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Introduction

Cinnabar, a well-known traditional Chinese medicine 
(TCM) mainly composed of naturally occurring mercuric 
sulfide (HgS), is used for improving vision, detoxification, 
insomnia, epilepsy, and palpitations, and for its sedative 
effects, even in some pediatric medicines according to the 
Chinese Pharmacopeia Commission (1). It has been widely 

used for its therapeutic effects for over 2,000 years, and is 
still popular in clinical practice in Asia, the Middle East and 
India (2-4). The sedative and hypnotic effects of cinnabar 
have been reported. Pharmacological doses of cinnabar 
could suppress brain serotonin (5-HT) expression, reducing 
5-HT synthesis and release (5). However, the efficacy and 
safety of cinnabar have raised persistent concerns over the 
centuries because of its composition; more than 96% of 
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cinnabar is comprised of the highly toxic element, mercury (6). 
Mercury is found in three forms: inorganic, organic 

and elemental (7). Mercury in cinnabar (HgS) is inorganic, 
and considerably less toxic than other species of mercury 
due to its low solubility and bioavailability (8). It is still 
controversial whether cinnabar would be transformed into 
toxic in the body. Liang et al. (9) hypothesized that cinnabar 
could be converted into MeHg (organic mercury, the 
most toxic form) within the gastrointestinal bacterial flora. 
Further study has revealed that cinnabar is not converted 
into more toxic mercury (MeHg), instead existing as 
nontoxic mercuric polysulfides in the intestine (3,10). The 
commonly observed clinical toxic effects of cinnabar include 
neurotoxicity (11,12), ototoxicity (13), hepatotoxicity 
(14-16), and nephrotoxicity (15,16). Recent studies show 
that exposure to mercury is strongly correlated with 
hypertension, coronary heart disease, cardiac arrhythmias, 
myocardial infarction, atherosclerosis, and stoke (17-21).  
Cardiovascular functions are affected by chronic occupational 
exposure to low mercury doses (22). However, few studies 
have reported on the cardiotoxicity induced by cinnabar. 
An-Gong-Niu-Huang Pill, a preparation comprised of 
cinnabar and realgar, is commonly prescribed to treat 
acute ischemic stroke and cerebral hemorrhage in China, 
and pericardial edema has been observed in zebrafish (16).  
Although cardiotoxicity of mercury and preparations with 
cinnabar has been reported, the cardiotoxicity of cinnabar 
has not been investigated experimentally. 

The zebrafish (Danio rerio) genome has been fully 
sequenced and closely resembles the human genome, 
approximately 70% of human genes are orthologous to 
zebrafish genes while 3,176 human disease genes are found 
and listed in the Online Mendelian Inheritance in Man 
(OMIM) database at which 82% morbid genes are associated 
with at least one zebrafish orthologue (23). Zebrafish larvae 
are visible in bright conditions, which makes it possible 
to assess the development of different organs (24). The 
heart tube, with distinguished cardiac chambers, is clearly 
beating by 22 hours post-fertilization (hpf), and circulation 
begins at 24 hpf. By 36 hpf, the heart tube has looped 
and provides circulation to most organs such as head and  
trunk (25), and almost all of the organs have fully developed 
by 96 hpf (26). Within the past few decades, zebrafish have 
become one of the most important vertebrate models for 
studies on development, embryology, oncology, behavior, 
and physiology, as well as for cardiovascular research (27). 
Zebrafish embryos have been used for screening many 
types of toxic substances, specifically for cardiotoxicity, 

and exhibit similar physiological responses to mammals, 
and even humans, on exposure to antibiotics, hormones, 
chemical drugs and heavy metals (27-29). Cardiac functional 
analysis of zebrafish typically involves the heartbeat, cardiac 
output (CO), stroke volume (SV), fractional shortening (FS), 
and vascular blood flow velocity (30). Pericardial edema in 
zebrafish was observed in response to cardiotoxicity (29). 

In order to develop a cardiotoxicity assay physiologically 
relevant to humans, for evaluating safety and also 
understanding the mechanism underlying the toxicity 
of cinnabar, we exposed zebrafish embryos and larvae to 
cinnabar, and measured the systemic effects of cinnabar on 
overall embryonic development, and the heart and neuronal 
system in in vivo experiments.

We present the following article in accordance with 
the MDAR reporting checklist (available at https://lcm.
amegroups.com/article/view/10.21037/lcm-21-44/rc). 

