disease, and are powerful epigenetic therapy targets. 

Histone modifications

Histones, the proteins by which the DNA is packaged in 
chromatin, undergo various post-translational modifications 
like acetylation, phosphorylation, ubiquitination and ADP 
ribosylation, usually at their N-terminal tails (33,34). 
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Histone modifications can interact with each other, as 
well as with DNA methylation, and these interactions can 
modify the higher order chromatin structure. 

Lysine residue acetylation forms chromatin, while their 
deacetylation correlates to transcriptional repression (35). 
On the other hand, lysine and arginine residue methylation 
takes place at histones H3 and H4 by HMTs (36). Different 
transcriptional events take place based on the location and 
type of methylated histone. Trithorax group (TrxG) and 
polycomb group (PcG) of proteins are the two main types 
of complexes found in histone modifications. Some of 
these protein groups exhibit HMT activity (37). It has been 
shown that covalent modifications of histones constitute 
the link between DNA methylation and gene chromatin 
silencing (38,39). 

miRNAs

MiRNAs are small molecules consisting of approximately 25 
nucleotides, synthesized in the nucleus and released into the 
cytoplasm, binding to mRNAs and causing their expression 
to change (40). As each miRNA can affect many mRNAs, 
each mRNA is also under the influence of many miRNAs (41).  
MiRNAs are encoded within the intergenic regions, introns 
or exons of protein-coding genes, and they are believed to 
be co-regulated by host genes (42-44). First a few kb-long 
primary miRNAs (pri-miRNAs) are synthesized by RNA 
polymerase II (45,46). Pri-miRNAs are then processed 
in the nucleus into a precursor miRNA (pre-miRNA) of 
approximately 70 kb in length (47). The pre-miRNA binds 
with exportin 5, and is transported from the nucleus to the 
cytosol. This reaction is catalyzed by a Ran-GTP. Mature 
miRNA duplex of 22–25 nucleotides in length is synthesized 
by RNase III enzymes in the cytosol (48,49). After the 
double-stranded miRNA complex binds to the RNA-induced 
silencing complex (RISC), the passenger strand is removed 
while the guide strand remains in the complex and acts as 
a template to form a new RISC (50). MiRNA molecules 
can bind to their target genes through the 3' untranslated 
region (3'UTR), 5'UTR or other gene regions to induce 
translational repression (51). The “seed” of the miRNA 
molecule, which is 2–8 nucleotides, binds to the target site, 
and is essential for functionality and target specificity. The 
degree of complementarity between the seed and the target is 
essential for the regulatory mechanism (52,53).

MiRNAs are highly conserved across dif ferent 
species and they regulate several cellular processes, 
including development, proliferation, differentiation and  

apoptosis (54-56).
MiRNAs are shown to be linked to cancer, and they 

can function as oncogenes, as well as tumor suppressor 
genes (52,57-60). MiRNA expression is epigenetically 
altered in a tissue-specific manner in both physiological 
and pathological conditions. They affect the protein levels 
of target mRNAs without altering their gene sequences. 
They function at different levels of the genome, can 
regulate and/or be regulated by other epigenetic actors, 
such as DNA methylation and histone modifications (61-
63), or key enzymes responsible for epigenetic reactions, 
such as DNMTs, HDACs, and HMTs (64,65). Aberrant 
methylation patterns of CGIs near or within miRNA genes 
have been reported to cause a failure in the expression of 
key miRNAs and resulting pathogenic changes, including 
tumorigenesis (66). Moreover, some miRNAs can directly 
affect gene expression at the transcriptional level in the 
nucleus by complementing the promoter regions of 
specific genes. In contrast, other miRNAs can affect other 
chromatin modifiers that cause transcriptional silencing. 
The interaction between miRNAs and other epigenetic is 
orchestrated to maintain normal physiological functions. 
The disruption of this interaction has been associated with 
many diseases, including cancer (61). CGI hypermethylation 
that is shown to downregulate tumor suppressor miRNAs 
is emerging as a common feature of cancer (67,68). On 
the other hand, hypomethylation of CGIs activates gene 
expression and has been reported to promote cancer 
formation (4). 

The epigenetic regulation of some miRNAs in cancer 
types is shown in Table 1.

