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Background and Objective: The medicinal plant Crocus sativus L. is widely cultivated to give the dried 
red stigmas, known as saffron, which is very famous and costly in the world. To date, phytochemical database 
of saffron contains more than 150 volatile and non-volatile compounds, in which crocetin glycosides or 
crocin represents as one of three major components (safranal, picrocrocin, and crocin) and defined the 
saffron quality. The natural product chemistry of the crocin has been extensively studied and reported in 
the literature. This review aims to summarize and discuss on chemical profile of saffron with focus on the 
principal composition of the title material, the crocetin glycoside.
Methods: The information in this review has been collected from the electronic scientific database [PubMed 
and Dictionary of Natural Products (DNP)] and a summary was provided in the form of tables.
Key Content and Findings: In this narrative review, we first outlined the phytochemical profile 
of saffron, then mainly focused on the crocetin glycosides in the viewpoints of structure, biosynthesis, 
qualitative and quantitative analyses, biodiversity and chemotaxonomy. The biosynthesis of crocin has been 
thoroughly proven and found to be related with picrocrocin and safranal. Additionally, the crocin component 
represents the impact meaning in chemotaxonomy of Crocus genus. The recent advantage of modern 
hyphenated chromatographic technique suggested new crocetin glycosides.
Conclusions: Saffron is one of the most medicinal materials in the World from its comprehensive health 
benefit for prevention and treatment of certain diseases. Phytochemistry of saffron and crocin with potential 
of new analog remains highly attractive and the number of publications has been timely increasing. The 
crocin has been indexed for standardization and quality of saffron and be potential for phytotherapy and drug 
development. 
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Introduction

Crocus sativus L. (Iridaceae), well-known native to the 
eastern Mediterranean-Europe and western Asia region, is 
a perennial stemless herb that is widely cultivated in many 
temperate countries including Spain, Greece, Turkey, 
Iran, India, China, and Japan (1,2) (Figure 1). The massive 
cultivation of C. sativus is timely developed to produce such 
the well-known and costly spice “red gold”, called saffron as 
stigmas of its flower. Since saffron has unique color, aroma, 
and taste, it is widely used as a spice, coloring and flavoring 
agent in food and cosmetic products. In addition, it displays 
a variety of health benefits and has been used in both 
traditional and modern medicines (3,4).

Phytochemical components of saffron have been 
extensively reported (5-8), in which safranal, picrocrocin, 
and crocetin glycosides (crocin) are major components and 
responsible for typical bitter taste, spicy aroma, and red 
color, respectively (Figure 2). Crocetin glycosides such as 
crocins 1–4 are dominated non-volatile components and be 
marker compounds for quality control and standardization 
of saffron (5). In addition, the other aspects of natural 
product chemistry of the crocin such as chemical structure, 
biosynthesis, and biodiversity have been investigated and 
reported (6-8). This review then will be focused on the 
crocetin glycosides as the principal composition of the title 
material under the viewpoint of natural product chemistry.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
lcm.amegroups.com/article/view/10.21037/lcm-21-70/rc).

Methods

This narrative review consists of a PubMed search of 
English publication up to date of January 2022. The 
keywords used for the search were consecutively: “saffron 
and crocin OR Crocus and crocin”. This first step released 
227 articles. Then, manual screening of the 11 words cited 
above in Table 1 referring to saffron and crocin were realized 
for the 227 articles. Sixty articles were ultimately used, as 
listed in the references.

Phytochemical profile of saffron

Principal components

Since first phytochemical report on saffron by Zarghami 
in 1971 (6), together with development and advancement 
of chromatography, the phytochemical profile of saffron 

has been very attractive to Worldwide natural product 
chemists and being studied in detail and, to date, reveal the 
occurrence of totally more than 150 volatile and non-volatile 
compounds (7). In which, there are about 60 constituents 
have been identified by conventional isolation and 
structural elucidation. The volatiles consist of more than 40 
components that are mainly monoterpenes, their alcohol 
and ester derivatives, of which, safranal (2,6,6-trimethyl-
1,3-cyclohexadiene-1-carboxaldehyde, 60-70% of the 
volatiles) is the main component. Non-volatile components 
include crocetin, crocin, picrocrocin and flavonoid. 
The detailed all the compounds from saffron is listed in  
the interesting review article by Mykhailenko et al. (8).

Being well documented and notably, crocin is the unique 
water water-soluble carotenoids found in the title material 
and the primary component responsible for the red color 
of saffron. Chemically, crocin is a series of compounds that 
are glycosyl esters of crocetin are the major components 
of saffron (9,10). The quantitative study revealed the 
main crocins including crocin-1, crocin-2, crocin-3 and 
crocin-4 as shown in Table 2 and Figure 3 (12-15). The 
detailed outline and insight discussion on their structure, 
spectroscopic data, distribution, and so on will be addressed 
mainly in the main following section.