Methods

Cinnabar and zebrafish

Silybum cinnabar, which product with code number 
approved by National medical products administration 
(NMPA) is (90)32-273, was purchased from Dishui 
Chemical Industry Limited Company, Xiangtan, Hunan, 
China, and used throughout the study.

The AB wild-type zebrafish used in this study were 
purchased from a local pet shop, and manipulated as 
described in the Zebrafish Handbook (31). Transgenic 
fish lines Tg (cmlc2:GFP) and Tg (mnx1:GFP) ml2 were 
purchased from the Zebrafish Information Network 
(Eugene, OR, USA). Zebrafish embryos were generated 
by natural pairwise mating and maintained in embryo 
media at the Institute of Chinese Medical Sciences (ICMS), 
University of Macau (32).

Zebrafish maintenance

The zebrafish embryo collection, breeding, and embryonic 
and larval culture procedures, as well as the microscopic 
observations, were performed according to the standard 
protocols described in the Zebrafish Handbook (33). 
Briefly, both zebrafish strains were maintained in a 
controlled environment at 28.5 ℃ on a 14 h:10 h light/dark 
photoperiod. Fish were fed with live brine shrimp twice a 
day and with general tropical fish food once a day. Zebrafish 
embryos were maintained under standard conditions at a 
temperature of 28.5 ℃ in embryo medium (13.7 mM NaCl, 

https://dictionary.cambridge.org/zht/%E8%A9%9E%E5%85%B8/%E8%8B%B1%E8%AA%9E/substance
https://lcm.amegroups.com/article/view/10.21037/lcm-21-44/rc
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0.54 mM KCl, 0.025 mM Na2HPO4, 0.044 mM KH2PO4, 
0.13 mM CaCl2, 0.1 mM MgSO4, and 42 μM NaHCO3; PH 
7.4) (34).

Assessment of mortality rate

Wild-type zebrafish embryos at 1 day post-fertilization (dpf) 
were randomly placed into a 24-well plate (27 embryos 
per well, 81 embryos per condition) with varying cinnabar 
concentrations (1, 3, 10, 30, or 100 mg/mL). A group of 
embryos treated with embryo medium was used as a vehicle 
control. The incidence of lethality was recorded every 24 h 
from 2–7 dpf. Mortality was determined by observing the 
heart beats of the zebrafish (31).

Assessment of locomotion behavior

Wild-type zebrafish larvae at 3 dpf were exposed to different 
concentrations of cinnabar (1, 3, 10, or 30 mg/mL) for  
4 days. Zebrafish larvae at 7 dpf were randomly transferred 
into 96-well plates (one larva per well and 12 larvae per 
group). Zebrafish showing signs of excessive stress upon 
handling (such as rapid and disorganized swimming or 
immobility for 2 min) were discarded. The experiments 
were performed in a calm, sealed area. Zebrafish larvae 
were allowed to habituate to the environment of the 
system for 30 min before tracking began. Swimming 
behavior was monitored by an automated video tracking 
system (Viewpoint; ZebraLab, LifeSciences, France). The  
96-well plates and camera were housed inside a Zebrabox 
and the swimming pattern and total distance moved of 
individual zebrafish larvae were recorded in three 10-min 
sessions. Statistical analysis of the total distance traveled by 
each zebrafish larva in the different treatment groups was 
performed using one-way analysis of variance (ANOVA) (31).

Assessment of motor neuron phenotype

Tg (mnx1:GFP) ml2 zebrafish embryos expressing green 
fluorescent protein in motor neurons were used for 
assessment of the motor neuron phenotype. All embryos 
were incubated at 28.5 ℃ in embryo medium containing 
0.003% PTU (to block pigmentation) from 24 hpf, and 
treated with different concentrations of cinnabar for 48 h. 
Images were taken using an Olympus DSU (Disk Scanning 
Unit; Olympus, Tokyo, Japan) confocal imaging system at 
72 hpf. 

Morphological observation

At 24 hpf, wild-type zebrafish embryos were exposed to the 
indicated concentrations of cinnabar for 48 h and mounted 
on microscope glass slides. The morphology of the larvae, 
including malformations in the tail and the presence of 
edema, was observed under a fluorescence microscope 
(IX71; Olympus, Japan) at 3 dpf. 