Physico-chemical factors on epigenetic 
mechanisms

Somatic mutations have been identified in many tumor 
suppressor genes, oncogenes, and cancer-related genes. 
However, studies have shown that mutations are not 
sufficient to cause such a disease. When biological 
processes, such as the formation, proliferation and 
metastasis of cancer cells are examined at the molecular 
level, it has been observed that both genetic and epigenetic 
factors play a role in these biological processes. Epigenetic 
modifications required for mammalian development and 
cell proliferation are disrupted by environmental causes. 
Transcriptional changes occur with disruption of epigenetic 
processes and malignant cellular transformation is observed. 
It has been reported that physical and chemical factors, such 
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as environmental pollution, ultraviolet radiation (UVR), 
nutrition, alcohol and smoking, and physical activity 
directly affect the disease mechanisms. Understanding the 
epigenetic mechanisms of these physicochemical factors 
in the development and progression of cancers will enable 
us to design our lifestyle and diet, thereby reduce cancer 

risk and monitor response to treatment. The reversibility 
of epigenetic modifications may enable the development 
of new therapeutic strategies targeting these modulations 
for the prevention and/or treatment of physico-chemically 
induced cancers. Figure 1 summarizes the possible role of 
key physico-chemical factors, which along with aspects of 

Table 1 Some shown epigenetic regulations of miRNAs in cancer types

Cancer types Target miRNAs Function References

Lung – miR-1973, miR-494, miR-4286,  
miR-29b-3p

Reduced apoptosis, higher resistance of 
chemotherapy

(69)

Breast KDM5B miR-137 Migration (70)

Colorectal TCF4, SUZ12 miR-145, miR-132, miR-212 – (71)

Glioma – miR-424 Tumor suppressor, migration, down-regulated by 
DNA methylation

(72)

Gastric – miR-196b-5p Migration, invasion (73)

Lung CCNE1 miR‐1179 Tumor cell growth suppressor (74)

Bladder DNMT3A, PETN miR-29 – (75)

Environmental 
pollutants

DNA/RNA methylation

Tumor suppressor inactivation Oncogene or cancer promotion

Histone modification

E
pi

-d
ru

gs

DNA

Methylation
Acetylation

Ubiquitylation
Phosphorylation

Histone tail

MiRNA

Ultraviolet 
radiation

Epithelial mesenchymal 
transition

Cancer 
metastasis

Cancer stem 
cellsTumorigenesis

Physicochemical factors on epigenetic mechanisms

Epigenetic modifications

Epigenetic mechanisms in cancer development and progression

Physical 
activity

Smoking and 
alcohol

Nutrition 
and diet

Figure 1 A summary of the physico-chemical factors that alter epigenetic modifications, and their most common routes that affect cancer 
development and progression.
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everyday lifestyle, influence epigenetic mechanisms.

Environmental pollutants 

Environmental pollutants, especially air pollutants, heavy 
metals, organic pollutants and chemicals in drinking water 
alter gene expression through epigenetic mechanisms  
(76-79). Air pollution contributes to inflammation and 
disease development, including cardiovascular diseases, 
metabolic disorders, asthma and chronic diseases, as well 
as cancers, due to its harmful components. For example, 
carbon black (usually from incomplete combustion exhaust 
gases), nitrogen oxides and polyaromatic hydrocarbons 
(PAHs) present in polluted air cause decrease in DNA 
methylation (76,80). PAHs, which are byproducts of the 
combustion of incomplete fossil fuels or organic elements, 
are classified as Group 1 carcinogens by the International 
Agency for Research on Cancer (IARC) (81,82). Most 
studies of particulate matter and short-term exposure to 
carbon black have been associated with DNA methylation 
in steel, oil refinery or petrochemical processing industrial 
settings (83-86). On the other hand, there are only few 

studies investigating the effects of other environmental 
pollutants such as O3,  NO2 or SO4 on epigenetic 
modifications. NO2 has been reported to cause high levels 
of DNA methylation in the ADRB2 gene (87,88), which 
is associated with severe asthma patients, while SO4 was 
associated with decreased LINE-1 methylation (84), and 
other varying methylation levels in several genes related to 
asthma (89).

Trace amounts of heavy elements with previously 
documented carcinogenicity, such as mercury (90,91), 
arsenic, cadmium (92), and nickel (93), which enter the 
body in various ways, may lead to genetic and epigenetic 
changes in different cancer-related genes of somatic and 
stem cells. For this reason, the underlying epigenetic 
mechanisms of these trace elements and compounds and 
their relationship with cancers in heavy metal-contaminated 
areas are investigated. Examples of studies on epigenetic 
changes caused by environmental factors are given in Table 2.

