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Introduction

Different biological processes are regulated by epigenetic 
mechanisms that occur independently of changes in the 
DNA sequence (1,2), such as DNA methylation in CpG 
islands, non-coding RNAs (ncRNAs) and histones post-
translational modifications (hPTMs) (3), that collectively 
form a dynamic code, which has an important function 
in adapting the transcription to different types of signals 
including from environmental factors such as microbiota, 
diets and diseases (4).

Histones are nuclear proteins divided into subunits H2A, 

H2B, H3 and H4 that form octamers wrapped around 
by approximately 146 base pairs of DNA (5) in a highly 
compacted manner, referred as nucleosomes (6). These 
structures, which are linked by histone H1, form the basic 
unit of chromatin that constitute the chromosomes of 
eukaryotic cells (5,7,8). 

The N-terminal tails and central globular domains 
of histones undergo different types of post-translational 
modifications including methylation, acetylation, 
propionylat ion,  crotonylat ion,  butyry la t ion and 
β-hydroxybutyrylation (Figure 1) that are likely to have 
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unique impact on chromatin structure and its interactions 
with non-histone proteins thus reflecting on gene 
expression. The effects of hPTMs on gene expression 
depends on a highly-controlled and reversible process 
involving proteins and enzymes known as writers, erasers 
and readers, which add, remove or recognize and bind to acyl 
groups in lysine residues, respectively. These enzymes can 
be regulated according to external signals and the availability 
of exogenous and endogenous metabolites (7,9-11), which 
also serve as substrate for acyl-coenzyme A (acyl-CoA) 
production (5).

Acetylation is one of the most studied hPTMs. This 
hPTM, in most cases associated to a transcriptionally 
active profile, neutralizes positively charged residues in 
the N-terminal tails of histones, decreasing the interaction 
with DNA and leading the chromatin structure to a less 
condensed conformation, called euchromatin (5,12).

Histone acetyltransferases (HATs), also known as lysine 
acetyltransferases (KATs), are the writers responsible for 
adding acetyl groups from acetyl-CoA to lysine residues of 
histone and non-histone proteins in the nucleus (type A) 
(Figure 1) or newly synthesized histones in the cytoplasm 
(type B) (13,14). Nuclear HATs are divided into five main 
families (Hat1, GNAT, MYST, p300/CBP, and Rtt109) 

based on their structure and similarities, with new nuclear 
families still being explored (15-17). The removal of 
this histone modification is responsible for chromatin 
condensation (heterochromatin) (Figure 1), and it is 
generally associated with increased methylation at certain 
residues that difficult the binding of transcription factors 
to DNA [reviewed by others (18,19)]. Histone deacetylases 
(HDACs), also referred as lysine deacetylases (KDACs), are 
part of complexes that remove acetyl groups (erasers) from 
lysine residues (5,10,20) and are subdivided based on their 
similarities into four main classes: I (HDACs 1–3 and 8), II 
(HDACs 4–7, 9 and 10), III or sirtuins (SIRTs 1–7) and IV 
(HDAC 11), with SIRTs being dependent on nicotinamide 
adenine dinucleotide (NAD+), while the other HDACs are 
zinc-dependent (8,14,16,21,22).

The acetylated lysine residues, as well as other hPTMs, 
enable the interaction with reader domains present in 
diverse chromatin-associated proteins (23). Histone readers 
are divided in three major families and have differing 
affinities according to their structure. YEATS domain (such 
as AF9, YEATS2, Taf14) and double PHD finger (DPF) 
domain (such as MOZ and DPF2) show enhanced affinity 
for longer acyl chains, such as crotonylated and butyrylated 
sites. In contrast, bromodomain (with a few exceptions) 
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prefers acetylated and propionylated sites than butyrylated 
and crotonylated [reviewed by others (9,23-28)] (Figure 
2A,2B).

HATs and HDACs display a promiscuous substrate 
specificity and have different activity for distinct histone 
acylations, such as histone crotonylation (5,9,25,28-32),  
butyrylat ion (10,32-34),  propionylat ion (23)  and 
β-hydroxybutyrylation (Figure 2C,2D) (35,36). These 
preferences were observed in p300 and HDAC3, for 
example, which have more ability to modify crotonylated 
and acetylated histones (Figure 2B). 