Picrocrocin is glycosylated form of safranal and 
chemically different from crocin but in the viewpoint 
of biosynthesis, the biosynthesis pathways of three 
principal components of saffron have been established and 
relatively from the same precursor of zeaxanthin (16,17).  
Figure 4 showed the brief biosynthesis pathway with the key 
intermediate and precursor (18). 

The profile of crocin, picrocrocin and safranal contributes 
to quality control of saffron (19,20) and it has been suggested 
that the best quality saffron should contain about more than 
20% crocin, 5% picrocrocin, and 0.5% safranal (21).

Crocetin and its glycosides

Crocins are crocetin glycosides, in which structure 
variation depends on the sapogenin backbone of crocetin 
(C20H24O4; MW: 328.4 g/mol) and, mainly, the terminal 
sugar chains (glucose, gentibiose, and neapolitanose) (8).  
Crocetin framework inheriting from zeaxanthin in 
the proven biosynthesis pathway with a long chain of 
conjugated carbon-carbon (seven conjugated double bond 
and two terminal carbonyl function, 4 side-chain methyl 
groups) is relatively unstable with temperature, oxidants, 
UV radiation, and pH condition resulting fragmentation 

https://lcm.amegroups.com/article/view/10.21037/lcm-21-70/rc
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of certain double bond of polyene backbone other than 
variable functional groups. The long-conjugated system 
of the crocetin backbone makes the crocins appear in red 
color and can be detected by UV-VIS spectra (characteristic 
maxima VIS absorbance in the range 400–500 nm), which 
are helpful in both qualitative and quantitative analyses. 
In addition, the stereochemistry of crocetin and crocins 
is only from conformation of double bond and highly 
oriented in one form, whether cis or trans and, normally, the 
trans-form is more stable than the cis-form. The cis/trans 
conformation make influence on their conjugated systems 
and results in their different UV-VIS spectra at secondary 
peak beside the characteristic peaks, the cis isomer gives a 
single peak between 320 and 340 nm and, in case of all-
trans isomer, the secondary peak is at ca 256 nm. As shown 
in Table 3 and Figure 5, since first crocins were isolated 

in 1975 (30) and then structurally identified in 1982 (24), 
up to date, there have been 22 compounds including 
crocetin and crocin derivatives reported from saffron 
from noteworthy investigation of Speranza in 1984 (31), 
Tarantilis in 1995 (21), Carmona in 2006 (26), Dufresne in 
1999 (11), Shoyama in 2013 (32), and Llorens in 2015 (12),  
respectively. Among them, four main crocin pigments 
(crocin-1, crocin-2, crocin-3, and cocin-4), named according 
to the number of sugar unit in their respective molecules 
along with minor components of α,β-carotenes, lycopene, 
zeaxanthin, phytoene, phytofluene, (4R)-4-hydroxy-3,5,5-
trimethylcyclohex-2-enone 4-O-β-D-glucopyranoside, 
(4S)-4-hydroxy-3,5,5-trimethylcyclohex-2-enone 4-O-β-
D-glucopyranoside, (4S)-4-(hydroxymethyl)-3,5,5-
trimethylcyclohex-2-enone 4-O-β-D-glucopyranoside, 
and β-D-gentiobiosyl ester of 2-methyl-6-oxohepta-2,4-
dienoic acid, respectively (30,33). In our previous study 
on saffron by dark cultivation in Japan, it is noteworthy 
that a unique minor crocetin glycoside was isolated and 
identified as trans-crocetin 1-al 1ʹ-O-β-gentiobiosyl ester 
based on the extensive chemical and spectroscopic evidence 
(Figure 6) (33). Table 4 summarizes the NMR data of the 
typical crocins from the original research (32-35) for 
forthcoming references. In term of the NMR spectroscopic 
data, since the structure of crocetin and the crocins are 
highly symmetric, the NMR signals appears whether in 
couples or integrated peaks. The 13C NMR spectra display 
even number of peaks at the range of ẟ 120–150 ppm for 
olefinic double bonds and, especially, two downfield signals 
at ẟ 165–190 ppm accounting for two terminal carbonyl 
carbons. It becomes evident that the relative downfield shift 
of the carbonyl carbon discriminates the carbonyl functions 
(ester, carboxylic acid, aldehyde) (32-35).

Figure 1 Field cultivation in Spain (left) and indoor cultivation in Japan (right) of Crocus sativus L.