Ultraviolet radiation 

Solar UVR is expected to play a significant role in skin 

Table 2 Environmental pollutant effect on epigenetic modifications

Environmental pollutants Pollutants Functions/effect References

Air Pollutant Particulate matter (PM) Global DNA hypomethylation, P16 gene promoter 
hypermethylation, and changes in site specific methylation, 
acetylation, and phosphorylation of histone H3

(83,86,87,89,94)

Black carbon (BC) Modulation in allergic asthma gene methylation (89,95)

Nitrogen dioxide (NO2) Global DNA methylation or gene specific CpG methylation (96-99)

Polyaromatic 
hydrocarbons (PAHs)

Global hypomethylation and hypermethylation of specific 
genes

(81,82,100)

Heavy metals Arsenic (As) Inhibition of DNA methyltransferase
and induction of ROS formation

(91,101)

Nickel Inhibition of DNA hypermethylation (H3K9 mono- and 
dimethylation), DNMT, and histone H2A, H2B, H3 and H4 
acetylation, DNA mutation, ROS generation

(93,102,103)

Mercury (Hg) Increase of DNA methylation at the promoter region of the 
glutathione S-transferase mu1 (GSTM1)

(90,104,105)

Cadmium (Cd) Inhibition of DNMTs activity, DNA hypermethylation and 
hypomethylation

(92,105-110)

Organic pollutants Benzene Decrease of DNA methylation in both Alu and LINE-1 (111-115)

Diethylstilbestrol (DES) Aberrant DNA methylation of the Hoxa10 gene in utero (116)

Chemicals in drinking water Chlorination Increased carcinogenic risk (117)

DNMT, DNA methyltransferase; ROS, reactive oxygen species.
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tumorigenesis (118,119). Overexposure to solar UVR, 
especially to ultraviolet B light (UVB, 290–320 nm) 
component (120), can cause several harmful effects on human 
skin, including sunburn, photoaging and immunosuppression 
(121-123). UVB causes DNA damage, epigenetic lesions 
and irregular gene expression, leading to the main types 
of skin cancers, including basal cell carcinoma (BCC), 
squamous cell carcinoma (SCC), and melanoma (124).  
DNA damage and epigenetic modulations may occur 
independently, as well as they may affect each other in 
response to UVR. Studies on biomarkers to distinguish 
skin lesions have reported hypermethylation of several 
known tumor suppressor genes related to skin cancers, 
such as CDH1, CDH3, LAMA3, LAMC2, RASSF1A (125),  
which causes gene silencing without a change in the 
coding region. Epigenetic inactivation of RB1/p16 and p53 
pathways was also shown in cutaneous SCCs (119). Studies 
have also shown UVB induced hypoacetylation of histones 
H3 and H4 in the transcriptionally silenced regions of 
tumor suppressor genes (126). It is suggested that there is a 
C→T transition in the di-pyrimidine domains in skin lesions 
resulting from UVR, and resulting cyclo-butane pyrimidine 
dimer formation (127). C5-methylation, which occurs at 
position 5 of cytosine, plays an important role in epigenetic 
mechanisms involved in the regulation of various biological 
processes, from cell differentiation to gene expression (128). 
Recent studies show that ~40% of melanomas are associated 
with C5-methylation (129,130). As with other environmental 
factors, DNA methylation is also used as a marker for UVR 
exposure.

Nutrition and diet

Diet is one of the environmental factors that are more 
easily studied, and therefore better understood in epigenetic 
change. There are quite a few dietary components, such as 
folate, cinnamic acids, polyphenols, resveratrol, cruciferous 
sulforaphane and isothiocyanates, lignans, selenium and 
vitamin E are considered to have anti-cancer effects by 
affecting epigenetic modifications (131-139). 

Folate regulates single carbon metabolism that is required 
for synthesis of DNA, proteins and phospholipids (140). 
Folate is acquired only through diet. In the body, it is 
converted to 5,10-methylenetetrahydrofolate (MTHF) which 
is a significant methyl donor, and is used in methylation 
of DNA (141-143). Folate deficiency causes a few possible 
cancer mechanisms, including mutations, DNMT1 inhibition 
and aberrant global and promoter methylation (135,144-146).  

Polyphenols that are abundant in plant-derived foods 
are powerful antioxidants (147),  and they inhibit 
hypermethylation by interacting with the catalytic domain 
of DNMT1 (116,148). Certain dietary components have 
similar effects to HDAC inhibitory drugs, causing cell cycle 
arrest and/or apoptosis in cancer cells (149). A recent study 
in mice has shown that an omega-3 fatty acid rich maternal 
diet epigenetically pre-programmed particular genes in the 
off springs with an increase in acetylation of H3K18 histone 
and a decrease in H3K4me2 on nucleosomes, that caused a 
significant protective effect against breast cancer (150). 

To investigate the effects of a food on epigenetic changes 
and disease risk, the intake of that food has to be evaluated 
in a sufficient number of human samples (78,147). There 
are studies that support the role of dietary components 
on epigenetically regulated gene expressions, but the 
mechanisms of action of these dietary components are still 
under investigation. 

