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Introduction

The immune system, under normal circumstances, 
maintains a delicate equilibrium between the Yin and Yang 
of immune tolerance and autoimmunity (1). Insults at the 
cellular, genetic, and epigenetic levels tend to induce the 
tissue’s physiological responses, including cell proliferation, 

migration, and inflammation, and facilitate either tissue 
repair or scarring (2-6). One of the key events leading to 
tumorigenesis is the disruption of immune homeostasis, 
in which abnormal cells accumulates mutations and 
epimutations (or epigenetic alterations) to evade immune 
surveillance, leading to uncontrolled proliferation and 
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immortalization of abnormal cells (7,8).
The intricate network of immune cells orchestrates a 

series of mechanisms to protect the host from pathogens 
and diseases, and these mechanisms are dichotomized into 
two lines of defense: innate immunity provides immediate 
but nonspecific responses against threats before the 
more specific adaptive immune response is initiated (9). 
Natural killer (NK) cells and CD8+ T-cells (cytotoxic T 
lymphocytes, CTLs) are the most potent antitumor power 
to recognize and eliminate cancers. NK cells of innate 
immunity are responsible for cancer immunosurveillance 
without prior sensitization (10). Major histocompatibility 
complex class I (MHC-I) downregulation is a significant 
mechanism exploited by many types of solid tumors to 
evade immune detection by the adaptive immune system 
(11-13). NK cells specifically recognize a reduction in 
surface MHC-I presentation, determining those cells as 
abnormal and eventually sending them for destruction (14).  
In addition to NK cells from innate immunity, CTLs from 
adaptive immunity also have the capacity to kill tumor cells 
directly. CTLs scrutinize all nucleated cells in the body 
via the interaction between T-cell receptors (TCRs) and 
antigen peptide/MHC-I complexes. CTLs induce apoptosis 
upon the recognition of peptides presented by MHC-I 
molecules on target cells (15).

During the  pas t  decades ,  immunotherapy  has 
revolutionized cancer treatments and established the 
theoretical grounds to develop more effective treatments (16).  
Despite these promising discoveries, tumor cells are 
intelligent in developing resistance by manipulating their 
microenvironment and inducing anti-tumor immune cells 
anergy, rendering immune checkpoint blockades (ICBs) 
ineffective in many types of cancer (17). In this review, we 
briefly discuss CD8+ T-cell biology and tumor immune 
evasion mechanisms, assess the significance of antigenicity 
loss in solid tumors and list ongoing efforts in enhancing 
antigenicity in solid tumors. We further propose several 
future research directions on the immunoregulatory effects 
of traditional Chinese medicine (TCM) as potential novel 
therapeutic strategies.

T cell activation and killing mechanisms

Naïve CD8+ T-cells develop and mature in the thymus. 
These naïve cells enter the bloodstream upon maturation 
and circulate through the secondary lymphoid organs 
(15,18). They can encounter potential antigens presented 
by the MHC-I on antigen-presenting cells (APCs) such as 

dendritic cells (DCs), macrophages, and B cells (19). T-cell 
activation requires at least three signals: an initial antigen-
specific signal, a co-stimulatory signal, and cytokines (20,21). 
All events must occur sequentially to induce adequate T-cell 
activation and response. First, the TCR of a naïve CD8+ 
T-cell recognizes an antigen presented on the MHC-I 
of an APC. A CD8 co-receptor then stabilizes the initial 
interaction between TCR and MHC-I. After forming 
a stabilized complex, the expression of B7.1 or B7.2 by 
APCs is induced, allowing the critical second B7-CD28 co-
stimulatory signal to fine-tune the T-cell response. Lastly, 
IL-2 production by the activated CD8+ T-cells, or more 
often, with the help of CD4+ effector T-cells, promotes 
differentiation into CTLs that directly kill foreign or cancer 
cells (22).

The duration of antigen exposure is critical to maintain 
effective CTLs. Antigens need to be present and recognized 
to trigger CD8+ T-cell differentiation. The host must be 
able to rapidly eliminate such antigens from the system 
after the maturation of CTL to allow the development of 
memory CD8+ T-cells. Memory CD8+ T-cells are powerful 
in fighting off foreign substances upon re-exposure. In 
cancer and chronic viral infections, when antigens are not 
removed from the host promptly, neoantigens are sampled 
and circulated constantly. This prolonged exposure to 
antigens leads to desensitization and impaired memory 
CD8+ T-cell development, resulting in CD8+ T-cell 
exhaustion (23-29). The key features of exhausted CTLs 
are loss of effector functions, sustained expression of 
inhibitory receptors, altered transcriptional and epigenetic 
modifications, and metabolic reprogramming (Figure 1) (23). 
Thus, to restore CTLs activity and functions, therapeutic 
strategies must be considered to tackle such complex tasks 
at hand.