Figure 2 The three principal components of saffron.
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Table 1 The search strategy summary

Items Specification

Date of search October 2021

Database and other sources searched PubMed

Search term used Search terms: saffron and crocin OR Crocus and crocin

Timeframe Before October 2021

Inclusion criteria Inclusion criteria:

(I) Article languages: English

(II) Article types: all

(III) Articles only relates to saffron or crocetin structure (manual screening of the following 
words in the abstracts or the whole articles: saffron, Crocus sativus, crocin, crocetin, safranal, 
picrocrocin, structure, NMR, spectroscopic data, analysis, biosynthesis, pharmacological activity

Selection process NH Tung, NN Hieu, and VV Tuan conducted the selection together

Table 2 Three principal components of saffron

Compounds Chemical name
Molecular formula, 
molecule weight

Weight content (%, wt/wt) Reference

Safranal 2,6,6-trimethyl-1,3-cyclohexadiene-1-
carboxaldehyde

C10H14O, 150 0.24/1.0 (5,7,8)

Picrocrocin 4-(β-D-glucopyranosyloxy)-2,6,6-trimethyl-1-
cyclohexene-1-carbaldehyde

C16H26O7, 330 7.0/16.0 (5,7,8)

Crocin (crocin 1–4) Crocetin esters e.g., crocin 1–4: Crocetin  
di-(β-D-gentiobiosyl) ester

C44H64O24, 976 16.0/30.0; 6.4/18.0 (crocin–4) (5,7,8)

Figure 3 HPLC chromatogram of the saffron sample indoor cultivation in Japan (11). Number to peak identity: 1 (crocin-4), 2 (crocin-3),  
3 (crocin-2), and 4 (crocin-1).
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Quantitatively, standard saffron contain total crocin 
content not less than 16% but some saffron were reported 
to be more than 20% crocins with crocin-4 up to 16% 
(36,37). Furthermore, the chemical fingerprint of individual 
crocins in saffron have been studied by various colorimetric 
(38,39) and chromatography techniques (HPTLC, HPLC, 
UPLC…) (40-44), especially modern hyphenated, GC-
MS, FTIR, LC-MS and LC-MS-NMR methods (45-48), 
so that minor compounds and trace components have been 
identified. Recently, Aiello and co-workers reported a LC-

MALDI MS method for fingerprinting and quantitative 
analysis of saffron and revealed occurrence of potential 
and not reported crocetin esters with long sugar chains of 
four-to-seven sugar units, molecular weight up to 1800 
amu in advance (49). These findings are consistent with 
the biosynthesis pathway of crocin and support variation in 
biosynthesis as well as potential of new crocin derivative in 
saffron and Crocus genus.

Under viewpoint of chemotaxonomy, accumulating data 
shows that crocetin and its glycosides have been occurred in 

Figure 4 The biosynthesis pathway of the main secondary metabolites in Saffron (C. sativus).
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very few medicinal plants including Crocus genus of Iridaceae 
[C. sativus, C. neapolitanus (50), C. speciosus, C. luteus (51)],  
Gardenia jasminoides (Rubiaceae) (34,35), Arctium lappa 

Table 3 Crocetin and crocin derivatives of saffron

No. Chemical structure Chemical name
Molecular formula, 
molecule weight (amu)

Configuration/
isomer (cis/trans)

References

1 R
1 
= R

2
 = H 2,6,11,15-tetramethylhexadeca-

2,4,6,8,10,12,14-heptaenedioic acid (Crocetin)
C20H24O4, 328 Cis/trans (22,23)

2 R
1
 = H Crocetin 1-β-D-glucopyranosyl ester (crocin-1) C26H34O9, 490 Cis/trans (21,23)

R
2
 = Glc

3 R
1
 = H Crocetin 1-β-D-gentiobiosyl ester (crocin-2) C32H44O14, 652 Cis/trans (21,24)

R
2
 = Gtb

4 R
1
 = Glc Crocetin 1-β-D-glucopyranosyl 1ʹ-β-D-

gentiobiosyl ester (crocin-3)
C38H54O19, 814 Cis/trans (21,25,26)

R
2
 = Gtb

5 R
1
 = Gtb Crocetin 1,1ʹ-di-β-D-gentiobiosyl ester 

(crocin-4)
C44H64O24, 976 Cis/trans (21,25,26)

R
2
 = Gtb

6 R
1
 = Me Crocetin β-D-glucopyranosylmethyl ester C27H36O9, 504 Trans (27,28)

R
2
 = Glc

7 R
1
 = Me Crocetin dimethyl ester C22H28O4, 356 Trans (23,28)

R
2
 = Me

8 R
1
 = Gtb(Ac)7 Crocetin di-(2,3,4,8,9,10,12-hepta-O-acetyl-β-

D-gentiobiosyl)-ester
C72H92O38, 1,424 Trans (24)