Smoking and alcohol

Cigarette smoke poses a risk for various diseases, such as 
cardiovascular diseases, chronic obstructive pulmonary 
disease (COPD) and cancers (151-155). Numerous 
chemicals in tobacco have toxic effects, including 
N-nitrosamines, polycyclic aromatic hydrocarbons (benzo[a]
pyrene), alkaloids (nicotine and its main metabolite, 
cotinine), heavy metals (nickel, cadmium, chromium, 
and arsenic) and aromatic amines (156,157). Smoking 
causes DNA damage and alteration in DNA methylation 
and transcription regulation (151,153,157). Altered 
DNA methylation due to smoking has been studied a 
lot. Exposure to cigarette smoke raises carbon monoxide 
levels in the blood, which decreases oxygenation in the 
body and causes hypoxia, resulting in increased synthesis 
of S-adenosylmethionine (SAM), one of the main methyl 
donors, leading to DNA methylation (158). 

CYP1A1 and AHRR are among the few genes known to 
be hypomethylated due to smoking. CYP1A1 is important 
for the detoxification of carcinogens, while AHRR inhibits 
the aryl hydrocarbon receptor that metabolizes harmful 
chemicals. Therefore, inhibition of their functions by 
hypomethylation increase cancer risk (100,159). Although 
smoking, in general, leads to decreased DNA methylation, 
a few critical genes for cell cycle regulation, such as p16 and 
p53, become hypermethylated due to smoking (160). Loss 
of function of p16 and p53 can lead to cancer as a result 
of dysregulation of the cell cycle and uncontrolled cellular 
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divisions (160,161). 
Alcohol consumption has been classified as a carcinogenic 

factor by the IARC and has been associated with various 
types of cancers (162-166). In general, studies on epigenetic 
effects of alcohol have focused on DNA methylation and 
the association of ‘global’ methylation levels with alcohol 
dependence (166,167). DNA damage induced carcinogenic 
effect of alcohol is usually associated with ethanol and its 
metabolite, acetaldehyde, and altered transmethylation 
reactions (164). Alcohol can also change DNMT activity. 
While rare alcohol consumption is associated with global 
hypomethylation, chronic consumption was shown to 
induce gene-specific DNA hypermethylation, that may lead 
to cancer. A global increase in histone modifications in oral 
carcinogenesis has been associated to exposure to ethanol 
and resulting increases in H3K9/14 and H3K27 acetylation 
and methylation (168).

Disruption of single carbon metabolic pathway due 
to alcohol induced by folate deficiency and products 
of ethanol metabolism has also been reported to cause 
epigenetic changes associated with cancer development 
(169,170). Long-term heavy ethanol consumption has been 
shown to result in elevated homocysteine and S-adenosyl-
homocysteine (SAH) levels and decreased SAM and 
antioxidant glutathione (GSH) levels (143,144,171). 

Chronic alcohol consumption has been shown to 
cause inhibition of the ubiquitin-proteasome pathway in 
the nucleus, and resulting epigenetic changes. Ethanol 
metabolism also produces reactive oxygen species (ROS) 
that can change DNA methylation patterns, increase 
NADH levels, lead to histone modifications, and induce 
cancer development (171-174). Chronic high-dose alcohol 
use also affects some miRNA families, which may also be 
associated with cancer development (175). 

Physical activity

Exercise is strongly emphasized as a strategy for prevention 
of cancer, as well as for supporting the treatment phase. Yet, 
epigenetic mechanisms related to exercise are not clearly 
understood. Physical activity, when done regularly, leads to 
various epigenetic changes that will benefit cancer patients, 
such as hypermethylation in the promoter regions for tumor 
suppressor genes and hypomethylation in the promoter 
regions of oncogenes (176-178). 

The mechanisms that physical activity affects cancer 
vary depending on age. A large loss of DNA methylation 

is seen with aging (179) due to the involvement of methyl 
deoxycytidine, a cytosine methylated at the 5’ carbon of a 
cytosine (180). The intensity of physical activity is directly 
related to the amount of promoter demethylation and 
activation of the expression of many genes (178).

It has been reported that HDACs are highly expressed 
in muscles, and miRNAs can also be regulated by physical 
activity (181-183). Furthermore, histone acetylation has 
been reported to cause selective transcription or inhibition 
of specific genes related to cancer (184) posttranslational 
modifications in skeletal muscle (185) or behavioral 
diseases (180), by specifically modulating H3 and H4. A 
recent study has shown that sedentary and trained rats with 
prostate tumors have shown different levels of miR-27a-5p,  
and exercise increased global DNA methylation while 
decreasing DNMT expression in the tumor tissue (186). 
These results support the idea that exercise might reverse 
the epigenetic modifications due to cancer in tumor tissue.

Stress reduction and lifestyle

Relation between stress and cancer has been well 
recognized. High stress levels and unhealthy lifestyle 
reduces the potency of the immune system, which, in 
turn leaves the people prone to several diseases, including 
cancer. Involvement of epigenetic factors are also becoming 
more evident as our understanding of these mechanisms 
grow. A non-clinical study has shown that a group regularly 
exercising yoga in order to reduce stress has shown reduced 
DNA methylation levels in tumor necrosis factor (TNF) 
regions, along alterations in several other immune system 
markers (187). 