CTLs have been a primary focus in immunotherapy 
research due to their specificity and high efficacy in targeting 
tumor cells that carry specific antigens (29-33). Antigen-
MHC-I complex recognition by TCR triggers the release 
of two populations of cytotoxic granules, inducing caspase 
3-mediated apoptosis through two distinct mechanisms (34).  
One granule population of CTLs contains granzymes, 
perforins, and granulysins. The released perforins create 
pores on the target cell membrane, thereby delivering 
granzymes that activate caspase 3 intracellularly, leading to 
target cell apoptosis. The other granule population of CTLs 
consists of Fas ligands (FasLs), which activate caspase 3 by 
engaging the Fas receptors on the targeted cell surface. The 
FasL/Fas receptor interaction results in caspase 8 activation. 
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Figure 1 Key features of exhausted CTLs during prolonged antigen exposure. CTL exhaustion is characterized by the loss of effector 
functions. This loss of effector functions is accompanied by an early decrease in IL-2 and TNF cytokines, which leads to poor CTL 
proliferation and cytotoxicity. Depletion of IFN-γ at later stages eventually leads to clonal deletion and CTL apoptosis. Other exhaustion 
features include the expression of inhibitory receptors such as CTLA-4, TIM-3, PD-1, TIGIT, and LAG-3, epigenetic modifications such 
as DNA methylation of CpG sites at promoter regions, and metabolic reprogramming that alters nutrient distribution in the TME (23).  
Created with BioRender.com. CTL, cytotoxic T lymphocyte; TNF, tumor necrosis factor; IFN-γ, interferon-γ; CTLA-4, cytotoxic 
T-lymphocyte associated protein 4; TIM-3, T-cell immunoglobulin and mucin-domain containing-3; PD-1, programmed cell death 
protein 1; TIGIT, T cell immunoreceptor with immunoglobulin and ITIM domain; LAG-3, lymphocyte-activation gene 3; TME, tumor 
microenvironment. 

Activated caspase 8, in turn, activates caspase 3, inducing 
apoptosis. TCR binding also modulates cytotoxic molecule 
replenishment via de novo synthesis, allowing a CTL to kill 
a series of targets in succession (35). Besides their direct 
killing capacity, CTLs release several cytokines, including 
IFN-γ, TNF-α, and TNF-β, which facilitate tumor cell 
recognition and elimination (36). Most importantly, IFN-γ 
has gained much attention in immunotherapy development 
due to its ability to enhance MHC-I expression and antigen 
loading in tumor cells (37-39).

Tumor immune evasion mechanisms overview

Cancer immunotherapy is designed to augment the 
immune response against tumor cells. Strategies such as 
ICBs and adoptive T-cell therapy have revolutionized 
cancer treatment (16,40,41). While ICBs have shown 
extensive clinical success in treating melanoma and non-
small cell lung carcinomas, their effectiveness in treating 
many other solid tumors is limited (42-49). Tumor immune 
evasion through immunoediting and tumor heterogeneity 

are two mechanisms that are responsible for the observed 
suboptimal response to ICBs in many patients (50).

