Thyroid lobectomy is sufficient for differentiated thyroid cancer with upgraded risk after surgery Soon Min Choi¹^, Dong Gyu Kim², Ji-Eun Lee², Joon Ho², Jin Kyong Kim², Cho Rok Lee², Sang-Wook Kang², Jandee Lee², Jong Ju Jeong², Woong Youn Chung², Kee-Hyun Nam² ¹Department of Surgery, Gwangmyeong Chung-Ang Hospital, Chung-Ang University College of Medicine, Seoul, South Korea; ²Department of Surgery, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea Contributions: (I) Conception and design: SM Choi, KH Nam; (II) Administrative support: None; (III) Provision of study materials or patients: JK Kim, CR Lee, SW Kang, J Lee, JJ Jeong, WY Chung, KH Nam; (IV) Collection and assembly of data: SM Choi, DG Kim, JE Lee, J Ho; (V) Data analysis and interpretation: SM Choi; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Dr. Kee-Hyun Nam, MD, PhD. Department of Surgery, Severance Hospital, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, South Korea. Email: khnam@yuhs.ac. **Background:** It is difficult to reliably distinguish between American Thyroid Association (ATA) low-risk and intermediate-risk differentiated thyroid cancer (DTC) before surgery. Therefore, physicians are faced with a dilemma regarding the necessity and timing of completion total thyroidectomy (CT) after thyroid lobectomy (TL). We evaluated proper surgical methods by analyzing oncologic outcomes of TL in patients with DTC whose risk had been upgraded after surgery. Methods: We retrospectively reviewed the medical records of 1,702 patients with DTC who underwent TL and ipsilateral central lymph node (LN) dissection between January 2006 and December 2011. The patients were classified into Group A (n=1,159; low risk; ≤5 central LN metastases or the absence of pathologic microscopic capsular invasion) and Group B (n=543; upgraded intermediate risk after surgery; >5 central LN metastases or the presence of pathologic microscopic capsular invasion). We analyzed their clinicopathological characteristics and recurrence-free survival. **Results:** All 32 patients who experienced recurrence underwent CT. After the first operation, the duration until reoperation in Groups A and B were 8.00±2.74 (range, 3.42–12.17) and 5.10±3.09 (range, 1.25–11.67) years, respectively. There was no significant difference in recurrence rates, disease-related mortality rates, or 10-year recurrence-free survival rates between the two groups. The mean follow-up durations in Groups A and B were 10.22±1.58 and 10.13±1.47 years, respectively. Univariate analysis showed that sex, age, tumor size, multifocality, extrathyroidal extension (ETE), and number of central LN metastases were not associated with recurrence after TL, although the rate of central LN metastases, and the number of central LN metastases were not associated with recurrence after TL, although multifocality was. **Conclusions:** TL with prophylactic central compartment neck dissection (CCND) is sufficient for patients with DTC whose risk is upgraded after surgery because they have a good prognosis at long-term follow-up. Larger-scale randomized clinical trials are required to confirm our findings. Keywords: Thyroid lobectomy (TL); recurrence; prognosis; thyroid cancer Submitted Mar 08, 2022. Accepted for publication Jul 08, 2022. doi: 10.21037/gs-22-158 View this article at: https://dx.doi.org/10.21037/gs-22-158 [^] ORCID: 0000-0002-4242-2610. #### Introduction Thyroid cancer is the most common endocrine cancer, and its prevalence has gradually increased (1-4). Differentiated thyroid cancers (DTCs), including papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC), show a relatively good prognosis when appropriate treatments are administered, and many studies have been performed on the extent of thyroidectomy (5-9). Complications occur in 0.5% to 20% of patients who undergo completion total thyroidectomy (CT) after thyroid lobectomy (TL), and patients who undergo CT must receive thyroid hormones for the rest of their lives. Therefore, candidates for CT should be carefully selected (10-13). The 2015 American Thyroid Association (ATA) guidelines recommend CT for patients with an unclear diagnosis after lobectomy, complete resection of multicentric disease, and efficient radioactive iodine (RAI) therapy. In addition, CT is recommended for patients categorized as high risk according to the ATA guidelines based on clinicopathologic results after TL (14). The 2015 ATA guidelines classify gross extrathyroidal extension (ETE), lymph node (LN) metastasis, and distant metastasis as high-risk diseases, and they recommend initial total thyroidectomy (TT) in these cases. However, the necessity of CT after TL remains controversial in patients categorized as ATA intermediate risk, which is characterized by clinical N1 disease, >5 pathologic N1 LNs with all involved LNs <3 cm in the largest dimension, microscopic capsular invasion, vascular invasion, aggressive histology, or RAI-avid metastatic foci in the neck on the first post-treatment whole-body RAI scan. The recurrence rate in patients with ATA intermediate-risk DTC has been reported to range from 21% to 36%, and the ATA guidelines recommend that the decision to perform TL or TT in these patients should be based on the attending physician's judgment (14-16). Several studies have reported that it is difficult to reliably distinguish between ATA lowrisk and ATA intermediate-risk DTC before surgery, as they are distinguished based on the final pathologic result (17-19). Therefore, physicians are faced with a dilemma regarding the necessity and timing of CT after TL because the indication for CT after TL is not clear in patients with DTC whose risk has been upgraded after surgery. This retrospective study was designed to evaluate proper surgical methods by comparing the postoperative oncologic outcomes and long-term prognosis of patients with DTC whose risk had been upgraded after surgery at a single medical center. We present the following article in accordance with the STROBE reporting checklist (available at https://gs.amegroups.com/article/view/10.21037/gs-22-158/rc). #### **Methods** #### **Patients** We retrospectively reviewed the medical records of 2,830 patients with DTC who underwent TL at Severance Hospital between January 2006 and December 2011. All patients' statuses were evaluated by preoperative ultrasonography and computed tomography. Since surgery was performed according to the 2009 ATA guideline during this period, patients with clinical LN metastasis underwent TT. Therefore, all LNs of enrolled patients were micrometastasis. Patients in whom gross ETE was observed or LNs were grossly enlarged during surgery, which resulted in conversion to TT, were excluded from this study. All patients underwent prophylactic ipsilateral central compartment neck dissection (CCND), including those of the pre-laryngeal, pre-tracheal, and paratracheal LNs. If the patient had recurrence in the contralateral lobe, we performed CT. Lateral neck dissection was performed when there was a recurrence at the lateral neck. We considered the case of no outpatient visit within 2 years as follow-up loss. A total of 1,128 of the 2,830 patients were lost to follow-up, and the remaining 1,702 patients were included in the analyses. Microscopic capsular invasion was defined as findings of capsular invasion confirmed through microscopic examination in the final pathology report. Multifocality was defined as the presence of two or more cancer foci in the same lobe. Recurrence was defined as a