The Lifestyle Medicine Research Summit that was 
assembled at the University of Pittsburgh on December 4–5, 
2019 has determined six core areas of lifestyle medicine 
that further research needs to focus: plant-predominant 
nutrition, physical activity, sleep, stress, addictive behaviors, 
and positive psychology/social connection. All of the 
determined areas show evidence of epigenetic factors in 
health and disease and calls for the promise of epigenetic 
therapy options (188). A recent comprehensive review also 
gathers literature that correlates epigenetic alterations with 
lifestyle parameters, such as malnutrition, smoking, high-fat/
high-sugar diets, obesity, infections, alcohol consumption, 
sleep deprivation, chronic stress, air pollution, and chemical 
exposure, particularly focusing on the effects of epigenetic 
mechanisms on inflammation (189). 
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Epigenetic mechanisms in cancer development 
and progression

Abnormal epigenetic alterations in tumorigenesis

Many types of cancer are associated with aberrant 
DNA methylation. Global hypomethylation potentially 
influences cancer tumorigenesis of 5mC-containing 
sequences, particularly through tumor suppressor genes 
and deamination of methylated cytosine (190). Coexisting 
of several epigenetic mechanisms in tumors, including 
promoter CGI hypermethylation or hypomethylation, 
and silencing of tumor suppressor genes, suggest that 
epigenetics might be central to cancer progression (191,192). 
Promoter hypermethylation has also been reported to up-
regulate expression of tumor-promoting genes, such as 
BCL2 (193), MDR1 (194), HOX11 (195), cMYC (196).

Some DNA methylation changes in cancer are thought 
to result from mutations in the citric acid cycle. Epigenetic 
modifications are generally considered as reversible, but 
some modifications are conserved throughout cancer 
progression. This provides the advantage that they can 
be used to classify the disease and predict treatment. In 
this respect, H3 acetylation and H3K9 di-methylation can 
identify prostate cancer (PCa) and non-malignant prostate 
tissue. Similarly, H3K4 tri-methylation is suggested as 
an important marker of prostate specific antigen (PSA) 
recurrence (197,198). EZH2 expression, is associated with 
the aggressiveness of prostate, breast and endometrial 
cancers (199).

Cancer development includes epigenetic changes both in 
DNA and chromatin (25,200-202). It is known that promoter 
DNA hypermethylation of DNA repair genes causes genetic 
changes (203,204). For example, O(6)-methylguanine-
DNA methyltransferase (MGMT), a DNA repair enzyme, 
can potentially reverse the effects of chemotherapy and 
radiotherapy. Silencing of MGMT by hypermethylation is 
suggested to support the treatment (205,206). 

Role of epigenetics in EMT and cancer metastasis

The process of epithelial-mesenchymal transition (EMT) 
in cancer progresses through changes in the morphological 
features of polarized epithelium, including loss of apical-
basal polarity, motility, and cell-cell adhesion (207-209), and 
acquisition of mesenchymal properties, such as resistance 
to apoptosis, increased cell motility and invasiveness 
(208,210,211). Therefore, it is highly associated with 
metastasis, poor prognosis, blood intravasation (212,213) 

and resistance to therapy (214). The accumulation of 
genetic and/or epigenetic changes in tumorigenic cancer 
precursor cells during cancer development, mostly during 
the EMT, causes the tumor cells to metastasize to other 
organs by acquiring a mesenchymal phenotype. EMT 
is modulated by a variety of stimuli, including tumor-
stromal cell interactions, signal (cytokine/growth factor) 
transduction and hypoxia (215-218).

During EMT, epithelial cells lose E-cadherin expression, 
resulting in the release of β-catenin (219). Epigenetic 
mechanisms, such as CpG hypermethylation, acetylation 
of KLF5 and histone modifications were shown to initiate 
EMT (220-224). MiRNA-30 was shown to regulate TGF-β 
and TGF-α induced EMT (225). MiRNAs 143 and 145 
were associated with EMT and bone metastasis of PCa (226), 
while miRNA-1 and miRNA-200 family were shown to 
inhibit EMT and metastasis by hindering ZEB1 and ZEB2 
transcription factors (227-229). p53, a tumor suppressor 
gene, was shown to regulate EMT through regulating 
miRNA-200 family (230). Inhibition of miRNA-200 
family was shown to increase EMT and metastasis in 
high-grade breast cancers by increasing H3K27me3-
mediated chromatin remodeling and DNA methylation in 
immortalized human bronchial epithelial cells (227).