Histone crotonylation, butyrylation, propionylation and 
β-hydroxybutyrylation are relevant and non-redundant 
hPTMs, which are, as described for acetylation, associated 
with activation of gene transcription (10,12,31,37). One of 

the first published works about propionylation in mammalian 
cells identified decreased levels of H3K23pr during 
monocytic differentiation, which suggested an association 
of this histone mark with lineage determination (38).  
Butyrylation has been explored in the context of 
spermatogenesis. This acylation competitively inhibits 
acetylation on H4K5 and H4K8 at gene promoters thus 
preventing the binding of bromodomain-containing 
protein, an effect that may affect genome reorganization 
during spermatogenesis (39). Crotonylation was also 
identified in male germinal cells following meiosis (37). 
This latter histone mark was associated with expression 
of testis-specific genes that escaped sex chromosome 
inactivation and is likely to regulate spermatogenesis (37). 
Recent characterization of lysine crotonylation showed 
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its involvement with biological processes and different 
diseases, including carcinogenesis and inflammation (40). 
The unsaturation (also known as C-C π-bond) present 
on the four-carbon atoms structure of crotonyl-CoA 
distinguishes the cofactor for crotonylation from the 
cofactor for butyrylation (butyryl-CoA), and leads to an 
increased volume and stiffness on the planar conformation, 
which may be associated with a greater induction of gene 
transcription compared to acetylated residues (9,23,37). 
β-hydroxybutyrylation depends on β-hydroxybutyrate 
(BHB) concentrations, which can be drastically increased 
during starvation and it has been reported to be relevant 
in a wide range of conditions including metabolic diseases, 
depression and cancer, suggesting different functions from 
other histone acylations (34,36). It is worth mentioning that 
these hPTMs (crotonylation, butyrylation, propionylation 
and β-hydroxybutyrylation) are less abundant in cells 
than acetylation (10,41), but they seem to be relevant for 
controlling sets of genes or to adapt transcription in some 
specific conditions, as it will be discussed. 

The aim of this review is to present an updated discussion 
about the participation of hPTMs in regulating gene 
expression and cellular processes. We focused on intestinal 
epithelial cells (IECs) because of their direct interactions 
with diet and microbiota signals to which they have to adapt 
to keep essential functions such as absorption of nutrients 
and protection against pathogens and due to their emerging 
role in inflammatory bowel diseases (IBD), as discussed at 
the final part of this review. 

Regulation of IECs proliferation and 
differentiation by hPTMs

The gastrointestinal tract is lined by a continuous 
epithelium monolayer with complex functions and 
essential roles for the organism including the transport of 
ions, nutrients and water and defense against pathogenic 
microorganisms. The intestinal epithelium is rapidly and 
constantly renewed by cells formed from intestinal stem 
cells (ISCs), which present high expression of leucine rich 
repeat containing G protein-coupled receptor 5 (Lgr5) and 
are located in the base of intestinal crypts. These cells give 
rise to a pool of progenitor transit-amplifying (TA) cells that 
proliferate and differentiate into absorptive (enterocytes/
colonocytes and M cells) and secretory [Paneth/deep crypt 
secretory (DCS) Reg4+, goblet, enteroendocrine and tuft 
cells] lineages as they migrate in the epithelial layer (4,42). 
Regulation of proliferation, maturation and differentiation 

of IECs is essential to maintain intestinal homeostasis and 
barrier function, to promote regenerative responses after 
damage, while preventing premalignant hyperproliferation. 
Distinct aspects of these complexes processes are modulated 
by hPTMs and associated enzymes, as exemplified below. 

Inhibition or ablation of HDACs, which remove 
histone acylations, induces expression of intestine-specific 
markers such as sucrase-isomaltase (43), ion transporter  
SLC26A3 (44), intestinal alkaline phosphatase and fatty acid 
binding protein (11), important for the differentiation of 
absorptive cells. This phenomenon is in part a consequence 
of the increase in histone acetylation in the absence of 
HDAC, as observed by Suzuki et al. (43) on the sucrase-
isomaltase promoter, suggesting that acetylation in this 
system is linked with absorptive cell differentiation. Other 
studies lead by Gonneaud et al. (45,46) and Zimberlin  
et al. (47) demonstrated that HDAC1 and HDAC2 activity 
are relevant for inducing the differentiation of progenitor 
intestinal cells to secretory lineages (i.e., Paneth and goblet 
cells) in part due to the inhibition of Notch pathway 
signaling (45,46). Together these findings indicate that 
hPTMs are relevant for intestinal epithelial differentiation. 
Although, a detailed characterization of the role of specific 
histone acylations and the mechanisms involved on their 
effects is still missing. 