newly discovered lesion on ultrasonography that was confirmed as cancer through fine-needle aspiration biopsy during the postoperative follow-up period. The patients were divided into two groups according to number of metastatic LNs, and microscopic capsular invasion in the final pathology report. Group A [1,159 patients (68.1%), low risk] comprised patients with ≤5 central LN metastases, or no pathologic microscopic capsular invasion. Group B [543 patients (31.9%), upgraded intermediate risk after surgery] comprised patients with >5 central LN metastases, or pathologic microscopic capsular invasion. Group A was further divided into two subgroups for subgroup analyses. Group A-1 (963 patients, 56.6%) comprised patients with no central LN metastasis, and Group A-2 (196 patients, 11.5%) comprised patients with 1–5 central LN metastases. We then analyzed the characteristics and recurrence rates among the three groups (Group A-1, Group A-2, and Group B). ### Statistical analysis Statistical analyses were performed using SPSS statistical software (version 27.0; IBM Corp., Armonk, NY, USA). Fisher's exact test and Pearson's chi-square test were used to compare categorical variables. Continuous variables were compared using Student's *t*-test. A multivariate Cox proportional hazards regression model was used to evaluate the variables associated with a risk of recurrence. Recurrence-free survival (RFS) curves were constructed using the Kaplan-Meier method and compared using the log-rank test. Post-hoc analyses were constructed, and adjusted P values were calculated using the Bonferroni correction, Scheffe's test, and Dunnett T3 test. # Ethical approval The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). The study was approved by the Institutional Ethics Committee of Severance Hospital (No. 4-2021-0614), and obtaining individual consent for this retrospective analysis was waived. #### **Results** # Clinicopathologic characteristics of enrolled patients and those lost to follow-up There were no differences in sex, age, tumor size, cancer subtype, microscopic capsular invasion, multifocality, and the number of central LN metastases between enrolled patients and those lost to follow-up, although there was a difference in the recurrence rate $(1.9\%\ vs.\ 0.5\%,\ P=0.002)$. The mean duration of follow-up of enrolled patients was longer than that of patients lost to follow-up $(10.19\pm1.54\ vs.\ 5.35\pm2.69\ years,\ P<0.001)$ (*Table 1*). # Clinicopathologic characteristics of Groups A and B Compared with Group A, Group B had a larger tumor size (0.54±0.46 vs. 0.68±0.53 cm, P<0.001), higher rate of central LN metastases (27.1% vs. 16.9%, P<0.001), and greater number of central LN metastases (0.34±0.86 vs. 0.72±1.52, P<0.001). There was no significant difference between the two groups in recurrence rates (1.6% vs. 2.4%, P=0.285). The mean follow-up durations in Groups A and B were 10.22±1.58 and 10.13±1.47 years, respectively (P=0.287). Nineteen patients had FTC (six in Group A and thirteen in Group B), and six patients had Hurthle cell cancer (HCC) (three in Group A and three in Group B); however, they did not experience recurrence. There were three patients with diffuse sclerosing PTC in Group B, while the PTCs of the other two groups were the conventional type. There was no difference in disease-related mortality between the two groups (*Table 2*). ## Recurrence in Groups A and B All 32 patients who experienced recurrence underwent CT. After the first operation, the duration until reoperation with CT was 8.00±2.74 years for Group A (range, 3.42–12.17 years) and 5.10±3.09 years for B (range, 1.25–11.67 years). Of these, 8 patients underwent lateral neck dissection (four in Group A and four in Group B) and 13 underwent