DNA methylation of the E-cadherin promoter induces 
HDACs to be recruited to the region, resulting in histone 
deacetylation and transcriptional silencing (231). Silencing 
of EZH2, which is also associated with E-cadherin 
repression, was also shown to inhibit migratory and invasive 
characteristics of different cancer cells (232,233), while 
treatment of some cancer cells with DNMT inhibitors 
increased their invasiveness, tumorigenicity, and metastatic 
properties through upregulation of EMT-related genes (234).  
It has also been reported that histone methylation of 
the CDH1 promoter also increase invasiveness through 
suppression of E-cadherin expression (68,235,236).

Role of epigenetics on the cancer stem cell (CSC) model

CSCs, or tumor initiating cells, are a small subpopulation 
of cells within tumors that show stemness properties, like 
self-renewal and differentiation, and form the different 
cell types that make up the heterogeneous tumor mass. 
CSCs are thought to be responsible for cancer initiation 
and progression, and resistance to conventional treatment 
modalities (206,237). There is very little known about the 
epigenetic regulations in CSCs, but they show quite similar 
characteristics with ESCs. ESCs are known to maintain 
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their self-renewal abilities even without DNMTs (238,239). 
However, differentiation of ESCs was found to be almost 
completely inhibited in the absence of DNMTs. Global 
DNA hypomethylation was shown to silence pluripotency 
factors and induce differentiation. ESCs have been 
reported to preserve their epigenetic memories, and their 
epigenomes are considered highly stable (240,241). 

DNA methylation has also been shown to regulate 
differentiation of somatic stem cells, like myeloid cells (242),  
and mesenchymal stem cells (MSCs) (240,243-245). 
DNA methylation patterns of human MSCs are also 
found to be quite stable in long-term culture. However, 
DNA methylation levels differ with aging in regions with 
H3K9me3, H3K27me3 and EZH2 targets (246,247). Thus, 
DNA methylation has been suggested as a good molecular 
marker in characterization of MSCs (247). Epigenetic 
characterization of CSCs is not well documented in the 
literature; but it is strongly possible that similar epigenetic 
control of CSCs with ESCs and MSCs should be observed. 

Epigenetic mechanisms have been shown to transform 
normal stem cells into CSCs when they cause abnormal 
changes in the differentiation capacity of the stem cells 
(248,249). For example, isolated human breast CSCs 
appeared to express low levels of let-7 compared to 
differentiated breast cancer cells (249). Overexpression 
of let-7 decreased EZH2 levels and stemness properties 
of PCa cells, resulting in suppressed clonogenicity and 
sphere-forming capacity, whereas loss of let-7 increased the 
expression of EZH2 contributing to PCa invasiveness (250).  
Since epigenetic mechanisms are regulated under the 
influence of extracellular changes, they create intratumoral 
heterogeneity that may promote CSC status. Several 
miRNAs involved in development are associated with PcG 
complexes and DNA methylation, and they have an active 
role in maintaining the balance between self-renewal, 
proliferation and differentiation in CSCs (52,206,250-253).  
Thus, epigenetic alterations boost CSC stemness and 
survival, and contribute to tumor initiation and progression. 

Recent studies have reported that, among heterogenous 
cancer cell populations, those that show both CSC and 
EMT-like characteristics are more resistant to chemotherapy 
(254-256). Findings suggest that epigenetic modulations 
that give these cells CSC and EMT characteristics, as 
well as abnormal changes in their signaling pathways, 
such as Wnt/β-catenin or Notch that influence their 
response to therapy (256-259). Thus, these pathways, and 
their epigenetic regulations are potential candidates for 
overcoming drug resistance and CSC targeted therapy.

Current epigenetic treatment approaches and 
epi-drugs

Early diagnosis in cancer, predicting the prognosis and 
determining the treatment options is a very laborious and 
difficult process. “Epigenetic therapy” has become an 
emerging therapeutic approach (260-263). The fact that 
epigenetic changes in the genome are reversible provides 
a new hope for cancer treatment (264). Today, researchers 
are studying the epigenetic changes seen at different 
stages of cancer in order to develop new diagnostic and 
therapeutic approaches for various cancer types. There are 
FDA approved DNMTIs and HDAC inhibitors, and many 
more agents that are found to alter methylation patterns or 
modification of histones on DNA are currently being tested 
for use in clinics. 