Marruecos et al. (48) described an interesting mechanism 
regulating intestinal cells differentiation that involves 
interactions between nuclear factor kappa B (NF-κB) 
inhibitor alpha (IκBα) and acetylated histones. The authors 
found that the phosphorylated-NF-κB inhibitor alpha 
(p-IκBα) binds to acetylated histone H4 at lysine 12 and 16 
(H4K12ac and H4K16ac) in ISCs and that a subsequent 
cleavage of the N-terminal tail of H4 between K16 and K20 
residues by trypsin and chymotrypsin, also known as histone 
clipping, favors the dissociation of IκBα from chromatin, 
an event that impacts on genes transcription and epithelial 
differentiation (48). The histone H3 N-terminal tail 
cleavage in small intestinal villi by cathepsin L and trypsins 
also can shape the nucleosome structure and influences the 
acetylations of H3, which are more abundant on the clipped 
forms. In vitro inhibition of these proteases has been shown 
to interfere in intestinal epithelial development (49). 

Epigenetic mechanisms are also involved on the 
dedifferentiation of ISC from the crypt. Jadhav et al. (50) 
described that Bmi1+ preterminal enteroendocrine cells 
and CD69+CD274+ goblet cell precursors can revert 
their distinctive chromatin signature, which is rich in 
H3K4me1, to progenitors and Lgr5+ stem cell chromatin 
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with H3K4me2 and/or H3K27ac at enhancers, to restore 
ISC function after epithelial damage (50). These cells are 
responsible for the self-renewal of the intestinal epithelium, 
as mentioned before, and seem to be regulated by histone 
acetylation. Schell et al. (51) demonstrated an important role 
for the mitochondrial pyruvate carrier (MPC) on intestinal 
epithelial proliferation. MPC is formed by the assemble of 
Mcp1 and Mcp2 and provides pyruvate from glycolysis to 
mitochondria. MPC is expressed in low levels at ISCs and 
increases in differentiating cells. Strategies that affect its 
expression on ISCs, also impact cell proliferation. The loss 

of MPC increases proliferation, while the opposite response 
is observed in cells overexpressing it (51). Interestingly, 
the loss of MPC was associated with reduction in histone 
acetylations (i.e., H3K27ac and H3K4ac), an effect that may 
be relevant for the observed phenotype (Figure 3A) (51).

Collectively, these reports show the importance of 
histone acetylation for the development and maintenance 
of epithelium. From the stem cell compartment to the 
differentiated cells in the intestinal villi, IECs seem to be 
dependent on the dynamic interaction between proteins and 
chromatin, histone clipping, and histone acetylation pattern 
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to regulate important processes, such as proliferation 
and differentiation. Further work is needed to assess the 
respective roles of other histone acylations in these cells. 

Involvement of hPTMs on the adaptation of IECs 
functions to environmental and endogenous 
signals

Microorganisms play an important role in the maintenance 
of homeostasis and regulation of host metabolism and 
immunity (11,52-54). Recent experiments demonstrated that 
histone acylations are sensitive to changes in the commensal 
microbiota composition. The high levels of histone 
crotonylation (32), butyrylation and propionylation (55)  
observed in the colon and cecum of colonized mice are 
drastically reduced in antibiotic-treated or germ-free (GF) 
mice (32,55).

This crosstalk between microbial and intestinal cells 
starts in early life, when the microbiota colonization is 
essential for the expression of HDAC3 on the epithelial 
cells and contributes to the establishment of commensal 
tolerance (56). Additionally, Abo et al. found that the 
initial microbial colonization of the intestinal tract leads 
to enhanced histone acetylation in IECs thus increasing 
the expression of a gene called erythroid differentiation 
regulator-1 (Erdr1) (57). The protein coded by Erdr1 is 
relevant for maintenance and regenerative responses of the 
intestinal epithelium (57). 

The host-microbiota crosstalk involves different 
mechanisms including short-chain fatty acids (SCFAs). These 
are small molecules produced from bacterial fermentation of 
non-digestible carbohydrates (58), which are found in high 
concentrations in the cecum (~130 mM) (59) and proximal 
colon (~70–140 mM) (54). Acetate (C2), propionate (C3) 
and butyrate (C4) are the main SCFAs (54) in the intestine, 
where they exert important effects, even in hPTMs. 
Histone crotonylation and butyrylation, for example, are 
influenced by the gut microbiota at least in part via these 
metabolites, since they act as direct precursor for the 
generation of intracellular acyl-CoAs (10,32). SCFAs are 
transported across the apical surface of the cells mainly by 
monocarboxylate transporters (MCT1, MCT4 and SMCT1) 
and then converted by acyl-CoA synthetases (ACSs) and 
other enzymes in compartments of mammalian cells (60). In 
addition, SCFAs also act as well-known HDAC inhibitors 
thus contributing to increased histone acylations (60,61). 