RAI (seven in Group A and six in Group B). One 25-year-old woman in Group A initially underwent left TL and had recurrence in the contralateral lobe 8 years later. She underwent CT and RAI, but recurrence of the right lateral neck occurred after 4 years. Finally, she underwent right lateral neck dissection and second RAI. The 10-year RFS rates of Groups A and B were 98.8% and 98.2%, respectively, and this difference was not significant (P=0.162) (Figure 1). Univariate analysis showed that sex, age, tumor size, multifocality, microscopic capsular invasion, and the number of central LN metastases were not associated with recurrence after TL; however, central LN metastasis was associated with recurrence [hazard ratio (HR) =2.257; 95% CI: 1.047–4.865). Multivariate analysis showed that sex, age, tumor size, microscopic capsular invasion, central LN metastasis, and number of central LN metastases were not associated with recurrence after TL; however, multifocality was associated with recurrence (HR =2.775; 95% CI: 1.153–6.677) (*Table 3*). # Clinicopathologic characteristics of Groups A-1, A-2, and B There were differences in sex, tumor size, cancer subtype, microscopic capsular invasion, multifocality, number of retrieved central LNs, and number of central LN metastases among the three groups. However, there were no significant differences among the three groups in recurrence rate (1.5%) Table 1 Clinicopathologic characteristics of patients who were enrolled and those lost to follow-up group | Variable | Enrolled (n=1,702) | Lost to follow-up (n=1,128) | P value | | |-----------------------------------------------|------------------------|-----------------------------|---------|--| | Sex, n (%) | | | 0.812 | | | Male | 248 (14.6) | 168 (14.9) | | | | Female | 1,454 (85.4) | 960 (85.1) | | | | Age, years (%, mean ± SD) | | | 0.051 | | | <55 | 1,453 (85.4, 40.5±8.0) | 932 (82.6, 39.6±8.0) | | | | ≥55 | 249 (14.6, 59.9±4.4) | 196 (17.4, 62.5±6.1) | | | | Tumor size, cm (mean ± SD, SEM) | 0.59±0.49 (0.01) | 0.59±0.54 (0.02) | 0.775 | | | Cancer subtype, n (%) | | | 0.934 | | | Papillary thyroid cancer | 1,677 (98.5) | 1,108 (98.2) | | | | Follicular thyroid cancer | 19 (1.1) | 19 (1.7) | | | | Hurthle cell cancer | 6 (0.4) | 1 (0.1) | | | | Microscopic capsular invasion, n (%) | 535 (31.4) | 351 (31.1) | 0.859 | | | Multifocality, n (%) | 178 (10.5) | 113 (10.0) | 0.706 | | | Central lymph node metastasis, n (%) | 344 (20.2) | 237 (21.0) | 0.606 | | | Number of central lymph node (mean ± SD, SEM) | | | | | | Total | 5.16±3.91 (0.10) | 4.93±3.54 (0.11) | 0.119 | | | Positive | 0.46±1.12 (0.02) | 0.46±1.10 (0.03) | 0.922 | | | Recurrence, n (%) | 32 (1.9) | 6 (0.5) | 0.002 | | | Follow-up duration, years (mean ± SD, SEM) | 10.19±1.54 (0.04) | 5.35±2.69 (0.08) | < 0.001 | | SEM, standard error of the mean. vs. 2.6% vs. 2.4%, P=0.332) (Table 4). Compared with Group A-1, Group A-2 had a significantly higher proportion of men (14.0% vs. 23.5%, P=0.001), more multifocality (9.0% vs. 14.8%, P=0.014), a higher number of retrieved central LNs (4.97±3.92 vs. 5.99±3.99, P=0.004), and more central LN metastases (0.0±0.0 vs. 1.80±1.14, P<0.001). Compared with Group A-1, Group B had a larger tumor size (0.54±0.49 vs. 0.68±0.53 cm, P<0.001), a more aggressive cancer subtype (0.9% vs. 3.0%, P=0.010), and more central LN metastases (0.0±0.0 vs. 0.72±1.52, P<0.001). Compared with Group A-2, Group B had a lower proportion of men (12.3% vs. 23.5%, P<0.001), larger tumor size (0.56±0.30 vs. 0.68±0.53 cm, P=0.017), a smaller number of retrieved central LNs (5.15±3.83 vs. 5.99±3.99, P=0.038), and fewer central LN metastases (1.80±1.14 vs. 0.72±1.52, P<0.001) (*Table 5*). ### Recurrence in Groups A-1, A-2, and B There was no significant