DNA methylation inhibitors

Promoter DNA methylation can be used to as a diagnostic 
marker to molecularly classify cancer, to predict cancer 
progression, as well as a therapeutic target (265-270). 
DNMTIs suppress tumor growth and induce apoptosis. 
Thus, they can restore the activity of tumor suppressor genes. 
The stability of first generation DNMTIs acting as cytosine 
analogues is inactivated by cytidine deaminase. Second 
generation DNMTIs are designed against degradation by 
cytidine deaminase in order to overcome the stabilization and 
toxicity problems. Currently available DNMTIs work at the 
enzymatic level, resulting in global DNA hypomethylation. 
A l though  th i s  i s  the rapeu t i c a l l y  u se fu l ,  g loba l 
hypomethylation has some limitations, such as possibility of 
oncogene activation and/or increased genomic instability. 
Promotors located on the repetitive elements in oncogenes 
can be inactivated by DNA hypomethylation (271).  
The development of novel DNMTIs targeting specific genes 
or gene groups, as opposed to global hypomethylation, is 
a promising approach for more controlled and targeted 
therapy. Another issue is that DNMTIs are usually activated 
during the S-phase of the cell cycle. This feature affects fast 
growing cells, therefore works on highly proliferative cancer 
cells. However, it does not provide enough clinical benefit 
in the treatment of diseases that do not have rapid cell cycle. 
In addition, DNA methylation levels were shown to return 
to pretreatment levels upon withdrawal (263). Therefore, 
continuous application is required. A selected list of literature 
on DNMTIs is given in Table 3. In summary, although 
DNMTIs are clinically successful, novel inhibitors with 
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higher specificity and cell cycle independence need to be 
developed to overcome their limitations.

HDAC inhibitors

Histone modifications are more unstable than DNA 
methylation due to the imbalance between histone 
modifying enzymes (290). So, natural balance can be 
achieved by correcting the enzyme level in the affected cells. 
In cancer, it is seen that HMT and histone demethylase 
enzymes are imbalanced, and there is a global decrease in 
HDACs (291-296). 

Currently, studies are underway to find novel molecules 
that can minimize the problems with HDACIs by selectively 
inhibiting specific HDACs, such as HDAC6 and HDAC8 
(297-299). A selected list of literature on HDAC inhibitors 
is given in Table 4. Better exploration of novel and target 
specific HDACIs will result in more potent therapy options. 

Combining epigenetic treatment approaches to increase 
therapy efficacy has been tried since 1990’s (336). The 
combined use of DNMT and HDAC inhibition has 
shown clinical benefits (296,337). Epigenetic drugs can 

also be combined with conventional treatment options to 
obtain a stronger response and/or overcome resistance to 
chemotherapy or radiotherapy. It should be noted that the 
success of the combination of epigenetic modulations and 
chemotherapeutic drugs depends on the epigenetic profile 
of the particular patient and particular cancer type. 

Conclusions and future perspectives

Epigenetics plays an important role in cancer development 
and progression. Early detection of certain epigenetic 
changes may have predictive and prognostic value in certain 
cancers. Botanical compounds and pharmaceuticals may 
be used to modify epigenetic changes to prevent and treat 
cancer. Integrative oncology includes the use of botanicals, 
mind-body practices, psychological stress reduction 
techniques and healthy lifestyle, including physical activity, 
healthy diet and stress reduction, which have profound 
epigenetic effects through reduction of oxidative stress and 
inflammation. Integrative oncology interventions focusing 
on physical activity, diet and stress reduction may have a 
role in prevention of cancer development and progression. 

Table 3 Examples of DNA methylation inhibitors that have been tried in different cancer types

DNMT inhibitors Class Generation Function Cancer types

5-azacitidine Nucleoside 
analogs

First Sensitizes tumor cells to  
T-cell-mediated cytotoxicity,  
enhances efficacy of multiple 
chemotherapy drugs

Myelomonocytic leukemia (272);  
lung cancer (273);  
pancreatic adenocarcinoma (274)

5-aza-2-deoxycytidine 
(decitabine)

Anti-cancer effect, modulates EMT Ovarian cancer (275);  
breast cancer (276);  
pancreatic cancer (277)

5-aza-fluoro-2- deoxycytidine Second Inhibits cancer cell proliferation Colon cancer (278)

4-deoxyuridine (zebularine) Inhibits DNA methylation by getting 
incorporated into DNA

Lung cancer (279);  
colorectal cancer (280)

RG108 Non-nucleoside 
analogs

First Induces radio sensitivity, inhibits cell 
proliferation

Esophageal cancer (281);  
endometrial cancer (282)

EGCG Suppresses tumor growth, inhibiting  
NF-κB activation and cell proliferation

Cervical cancer (136);  
colorectal cancer (137);  
lung cancer (283)

Psammaplin Induces cell cycle arrest, inhibits  
growth and metastasis

Endometrial cancer (284);  
lung and glioblastoma (285);  
breast cancer (286)

Hydralazine Induces radio sensitivity Prostate cancer (287);  
cervical cancer (288,289)

DNMT, DNA methyltransferase; EMT, epithelial mesenchymal transition; EGCG, epigallocatechin gallate; NF-κB, nuclear factor kappa B.
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Combined treatment options of standard chemotherapeutic 
drugs with epigenetic approaches can make it possible to 
reactivate genes sensitive to chemotherapy. Coexistence of 
multiple epigenetic modifications and the development of 
drug resistance reveals the necessity of combination therapy 
in cancer treatment. Chemotherapy resistance may also 

be overcome by reversing the epigenetic changes that lead 
to it. Epigenetic therapy approaches further allows for the 
personalization of the treatment considering the patient’s 
own history, as well as his/her own lifestyle and health 
history. 