Butyrate contributes to chromatin modifications as a 
substrate for acyl-CoA production (60,62) and a class I 

HDAC inhibitor in the colon (60,61). Different hPTMs 
on IECs are affected by butyrate and the other SCFAs, as 
shown for H3K9 and H3K27 butyrylation (55), acetylation 
on H4 (62), and crotonylation on multiple lysines of H3 and 
H4 (32). 

Another SCFA, propionate, stimulates IEC migration 
along the villus and its eventual extrusion into the lumen 
in homeostatic conditions (63). In experimental colitis, this 
SCFA promotes wound healing by enhancing cell spreading 
and polarization through inhibition of class I HDACs and 
activation of G protein-coupled receptor 43 (GPR43) and 
signal transducer and activator of transcription 3 (STAT3), 
without influencing the inflammatory responses. The 
inhibition of class I HDACs via valproate recapitulated the 
effects of propionate (63). 

Unlike the inhibitory effect of butyrate and propionate 
described above, inositol-1,4,5-trisphosphate (InsP3) 
produced by commensal bacteria through the metabolism 
of phytate, activates HDAC3 and limits histone acetylation, 
such as H3K9ac, at directly repressed gene-targets in 
homeostasis, as well as promotes cell proliferation and 
repair following intestinal damage (64).

The medium chain fatty acids caprylic acid (C8) and 
nonanoic acid (C9), naturally present in some foods, also 
have beneficial effects. They reduce bacterial translocation 
and improve antibacterial activity by inducing gene 
expression and secretion of the antimicrobial peptides 
β-defensins 1 (pBD-1) and pBD-2 on intestinal epithelial 
porcine cells, an effect that involves H3K9ac at promoters 
when challenged with Escherichia coli (65) (Figure 3B). 

Different microorganisms can modulate the acylation 
of histones thus interfering on gene expression by IECs. 
Lactobacillus rhamnosus and Lactobacillus fermentum, host 
beneficial commensal bacteria, decrease H4 and H3 
acetylation on human intestinal cells (Caco-2). This effect 
is observed even in the presence of the opportunistic 
commensal pathogen Escherichia coli, which is known 
to induce an increase in histones acetylation (66). This 
response is associated with the capacity of L. fermentum to 
enhance the expression of epigenetic modifiers, such as p300 
and HDAC1, in contrast to Escherichia coli, which reduces 
the expression of these genes (67). The oral administration 
of another probiotic, Lactobacillus casei (L. casei) LH23, in a 
mouse model of intestinal inflammation [i.e., ingestion of 
dextran sodium sulfate (DSS) that induce colonic epithelial 
disruption] has an anti-inflammatory activity and restores 
the levels of H3K9ac in colon (68). Pathogens also modify 
the pattern of post-translational modifications in the 
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intestinal epithelium, an aspect that may be relevant for the 
immune responses to them, but that will not be covered in 
this review (69-74). 

Acylations of histones play a role on the adaptation of 
IECs to different diets, microbiota and circadian rhythm. 
Experiments with GF mice conventionalized or not with 
microbiota showed that the microbiota regulates histone 
acetylation in proximal colon, liver, and the white adipose 
tissue (WAT), especially in canonical H3, the variant 
H3.3 and multiple lysines sites of H4 (7). This response 
was recapitulated with the supplementation of SCFAs in 
GF mice and was shown to be diet-dependent in liver 
and WAT, where this epigenetic pattern was reduced in 
response to a “Western-type” high fat, high sucrose diet 
(HF/HS) (7). Other experiments performed using high-fat 
diet demonstrated the participation of epithelial HDAC3 
on obesity development. This latter effect was reversed by 
antibiotic treatment (75) or HDAC3-inhibition by butyrate 
administration (76), suggesting it happens in a microbiota-
dependent manner. Forsyth et al. (77) also demonstrated the 
importance of diet in hPTMs using a diet with 15% alcohol. 
The authors of this study found a reduction on butyrate 
production in animals treated with this diet. This effect was 
associated with H3 deacetylation at the Notch1 locus, thus 
suppressing Notch1 expression and impacting on intestinal 
barrier function (i.e., increasing colon permeability) and 
epithelial differentiation (i.e., decreasing enterocytes and 
increasing enteroendocrine cells) (77). 