Tumor immune evasion poses a significant barrier to 
treating solid tumors. Most solid tumors employ three 
main mechanisms to escape immunosurveillance: loss of 
antigenicity, loss of immunogenicity, and suppressive tumor 
microenvironment (TME) (51). Sufficient antigenicity is 
necessary to trigger the initial immune activation. Tumor 
cells express a diverse population of non-mutated, tumor-
specific antigens (TSAs) and tumor-associated antigens 
(TAAs). TSAs are non-self-antigens only expressed by tumor 
cells. In contrast, TAAs are self-antigens found in normal 
cells but upregulated in tumor cells. Ideally, the immune 
system recognizes these antigens expressed by tumor cells, 
leading to a potent tumor-specific immune response (52-54).  
Usually, by selective pressures, tumor cells deprived of 
TSAs could circumvent immune-mediated attacks to survive 
and proliferate. There are several proposed mechanisms 
through which antigenicity could be lost. Immune cells 
are known to selectively eliminate tumor cells with high 
tumor mutation burden (TMB), allowing low TMB-tumor 
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Figure 2 Antigen processing and presentation pathway. Ubiquitinated polypeptides are targeted for proteolytic processing by 26S 
proteasomes or immunoproteasomes (not shown in the figure) into digested peptides (①-②). Digested peptides are transported into the 
endoplasmic reticulum via TAP1 & 2 complex (③). Digested peptides are further processed by ERAP1 & 2 and loaded onto MHC-I with 
the help of tapasin, calreticulin and ERp57 (④). Peptide:MHC-I complexes are packaged into vesicles, where the complexes are stabilized 
by chaperones, TAPBPR, traveling through the Golgi apparatus (⑤-⑥). Finally, the vesicles fuse with the plasma membrane, allowing 
the peptide:MHC-I to be presented on the target cell surface for the recognition by TCRs (⑦) (57). Created with BioRender.com. TAP1 
& 2, transporter associated with antigen processing 1 & 2; ERAP1 & 2, endoplasmic reticulum aminopeptidase 1 & 2; MHC-I, major 
histocompatibility complex class I; TAPBPR, Tapasin and TAP-binding protein related; TCR, T-cell receptor.

cell populations to replicate and thrive (51). Secondly, 
transformed cells acquire genetic mutations, resulting in 
MHC-I molecule downregulation and antigen-processing 
machinery dysfunction, thereby rendering antigen 
presentation defective in tumor cells (55,56) (Figure 2). In 
comparison, tumor cells with retained antigenicity may 
upregulate the inhibitory molecule expression or mask their 
antigenicity by producing suboptimal neoantigens. Lastly, 
cancer cells manipulate their TME to make it less favorable 
for the activation and survival of antitumor immune cells. 
Loss of immunogenicity and suppressive TME are two 
complex topics beyond the scope of this review. These two 
immune evasion mechanisms were discussed in detail in 
Beatty and Gladney’s review (51).

Current efforts in targeting solid tumor antigen 
presentation

A potential target from the antigen processing and 

presentation pathway is  immunoproteasome. The 
immunoproteasome was first described in the early 1990s, 
under the notion that IFN-γ induced changes in the 
proteasome catalytic subunits, which led to altered catalytic 
activity (58-62). Furthermore, peptides produced by 
immunoproteasomes are restricted to the MHC-I antigen 
processing pathway, which sets it apart from the consecutive 
proteasome (59,63,64). Due to its specificity only induced 
by IFN-γ in altered cells, conceptually, immunoproteasome 
is an optimal drug target for cancer immunotherapy. 
By se lect ively  target ing the immunoproteasome, 
the immunopeptidome landscape will show MHC-I 
preferences, triggering more robust CTL activation and 
targeted killing. Immunoproteasome deficiency is associated 
with poor prognosis in various cancer types (65,66). 
Despite its ostensible advantage, current drugs targeting 
immunoproteasomes have shown only modest therapeutic 
efficacy due to the heterogeneous expression of the 
immunoproteasome in different tumors (67,68). Current 
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Table 1 Major targets in antigen processing and presentation pathway and their respective therapeutic approaches (69)

Antigen presentation 
pathway target

Tumor evasion mechanism Therapeutic approaches References

Immunoproteasome Diminished immunopeptidome 
landscape

LMP7/β5i/PSMB8 inhibitors—ONX-912, PR-924, UK-101, IPSI-001 (37,70-73)

Regulatory subunit stabilizer—ATT-I

TAP Reduced antigen: MHC-I complex 
expression

Increase T cell epitopes associated with impaired peptide processing 
(TEIPPs)

(74-77)

Inhibit TAP with a siRNA vaccine

TAPBPR Decreased immunopeptidome 
repertoire

Introduction of plasma membrane targeted or exogenous soluble 
TAPBPR

(78-81)

ERAP1 & 2 Altered immunopeptidome ERAP1 & 2 inhibitors (82-94)

LMP7, large multifunctional peptidase 7; PSMB8, proteasome subunit β type 8; ATT-I, atractylenolide-I; TAP, transporter associated with 
antigen processing; MHC-I, major histocompatibility complex-I; TAPBPR, Tapasin and TAP-binding protein related; ERAP1 & 2, endoplasmic 
reticulum aminopeptidase 1 & 2.

research efforts on targeting immunotherapy are listed 
in Table 1, and other explored targets along the antigen 
processing and presentation pathway.