Assessment of cardiac functions

Tg (cmlc2:GFP) zebrafish embryos were used for the 
cardiotoxicity evaluation. All embryos were cultivated at 
28.5 ℃ in embryo medium containing 0.003% PTU (to 
block pigmentation) from 24 hpf. At this stage, the embryos 
were dispensed into a 96 well plate (one embryo per well) 
and treated with four cinnabar concentrations (1, 3, 10, or 
30 mg/mL). Embryos treated with 0.5% DMSO (Sigma-
Aldrich, St. Louis, MO, USA) were used as the vehicle 
control. Then, plates were incubated at 28.5 ℃ for 72 h. 

20-s segments of video capture was recorded at room 
temperature using a microscope equipped using Xcellence 
rt software (Olympus, Japan). Sequences were captured at 
speeds of at least 98 frames per second, with a frame size of 
256×256 pixels, and then converted into AVI movie files. The 
cardiac morphology, heart rate (HR), SV, CO and FS were 
used some mathematic formulation to do measurement (35).

 
HR 
Heart period, defined as the interval from the beginning 
of one diastole to the beginning of the next, was recorded. 
The standard deviations for individual embryos were than 
averaged to obtain the mean interbeat variability for each 
exposure group (N=5 embryos per group). To measure 
the HR, the number of sequential heart contractions in  
1 minute interval was counted.

CO
The CO included the heart period (defined as the interval 
from the beginning of one diastole to the beginning of the 
next) and was calculated as CO = SV × HR.

SV 
End diastolic volume (EDV) and end systolic volume 
(ESV) in zebrafish larvae were calculated using the formula: 

   24Volume = π a long axis b short axis
3
   . SV was calculated 

using the formula: SV = EDV – ESV.



Longhua Chin Med, 2022Page 4 of 10

© Longhua Chinese Medicine. All rights reserved. Longhua Chin Med 2022;5:2 | https://dx.doi.org/10.21037/lcm-21-44

FS 
The long axis length (a) and short axis length (b) between 
the myocardial borders of ventricles, at diastole and systole, 
respectively, were measured on images from movies. The 
percent FS was calculated using the formula: FS = (Diastolic 
diameter – Systolic diameter)/(Systolic diameter) × 100%.

Statistical analyses

All statistical analyses were performed using SPSS 20.0 
software (IBM Corp., Armonk, NY, USA). Means ± standard 
error of mean of means (SEM) were calculated from all 
individual values. To determine statistically significant 
difference between the treatment and control groups, one-
way ANOVA was performed followed by Dunnett’s t-test 
(double side). P values <0.05 were considered significant.

Ethical statement

Experiments were performed under a project license (No. 
UMARE-030-2017) granted by the Animal Research Ethics 
Committee of the University of Macau, in compliance with 
institutional guidelines for the care and use of animals.

Results

Cinnabar induced mortality in zebrafish larvae

The  mor ta l i t y  o f  zebra f i sh  induced  by  va r ious 
concentrations of cinnabar was measured at 1–6 dpf. Figure 1  

showed that treatment with 30 mg/mL of cinnabar resulted 
in significant mortality at 4 dpf (P<0.05). Cinnabar at  
100 mg/mL also caused significant mortality of zebrafish 
larvae (P<0.05), in a time frame as short as 24 h, while none 
of the zebrafish larvae survived at 4 dpf. Therefore exposure 
to cinnabar, at 30 mg/mL or higher, for 3 days showed 
significant acute lethal toxicity to zebrafish larvae.

Cinnabar inhibited the locomotion of zebrafish larvae 

The total distance swam in 10 minutes was analyzed as 
shown as Figure 2. After incubation for 4 days with various 
concentrations of cinnabar, the swimming distance upon 
treatment with 30 mg/mL cinnabar was significantly 
reduced (P<0.05).

Cinnabar caused cardiac deformities in Tg (cmlc2:GFP) 
transgenic zebrafish larvae 

Beating hearts expressing enhanced green fluorescent 
protein in live Tg (cmlc2:GFP) zebrafish larvae were 
observed by a fluorescent microscope. The effects of  
1–30 mg/mL cinnabar on cardiac morphology of the larvae 
at 96 hpf was observed; no obvious cardiac malformations 
were induced in the presence of 1–30 mg/mL cinnabar, as 
shown as Figure 3. 