Interestingly, the absence of food consumption, as 
observed during fasting, also influences hPTMs. The lack 
of glucose induces the overproduction of acetyl-CoA, which 
can be converted to the ketone bodies acetone, acetoacetic 
acid, and BHB. This latter ketone body inhibits HDAC and 
induces H3 and H4 lysine beta-hydroxybutyrylation (Kbhb) 
on regulatory elements near genes that control lipolytic 
and ketogenic transcriptional program in intestine. During 
fasting, H3K9bhb is associated with an active chromatin 
state and may be co-enriched with H3K27ac, thus inducing 
gene expression in ISCs and transit amplifying cell 
populations (4) (Figure 3C). 

Intake of a ketogenic diet (high-fat and low-carbohydrate 
diet) increases serum and intestinal BHB levels in a diurnal 
rhythmicity. The BHB concentration is associated with 
a time-of-the-day-dependent modulation of HDAC  
activity (78). Considering Zeitgeber time as a representation 
of the diurnal cycle (ZT0 for lights on and ZT12 for lights 
off), the highest activity of these enzymes happens at 
ZT8 (daytime), and the lowest at ZT20 (nighttime). This 

result is in line with the circadian changes in H3K9ac and 
H3K14ac levels at specific promoters, which are higher 
at ZT20 than at ZT8. Part of this ketogenic diet response 
in IECs at ZT20 involves the activation of the nuclear 
transcription factor peroxisome proliferator-activated 
receptor alpha (PPARα). Its rhythmic activity in the gut 
is marked by nuclear accumulation and expression of 
target genes, which are associated with mitochondrial and 
peroxisomal β-oxidation, at ZT20 (78). In homeostatic 
conditions, with a regular diet consumption, this circadian 
clock of the acetylation pattern changes, presenting peaks 
of H3K9ac and H3K27ac between ZT8 and ZT16, and 
falls between ZT20 and ZT4 in conventionalized mice (75) 
(Figure 3D). Other metabolites produced by gut microbiota, 
such as acetate, butyrate and isovalerate, influence host 
intestinal epithelial circadian rhythms via HDAC inhibition 
mechanism (79). 

Together, these studies show the importance of epigenetic 
mechanisms for IECs adaptation to environmental and 
dietary signals to develop an appropriate response in order 
to maintain homeostasis.

Histone acylations in the context of IBDs

Crohn’s disease (CD) and ulcerative colitis (UC) are the 
main IBD, characterized by chronic, progressive and 
relapsing inflammatory conditions associated with body 
weight loss, abdominal pain, diarrhea with or without blood 
and some extra intestinal effects (80-82). In recent years, 
the role of epigenetic modifications in IBD has attracted 
attention, because environmental factors may increase the 
risk of disease development by epigenetic mechanisms (83).

In this regard, it has been shown that H3 pan-acetylation 
and H3K9ac in IECs are negatively associated with UC 
severity, as these epigenetic markers are reduced in the 
colon of UC patients and in a mouse model of intestinal 
inflammation (68) compared to healthy controls (84). The 
reduction of another hPTM, H3K27ac, was observed in 
the mucosa of patients with UC and in a murine colitis 
model compared with controls (73). These findings were 
associated with an increased HDAC activity that removed 
H3K27ac in the intestine but maintained hyperacetylation 
in inflammatory genes promoter. This status was reverted 
during the resolution of inflammation or by the broad-
acting HDAC inhibitor valproic acid (VPA) in biopsies 
cultured ex vivo ,  inhibiting inflammatory cytokine 
production (85). A second HDAC inhibitor, suberoylanilide 
hydroxamic acid (SAHA), also attenuates the inflammation 
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of DSS-induced colitis by suppressing the secretion of 
pro-inflammatory cytokines and chemokines as well as the 
recruitment and accumulation of inflammatory cells, such 
as macrophages, dendritic cells and monocytes (86). The 
positive response to treatments with HDAC inhibitors 
could be partially a compensation of the compromised 
endogenous HDAC inhibition on IECs due to the intestinal 
dysbiosis and lower production of butyrate in the gut of 
UC patients (87-89). This low concentration of butyrate 
results in fewer anti-inflammatory processes and reduction 
of autophagy in IECs. Experiments with an IEC line (HT29 
cells) showed that butyrate promotes histone acetylation at 
the promoter region of the heat-shock transcription factor 
2 (HSF2) gene (90). This results in increased expression 
of HSF2 that is positively associated with autophagy on 
IECs, a process that may contribute to reduce inflammation 
in the intestine and is altered in UC patients (90). The 
preventive and therapeutic treatments of a more palatable 
butyrate-releasing derivative, N-(1-carbamoyl-2-phenylethyl) 
butyramide (FBA), reproduces the beneficial effects of 
butyrate in mouse model of colitis, by inhibiting HDAC9 
and the proinflammatory NF-κB activation, while increasing 
peroxisome proliferator-activated receptor gamma (PPARγ), 
butyrate transporter, tight junctions and histone H3 
acetylation, thus exerting an anti-inflammatory effect (91). 