Therapeutic interventions focused on upregulating tumor 
antigen presentation in the breast cancer immunotherapy 
arena have been proposed and investigated. An epigenetic 
HDAC inhibitor, BML-210, has been studied previously as 
an effective drug to upregulate MHC-I antigen processing 
and presentation in triple-negative breast cancer models 
(TNBC) (95). This study also confirmed the effectiveness 
of BML-210 and PD-1 mAb as a combination therapy, thus 
proving that enhanced tumor MHC-I antigen presentation 
is a rational and effective strategy for designing improved 
immunotherapeutic. In another study, our laboratory 
identified MAL2 (Mal, T cell differentiation protein 2) as 
a crucial player in the recycling of antigen-loaded MHC-I 
complex in breast cancer models, suggesting MAL2 as a 
potential novel target for immunotherapy (96). Moreover, 
a group discovered a long noncoding RNA (lncRNA) 
LINK-A expression in patients with TNBC. This lncRNA 
was found to enhance K48-polyubiquitin-mediated 
degradation of the antigen peptide-load complex, which 
provided a new foundation for developing combinational 
immunotherapy treatments (97).

E n h a n c i n g  a n t i g e n  p r e s e n t a t i o n  t o  i m p r o v e 
immunotherapy has been explored in other cancer types. 
EZH2 (Enhancer of Zeste 2 polycomb repressive complex 2)  
was identified as a therapeutic target that enhanced tumor 
cell antigen presentation in head and neck squamous cell 
carcinomas (98). NBR1 (Neighbor of Brca1), a cargo 
receptor responsible for MHC-I degradation through 

the autophagy-dependent mechanism, was found to be a 
potential drug target in pancreatic ductal adenocarcinoma 
(PDAC) (99). An improved analog of indoleamine 
2,3-dioxygenase 1 (IDO1) inhibitor, YH29407, has 
improved T cell infiltration and tumor antigen presentation 
in murine colorectal carcinoma models (100). Although 
current studies have demonstrated the therapeutic potential 
in modulating antigen presentation, more research needs to 
be done to provide a more robust foundation for treating 
different tumor types, thereby opening more avenues for 
personalized medicine.

The association between TCM and immunotherapy 
(focusing on antigen presentation)

Atractylenolide I (ATT-I) is a sesquiterpene lactone 
compound found in Atractylodes macrocephala Koidz. 
Emerging evidence suggests that ATT-I exhibits antitumor 
effects in various cancer types, including colorectal cancer, 
melanoma, ovarian cancer, and breast cancer (37,101-104).  
Recent studies from our group have revealed that 
binding of natural ATT-I compound with proteasome 
26S subunit non-ATPase 4 (PSMD4) stabilizes the 
immunoproteasome in tumor cells. The stabilization 
resulted in enhanced MHC-I mediated antigen presentation 
in tumor cells, thus, triggering CTLs cytotoxicity and 
killing in the colorectal cancer cell model. Our study 
also demonstrated enhanced efficacy of ICB therapy 
by combining ATT-I and PD-1 monoclonal antibody 
(mAb) in the murine colorectal carcinoma model (37). 
In breast cancer, ATT-I suppressed tumor growth and 
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metastasis by inhibiting the Toll-like receptor 4 (TLR-4)  
mediated NF-kB signaling pathway (101). ATT-I has been 
reported to involve in cell cycle arrest and apoptosis in 
melanoma and ovarian cancer cells. ATT-I-treated B16 
melanoma cells had an increased p21, an indicator for cell 
cycle arrest, and a decreased CDK2 expression, a key cell 
cycle progression promoter. Overall, these effects impede 
cycle cell progression beyond the G1 phase. Furthermore, 
ATT-I-treated B16 melanoma cells exhibited increased 
apoptosis activity via increased p53 and decreased ERK/
GSK3β signaling (103). In contrast, the effects of ATT-I 
in A2780 cells, a human ovarian cell line, appeared to be 
different from that of melanoma cells. ATT-I-treated A2780 
cells showed cell cycle arrest in the G2/M phase transition, 
which was induced by decreased expressions of cyclin B1 
and CDK1. In addition, enhanced apoptosis in ATT-I-
treated A2780 cells resulted from the altered PI3K/Akt/
mTOR pathway (102). An interesting point arose from 
these studies as the same compound might target multiple 
cell cycle checkpoints to exert similar inhibitory effects. 
Thus, more investigations of these pathways and effects 
on cell cycles by ATT-I should be conducted to delineate 
whether different mechanisms are involved in distinct types 
of cancer when treated by ATT-I.