Cinnabar induced cardiac dysfunction in zebrafish larvae

To determine the toxic effects of cinnabar on cardiac 

Figure 1 Mortality rate of zebrafish embryos upon treatment with different concentrations of cinnabar. (A) Mortality rate of zebrafish 
after treatment with 0, 1, 3, 10, 30, 100 mg/mL of cinnabar from 1 to 6 dpf; (B) survival rate of zebrafish after treatment with different 
concentration of cinnabar at 96 hpf. The mortality of embryos was determined by observing the beating heart. The experiment was repeated 
three times. The mortality rate was expressed as the mean percentage ± SEM (27 embryos per group). **, P<0.01; versus control (0 mg/mL 
cinnabar) was considered statistically significant. dpf, day post-fertilization; hpf, hours post-fertilization; SEM, standard error of mean; LC, 
lethal concentration.
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functions, including the HR, CO, SV and FS of the 
larvae at 96 hpf were recorded. From the results shown in 
Figure 4, a significant decrease in HR and CO, as well as a 
remarkable increase in FS, were observed with 30 mg/mL 
cinnabar treatment (P<0.05). This indicated that exposure 
to cinnabar could disrupt zebrafish cardiac function in a 
dose-dependent manner.

No motor neuron damage on Tg (mnx1:GFP) ml2 
transgenic zebrafish larvae

The neuron system of Tg (mnx1:GFP) ml2 zebrafish 
expressing enhanced green fluorescent protein was 
observed. Motor neurons in the larvae at 72 hpf were 
observed under excitation by a fluorescence microscope. In 
Figure 5, no obvious effect on motor neurons can be seen 
in the larvae with the indicated concentrations of cinnabar 
exposure. Therefore, cinnabar exposure did not obviously 
affect the morphology of the motor neurons of zebrafish 
larvae with 48-h incubation.

Discussion

Despite the very well-documented historical use of 
cinnabar, the toxicity thereof is still an important concern. 
As mercury, a major composition of cinnabar, has been 
deemed highly toxic, the safety of cinnabar has been widely 
questioned. In the present study, we found that exposure 
of zebrafish embryo and larvae to cinnabar caused cardiac 
dysfunctions, locomotory problems and death at certain 
concentrations. 

Cinnabar was lethal, and disrupted the normal functions 
of the cardiac system of zebrafish larvae, at certain dosages. 
A previous acute toxicity study has reported that no toxicity 
reactions were observed after single oral doses of 24 g/kg 
(2,400 ppm) of cinnabar was taken into mice, which is about 
300 times the clinical equivalent dose (36). Therefore, the 
single dose of cinnabar is relatively safe. Although cinnabar 
may not cause obvious acute toxicity to adult, long-term 
use may increase the risk of accumulation of mercury and 
subsequent injury of the organs to adult and also potential 
risks of accidental intake to heart development in fetus and 

Figure 2 Inhibition of swimming locomotion of zebrafish by cinnabar. (A) Movement trajectory of zebrafish larvae was recorded after 
exposure to cinnabar at 0–30 mg/mL; (B) total travel distance of zebrafish in each well of the 96-well plate. Each treatment group 
contained 12 larvae. Three independent trials were performed in each experimental set. The results represent the mean distance traveled 
by the larvae. The values are expressed as mean ± SEM. *, P<0.05 versus 0 mg/mL cinnabar was considered statistically significant. SEM, 
standard error of mean.
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children are uncertain. It was reported that cinnabar, which 
contains soluble mercury (≤20 μg/g) induced pathological 
changes in the kidney after rats received successive doses 
of cinnabar (0.4 g/kg) for 4 weeks (36). It is generally 
recognized that drug accumulation and bioavailability are 
pivotal determinants of toxicological effects. Therefore, in 
our experiment, continuous administrations of high dosage of 

cinnabar (1, 3, 10, 30, or 100 mg/mL) to zebrafish embryos 
and larvae were tested. After exposure of zebrafish to the 
cinnabar from 1 to 6 dpf, we found the LC50 of cinnabar to 
zebrafish was between 10 mg/mL (non-lethal concentration) 
and 30 mg/mL (lethal  concentrat ion)  (Figure 1 ) .  
An effect of cinnabar on zebrafish swimming behavior 
was demonstrated. Exposure at 30 mg/mL cinnabar for 