R
2
 = Gtb(Ac)7

9 R
1
 = Glc(Ac)4 Crocetin di-(2,3,4,6-tetra-O-acetyl-β-D-

glucopyranosyl) ester
C60H80O32, 1,232 Trans (24)

R
2
 = Glc(Ac)4

10 R
1
 = Glc(6-1)Glc(6-1)Glc Crocetin-(tri-β-D-glucopyranosyl)-(β-D-

gentiobiosyl) ester
C50H74O29, 1,138 Cis/trans (26,27)

R
2
 = Gtb

11 R
1
 = Glc Crocetin di-(β-D-glucopyranosyl) ester C32H44O14, 652 Cis/trans (21,24,26)

R
2
 = Glc

12 R
1
 = Npt Crocetin (β-D-neapolitanosyl)-(β-D-gentiobiosyl) 

ester
C50H74O29, 1,138 Cis/trans (21,26,29)

R
2
 = Gtb

13 R
1
 = Npt Crocetin (β-D-neapolitanosyl)-(β-D-

glucopyranosyl) ester
C44H64O24, 976 Cis/trans (26)

R
2
 = Glc

Figure 5 The chemical structures of crocetin derivatives.

Figure 6 The structure of trans-crocetin 1-al 1ʹ-O-β-gentiobiosyl 
ester.
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Table 4 C
13

 NMR data for principle crocins (crocins 1–4) and crocetin 1-al 1ʹ-O-β-gentiobiosyl ester

Position Crocin-1 Crocin-2 Crocin-3 Crocin-4 Crocetin 1-al 1ʹ-O-β-gentiobiosyl ester

Crocetin moiety

8 166.7 166.6 166.7 166.7 168.6

9 127.5 127.5 125.8 125.6 126.1

10 140.3 140.3 140.4 140.4 142.0

11 124.7 124.6 124.4 124.3 124.3

12 145.0 145.0 145.1 145.0 146.6

13 137.4 137.3 137.4 137.4 139.8

14 136.5 136.4 136.5 136.5 139.3

15 132.5 132.5 132.5 132.5 135.7

19 13.0 12.9 13.2 13.1 13.0

20 13.0 12.9 13.1 13.0 12.8

8ʹ 169.6 169.5 166.7 166.7 189.6

9ʹ 125.7 125.6 125.8 125.6 141.9

10ʹ 138.5 138.5 140.4 140.4 148.7

11ʹ 124.2 124.2 124.4 124.3 123.4

12ʹ 143.7 143.7 145.1 145.0 145.8

13ʹ 137.1 137.1 137.4 137.4 137.7

14ʹ 135.7 135.7 136.5 136.5 137.1

15ʹ 132.0 132.0 132.5 132.5 135.3

19ʹ 13.3 13.2 13.2 13.1 12.7

20ʹ 13.1 13.0 13.1 13.0 14.5

Sugar moiety

1ʺ 95.0 95.0 95.1 95.0 96.0

2ʺ 73.0 72.9 72.9 72.9 75.1

3ʺ 76.9 76.7 77.4 77.3 77.9

4ʺ 70.0 69.7 69.7 69.7 71.0

5ʺ 78.3 78.3 78.3, 77.3 77.2 78.0

6ʺ 61.0 68.4 68.4, 61.0 68.2 69.5

1ʹʺ – 103.5 103.6 103.5 104.6

2ʹʺ – 73.9 73.9 73.9 74.0

3ʹʺ – 77.2 77.4 77.3 77.9

4ʹʺ – 70.4 70.0 70.4 71.5

5ʹʺ – 77.3 76.8 76.7 78.8

6ʹʺ – 61.4 61.4 61.4 62.7
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(Asteraceae) (52,53), Mimosa pudica (Leguminosae) (54), 
Buddleja officinalis (Loganiaceae) (55), Stemona japonica 
(Stemonaceae) (56), Nyctanthes arbor-tristis (Oleaceae) (57), 
Jacquinia angustifolia (58), Coleus forskolii (59), and Artocarpus 
heterophyllus (60), respectively. Of which, the saffron and 
the fruit of G. jasminoides are most dominated in contents of 
crocetin and various crocetin glycosides. In the title herb of 
C. sativus, crocetin and crocetin glycosides are only found 
in the saffron. So that, crocetin and certain its glycosides 
contribute impact meaning in chemotaxonomy of Crocus 
species and others. 

Conclusions

Saffron is the well-known traditional medicinal herb and 
potential application in the modern medicine based on its 
scientific database, especially the phytochemical profile. 
This brief review as updating due time and, once again, 
further supports that crocin is the principal content and 
defined the saffron quality. In addition, the potential of new 
crocin have been evidenced by chromatographic fingerprint 
and need to be more studied.
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