Class I HDACs attracted attention in this context, since 
HDAC1 and HDAC2 may play an important role in the 
regulation of IEC-specific inflammatory responses by 
controlling, directly or indirectly, the JAK/STAT pathway (45),  
while the reduced expression of HDAC3 in IECs may be 
associated with regions of active disease in IBD (92). In 
this context, the absence of the epithelial HDAC3 in mice 
promoted T cell-driven intestinal inflammation through the 
reduction of Tregs, accumulation of Th17 cells and alterations 
in the composition of commensal bacteria (56). 

HDAC1 and HDAC5 have also been linked to intestinal 
inflammation. These enzymes have opposite effects on 
intestinal colonization by adherent-invasive Escherichia coli 
(AIEC), which has been associated with CD development. 
Reduced expression of HDAC1 and high expression of 
HDAC5 were linked with intestinal colonization by AIEC 
through hyperacetylation of histone H3 in ileal mucosa. 
A similar profile was observed in HF-fed mice, but not 
in chow-fed mice, indicating another mechanism by 
which the consumption of a western diets impairs the gut  
homeostasis (93).

The HAT KAT2B is another enzyme down-regulated 
in inflamed CD and UC tissues, which may contribute to 

the disruption of the innate and adaptive inflammatory 
responses due to the reduction of H4K5ac and suppression 
of IL-10 expression (1). Other HDACs and HATs were also 
explored in intestinal injury under inflammatory conditions, 
such as Sirt6 (70) and EP300 (83), respectively, that may be 
promising targets for IBD treatment in the future (Figure 3E). 

Collectively, this section summarizes recent finds 
showing alterations of hPTMs in IECs of IBD patients. 
This information is relevant for the development of new 
approaches for detecting and/or treating IBD. Changes in 
the microbiota composition and their products including 
the SCFAs are associated with alterations in the histone 
acylation at various residues (e.g., H3K9ac, H3K27ac 
and H3Kac) in intestinal cells and may contribute to the 
development of IBD due, for example, to the attenuation of 
anti-inflammatory processes. 

Conclusions

The intestinal epithelium is an essential protective 
barrier of our body. The cells that form this barrier are 
in direct contact with the external environment and sense 
nutrients, microbiota-derived molecules, pathogen or 
damage signals to which they respond accordingly, in 
part, through a wide range of histone post-translational 
modifications, that control the expression of genes that 
regulate their proliferation, differentiation, metabolism and 
communication with immune cells. 

The hPTMs are key epigenetic regulators that add 
complexity to the study of chromatin regulatory mechanisms 
and gene expression. Based on the recent data discussed in 
this review, we highlight the importance of histone acylations 
for controlling different processes on IECs. Histone 
acylations are relevant for proliferation, maturation, 
differentiation, and adaptation of IECs to diets, microbiota, 
circadian rhythm and inflammatory signals. The regulation 
of these modifications occurs through multiple mechanisms 
since the early life. One example is the inhibition of 
HDACs by BHB and SCFAs and its activation by InsP3, 
which depends on the availability of fermentable substrate 
and the microbiota composition. In a complex bidirectional 
relationship, the IECs also regulate the composition of 
the microbiota through the production of cytokines and 
antimicrobial peptides (AMPs), for example (Figure 4). 

Interestingly, one of the most explored sites for histone 
acylations is H3K9, which was reported to be acetylated 
under ketogenic diet, pathogen challenges and homeostasis, 
β-hydroxybutyrylated during fasting, crotonylated and 
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butyrylated in homeostasis. H3K27 can be butyrylated and 
acetylated in diverse conditions as well, showing a competition 
of different and non-redundant hPTMs to the same site. 
These findings bring us new questions about the specificity of 
function of each acylation and enzymes responsible for them, 
that should be considered in future studies.

For the coming years, the characterization of different 
histone modifications should be encouraged, considering 
that acetylation was the main hPTM explored in research of 
the last decade.
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