Figure 3 Cardiac morphology of Tg (cmlc2:GFP) transgenic zebrafish larvae exposed to cinnabar. At 24 hpf, zebrafish embryos were exposed 
to various concentrations of cinnabar (0–30 mg/mL) for 72 hours. Representative images (A-E) of zebrafish larvae treated with different 
concentrations of cinnabar are shown. hpf, hours post-fertilization.
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3 days attenuated the swimming behavior of the larvae. 
Also, cinnabar at 30 mg/mL caused malformation of the 
notochord, tail, yolk and pericardial edema, although 
cardiac malformations were not seen with 1–30 mg/mL 
cinnabar based on observations of the heart phenotype 
in the transgenic zebrafish larvae (Figure 3). However, 
exposure to 30 mg/mL of cinnabar significantly affected 
certain cardiac functions (Figure 4). Treatment with non-
toxic concentrations (1–10 mg/mL) of cinnabar led to 
doses-dependent disruption of cardiac function of the 
larvae, but without statistical significance. However, non-
lethal and lethal concentrations (1–30 mg/mL) of cinnabar 
did not lead to observable abnormal phenotypes of the 
motor neurons of the larvae (Figure 5). Whether there was 
a change in the electrophysiological function of the motor 
neurons of the larvae is uncertain and requires further 
examination.

The cardiotoxicity induced by cinnabar may be associated 
with its major component, mercury. Considerable evidence 
indicates that chronic exposure to low-dose inorganic 

mercury may also cause cardiotoxicity. The mechanism 
underlying cardiotoxicity on exposure to mercury 
may involve increased reactive oxygen species (ROS), 
oxidative stress and inflammation, as well as a reduction 
of antioxidant enzyme activity, thrombosis, mitochondrial 
dysfunction, depolarization, autoxidation of the inner 
mitochondrial membrane, and inactivation of paraoxonase 
(which indirectly induces hypercholesterolemia) (17,37). 
The mechanism underlying cinnabar-induced ototoxicity 
and neurotoxicity has been found to involve oxidative stress 
signaling, decreased Na+/K+-ATPase activities, and the 
increase of NO production (11,13). Based on these findings, 
we hypothesized that the cardiotoxicity of cinnabar may 
involve a similar mechanism to that of mercury.

Our results suggest that zebrafish embryos/larvae are 
a sensitive in vivo system to assess the chronic cardiac 
dysfunction caused by HgS or other components of 
cinnabar. The results pertaining to cardiac morphology and 
dysfunction parameters indicated that cinnabar may have 
cardiotoxic effects in mammals. It should be noted that the 

Figure 4 Cardiac dysfunction induced by cinnabar in zebrafish larvae. Heart functions were evaluated by measuring the heart rate (A), 
stroke volume (B), cardiac output (C), and fractional shortening (D) after 72 h incubation with different concentrations of cinnabar. The 
experiment was repeated three times. Data are expressed as mean ± SEM. *, P<0.05 versus 0 mg/mL cinnabar was considered statistically 
significant; **, P<0.01 versus 0 mg/mL. SEM, standard error of mean.
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Figure 5 Motor neurons of Tg (mnx1:GFP) ml2 transgenic zebrafish larvae. Cinnabar induced no obvious phenotypic change in motor 
neurons of zebrafish larvae. Zebrafish embryos at 24 hpf were treated with varying concentrations of cinnabar for 48 h and then observed 
under a fluorescence microscope at 10× magnification. Representative images are shown for zebrafish embryos in 0–30 mg/mL of cinnabar. 
The experiment was repeated three times, with similar results obtained each time. Representative images are shown. hpf, hours post-
fertilization.
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sulfide forms of mercury are only used in traditional oral 
medicines and clinical preparations; they are not but not 
used alone in remedies (4). Cinnabar-containing medicines 
are non-toxic at therapeutic doses in comparison with 
other forms of inorganic mercury (38). Compared with the 
cardiovascular toxic effects of inorganic mercury, different 
molecular mechanisms might underlie the pharmacological 
and toxicological effects of cinnabar. To date, the toxicological 
effect of cinnabar on the cardiovascular system have not 
been clearly demonstrated. These results improve our 
understanding of cinnabar’s toxic effects in an experimental 
model of zebrafish, and show the feasibility of using zebrafish 
embryo/larvae as an alternative in vivo assay to determine the 
toxicity and quality of cinnabar in products on the market.

In summary, our data demonstrated that cinnabar 
could induce cardiac damage and locomotory problems 
in zebrafish larvae. Although cinnabar did not cause 
significant cardiac dysfunction at the low concentrations 
tested herein, the potential risks of long-term exposure to 
low doses remain unknown. The use of cinnabar may pose 

a significant risk to certain populations, such as pregnant 
women, children, and patients with cardiac conditions.
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