Curcumin is a natural, non-toxic polyphenol substance 
isolated from the rhizomes of Curcuma longa, Curcuma 
zedoaria, and Acorus calamus L (105). Supported by extensive 
studies, curcumin has many pharmacological benefits, such 
as anti-inflammatory, anti-cancer and immunomodulatory 
effects (106-111). Many mechanisms of action of curcumin 
have been proposed and investigated. STAT3 plays a 
vital role in the receptor tyrosine kinase pathway, which 
regulates gene transcription. Consecutive activation of 
STAT3 is observed in many cancer types. Curcumin has 
been reported to augment in vivo enhancement of CTLs 
through rejuvenating DCs by directly inhibiting STAT3, a 
key modulator in the tyrosine kinase pathway with known 
consecutive activation in many cancer types. In addition, 
combining curcumin with PD-1/PD-L1 checkpoint 
blockade agents demonstrated synergistic antitumor 
effects in murine tumor models (112). In another study, 
low-dose curcumin revealed an enhanced CTL-mediated 
antitumor immunity targeting 3LL tumor cells, a Lewis 
lung carcinoma cell line, by increasing IFN-γ secretion and 
proliferation of CTLs (108). In head and neck squamous 
cell carcinoma, curcumin was postulated to downregulate 
the expression of immune checkpoint (IC) ligands such as  
PD-L1, PD-L2, and Galectin-9, leading to reduced 

epithelial-to-mesenchymal transition, restored CTLs 
cytotoxicity, and reduced CD4+CD25+FoxP3+ Treg cells 
within the solid TME (109). Despite these promising 
therapeutic effects, natural curcumin extract has limited 
utility due to its poor water solubility and stability. A recent 
study has focused on designing and examining curcumin 
analogs. One example was GO-Y030, a curcumin analog 
that limited the immunosuppressive function of Treg cells 
by inhibiting their mTOR-S6 axis (107).

Recently, more TCM compounds have been investigated 
in the cancer immunotherapy field. Artesunate, is derived 
from a natural compound, artemisinin. Artemisinin is 
extracted from Artemisia annua and is used to treat malaria. 
Recently, Artesunate has also been identified as a potent 
anti-cancer candidate. It inhibits TAZ/PD-L1 signaling 
in non-small cell lung cancer (113). Other small molecule 
compounds extracted from a TCM called Huangqin have 
been extensively analyzed in Cai et al.’s in silico study (114). 
In short, based on their analysis, baicalin, wogonin, and 
oroxylin A are the bioactive ingredients in Huangqin, which 
claim to promote anti-tumor immunity. However, these 
studies have only been preliminary, and more research is 
needed to validate the efficacy and therapeutic utility of 
those small molecule compounds.

A general concern about using TCM lies in the poor 
water solubility, purity, and low efficacy when used in 
smaller quantities. Thus, analogs of TCM should be 
explored and assessed to improve the solubility and efficacy 
of these small molecular compounds to enhance their 
clinical utility.

Conclusions

It is challenging to treat solid tumors with current 
immunotherapy strategies due to their complex TME and 
other factors involved in the targeted killing. However, 
ample evidence has suggested that enhanced antigen 
presentation by the tumor cells can be a promising 
way to induce cytotoxicity by the CD8+ effector T 
cells, thereby leading to tumor shrinkage and clinical 
remission. The precise antigen processing and presentation 
mechanism in cancer cells are still unclear. A deeper 
understanding into such pathways would offer more 
insight into the heterogeneous nature of the antigenicity 
and immunogenicity of tumor cells. Furthermore, more 
research is needed to figure out if there are possible small 
molecule inhibitors that could potentiate the MHC-I 
antigen presentation pathway in tumor cells to enhance the 
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cytotoxicity of CTLs and accelerate tumor apoptosis.
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