In addition to all its advantages, it can be difficult 

Table 4 Effects of HDAC Inhibitors of different classes on cancer types

HDAC inhibitors Class Function Cancer types

Trichostatin A Hydroxamic acids Inhibits cancer cell viability and displays anti-tumor 
activity

Lung, breast cancer and skin cancer (300); 
breast cancer (301)

SAHA Inhibits tumor cell growth Breast cancer (302);  
pancreatic cancer (303)

Belinostat Inhibits growth and displays anti-tumor activity Pancreatic cancer (304)

Resminostat Blocks platelet-induced HCC cell invasion Hepatocellular carcinoma (305);  
pancreatic cancer (306);  
lung cancer (307)

Abexinostat Induces CSC differentiation Breast cancer (308)

Ricolinostat Increases cancer cell apoptosis Prostate cancer (309)

Givinostat Shows anti-proliferative and pro-apoptotic efficacy Glioblastoma (310) 

Valproic acid Short chain fatty acids Inhibits cancer cell proliferation by modulating 
multiple signaling pathways.

Breast cancer (311);  
thyroid cancer (312);  
bladder cancer (313)

Butyric acid Displays anti-cancer effect Gastric cancer (314) 
colorectal cancer (315);  
bladder cancer and breast cancer (316)

Entinostat Benzamides Displays anti-cancer effect targeting SALL4 Lung cancer (317);  
ovarian cancer (318,319)

Tacedinaline Increases cell death Breast cancer (320)

Mocetinostat Shows anti-tumor effects Chondrosarcoma (321);  
lung cancer (322);  
breast cancer (323)

4SC-202 Inhibits survival and proliferation of cancer cells Medulloblastoma (324);  
colorectal cancer (325)

Romidepsin Cyclic tetrapeptides Enhances anti-tumor effect, regulates PD-L1 Bladder cancer (326,327);  
colon cancer (328)

Nicotinamide Sirtuins inhibitors Enhances DNA repair and reduces UVR’s 
immunosuppressive effects

Skin cancer (329,330);  
cervical cancer (331)

Sirtinol Induces apoptotic effect Breast cancer (332);  
lung cancer (333)

Cambinol Induces antiproliferative effect Bladder cancer (334)

EX-527 Increases cell death Ovarian cancer (335)

CSC, cancer stem cell; HCC, hepatocellular carcinoma; HDAC, histone deacetylase; SAHA, suberoylanilide hydroxamic acid; UVR, 
ultraviolet radiation.
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to work with epigenetic modifications. When DNA 
methylation biomarkers are analyzed, cell heterogeneity 
found in tissues from clinical specimens may yield variable, 
dynamic and complex profiling results. These variable 
results have to be interpreted in the context of real time 
changes in the tissues which may in turn influence the 
epigenetic modifications, which are highly susceptible to 
local factors, such as cell metabolism, oxygenation, free 
radical formation and inflammation. In addition, normal 
cell density is low in body fluids like serum, plasma, 
urine and sputum, which may make it difficult to detect 
epigenetic biomarkers in rare cancer cells. However, new 
highly sensitive cell identification and imaging technologies 
allow for accurate analysis of single cancer cells found in 
tissues and circulation, as well as different cell populations 
in the microenvironment. New methodologies also allow 
for “liquid biopsies” by identifying cell free DNA in the 
circulation. It is now possible to get multiple blood and 
tissues samples during the course of cancer treatment 
to evaluate genetic and epigenetic changes, which may 
influence the selection of different anti-cancer treatments.

Heterogeneity in differentiation status in cancerous cells 
and changes in the histological grade of the tumor over the 
course of the disease may cause ambiguous results in the 
correlation of clinical status. While the treatment processes 
of the disease are being followed, uncertain results may be 
obtained in patient samples Therefore, clinicians may have 
to obtain serial blood and tissues samples to understand 
the changes in genetic and epigenetic profile of the disease, 
and make necessary treatment changes accordingly. For 
example, due to the working principle of miRNAs, a 
miRNA has hundreds of targets. This may cause irregular 
treatment responses and different pathological processes 
that appear as a complex network.

In order to overcome the possible problems mentioned 
above, it is necessary to work in tissues and body fluids 
with high stability, to purify them at the DNA methylation 
stage, to create large patient groups, and to use biomarker 
panels approved by different regulatory agencies, such as 
FDA or European Medicines Agency (EMA). Also, a good 
epigenetic biomarker should be more cost-effective than 
some of the existing markers.
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