difference between Groups A-1 and A-2 (98.9% vs. 98.3%, P=0.179), between Group A-1 and B (98.9% vs. 98.2%, P=0.095) and between Groups A-2 and B (98.3% vs. 98.2%, P=0.978) in the 10-year RFS rates (Figure 2). ### Surgical complications in Groups A and B The surgical complication rates in Groups A and B were 6.4% and 5.3%, respectively, and there was no significant difference between the two groups (P=0.400). In addition, there were no differences in the incidence rates of hematoma, seroma, transient hoarseness, chyle leakage, transient hypocalcemia, and injury of the recurrent laryngeal nerve between the two groups (*Table 6*). Table 2 Clinicopathologic characteristics of patients in Group A and Group B | Variable | Group A (n=1,159) | Group B (n=543) | P value | |-----------------------------------------------|----------------------|----------------------|---------| | Sex, n (%) | | | 0.074 | | Male | 181 (15.6) | 67 (12.3) | | | Female | 978 (84.4) | 476 (87.7) | | | Age, years (%, mean ± SD) | | | 0.600 | | <55 | 993 (85.7, 40.4±8.0) | 460 (84.7, 40.6±8.1) | | | ≥55 | 166 (14.3, 60.2±4.6) | 83 (15.3, 59.3±4.0) | | | Tumor size, cm (mean ± SD, SEM) | 0.54±0.46 (0.01) | 0.68±0.53 (0.02) | < 0.001 | | Cancer subtype, n (%) | | | 0.003 | | Papillary thyroid cancer | 1,150 (99.2) | 527 (97.1) | | | Follicular thyroid cancer | 6 (0.5) | 13 (2.4) | | | Hurthle cell cancer | 3 (0.3) | 3 (0.5) | | | Microscopic capsular invasion, n (%) | 0 | 535 (98.5) | < 0.001 | | Multifocality, n (%) | 116 (10.0) | 62 (11.4) | 0.376 | | Central lymph node metastasis, n (%) | 196 (16.9) | 147 (27.1) | <0.001 | | Number of central lymph node (mean ± SD, SEM) | | | | | Total | 5.17±3.95 (0.12) | 5.15±3.83 (0.17) | 0.940 | | Positive | 0.34±0.86 (0.02) | 0.72±1.52 (0.07) | <0.001 | | Recurrence, n (%) | 19 (1.6) | 13 (2.4) | 0.285 | | Follow-up duration, years (mean ± SD, SEM) | 10.22±1.58 (0.05) | 10.13±1.47 (0.06) | 0.287 | Group A: patients with ≤5 positive central lymph nodes and no pathologic microscopic capsular invasion. Group B: patients with >5 positive central lymph nodes, or pathologic microscopic capsular invasion. SEM, standard error of the mean. Figure 1 Kaplan-Meier curve of recurrence-free survival (P=0.162). Group A: patients with ≤5 positive central lymph nodes and no pathologic microscopic capsular invasion. Group B: patients with >5 positive central lymph nodes, or pathologic microscopic capsular invasion. #### **Discussion** Previous studies have reported the 10-year recurrence and mortality rates of DTC as 21–25% and 2–8%, respectively (20-22). Owing to the relatively good prognosis, surgical extension and treatment policies are continuously discussed to avoid unnecessary surgery and harm to the patient (23-27). LN metastasis, one of the criteria for categorizing DTC as ATA intermediate risk, is very common in patients with DTC and is observed in up to 80% of cases (28,29). It remains controversial whether occult LN micrometastasis is associated with recurrence, although it is not associated with disease-specific mortality (30-32). Our study showed that LN micrometastasis was not associated with the recurrence rate. Furthermore, the number of metastatic LNs was not associated with the recurrence rate, and no patients died from DTC during the follow-up period. Microscopic capsular invasion is found in 5% to 45% of Table 3 Cox proportional hazard analysis of variables predicting recurrence after thyroid lobectomy | Variable | N.I. | Recurrence | Univariate analysis | | Multivariate analysis | | |-------------------------------|-------|------------|----------------------|---------|-----------------------|---------| | | N | (n, %) | HR (95% CI) | P value | HR (95% CI) | P value | | Sex | | | | 0.452 | | 0.330 | | Male | 248 | 6 (2.4) | 1.000 | | 1.000 | | | Female | 1,454 | 26 (1.8) | 0.734 (0.299–1.803) | | 0.631 (0.250-1.593) | | | Age, years | | | | 0.612 | | 0.242 | | <55 | 1,453 | 29 (2.0) | 1.000 | | 1.000 | | | ≥55 | 249 | 3 (1.2) | 0.599 (0.181–1.981) | | 0.422 (0.100-1.791) | | | Tumor size, cm | | | | 0.189 | | 0.982 | | <4 | 1,691 | 31 (1.8) | 1.000 | | 1.000 | | | ≥4 | 11 | 1 (9.1) | 5.355 (0.665-43.125) | | 0.000 (0.000-1.391) | | | Multifocality | | | | 0.071 | | 0.023 | | Absent | 1,524 | 25 (1.6) | 1.000 | | 1.000 | | | Present | 178 | 7 (3.9) | 2.455 (1.046–5.759) | | 2.775 (1.153–6.677) | | | Microscopic capsular invasion | | | | 0.258 | | 0.151 | | Absent | 1,167 | 19 (1.6) | 1.000 | | 1.000 | | | Present | 535 | 13 (2.4) | 1.505 (0.738–3.070) | | 1.749 (0.816–3.752) | | | CLN metastasis | | | | 0.033 | | 0.163 | | Absent | 1,175 | 17 (1.4) | 1.000 | | 1.000 | | | Present | 343 | 11 (3.2) | 2.257 (1.047–4.865) | | 1.783 (0.791–4.020) | | | Number of CLN metastasis | | | | 0.230 | | 0.462 | | ≤5 | 1,504 | 27 (1.8) | 1.000 | | 1.000 | | | >5 | 14 | 1 (7.1) | 4.208 (0.531-33.323) | | 2.180 (0.273-17.428) | | HR, hazard ratio; CLN, central lymph node. patients with DTC, and patients with DTC are classified as ATA low risk and intermediate risk depending on the presence or absence of microscopic capsular invasion (14,16). Several studies have reported that microscopic capsular invasion is not related to recurrence, and our results were consistent with this finding (33-35). Multifocality was found to affect the recurrence rate in the multivariate analysis. Several studies have reported that multifocality was associated with a risk of PTC in the contralateral thyroid lobe, and the European Society of Endocrine Surgeons consensus statement recommends TT in cases of multifocality (36-38). However, the ATA guidelines do not consider the presence of multifocality in the decision to perform TT (14). Additionally, several studies demonstrated that multifocality was not an indication for CT (39,40). At our institution, multifocality is usually an incidental finding in the final pathology report. Since the recurrence rate was very low, we believe that TL is sufficient for patients with multifocal DTC. FTC and HCC are known to have a relatively poorer prognosis than PTC (41-44). However, since no patients with FTC and HCC experienced recurrence in our study, the effect of cancer subtype on recurrence could not be analyzed. Because of the small number of such patients, further studies are needed in the future. RAI therapy should be considered to prevent recurrence and improve disease-specific survival. Several studies have demonstrated that RAI therapy has no significant effect on recurrence and disease-specific survival in patients with low-risk DTC, but there is a significant effect in patients Table 4 Clinicopathologic characteristics of patients in Group A-1, Group A-2, and Group B | Variable | Group A-1 (n=963) | Group A-2 (n=196) | Group B (n=543) | P value | |---------------------------------------------------|-------------------|-------------------|-------------------|---------| | Sex, n (%) | | | | 0.001 | | Male | 135 (14.0) | 46 (23.5) | 67 (12.3) | | | Female | 828 (86.0) | 150 (76.5) | 476 (87.7) | | | Age, years, n (%) | | | | 0.255 | | <55 | 818 (84.9) | 175 (89.3) | 460 (84.7) | | | ≥55 | 145 (15.1) | 21 (10.7) | 83 (15.3) | | | Tumor size, cm (mean ± SD, SEM) | 0.54±0.49 (0.02) | 0.56±0.30 (0.02) | 0.68±0.53 (0.02) | < 0.001 | | Cancer subtype, n (%) | | | | 0.013 | | Papillary thyroid cancer | 954 (99.1) | 196 (100.0) | 527 (97.1) | | | Follicular thyroid cancer | 6 (0.6) | 0 | 13 (2.4) | | | Hurthle cell cancer | 3 (0.3) | 0 | 3 (0.6) | | | Microscopic capsular invasion, n (%) | 0 | 0 | 535 (98.5) | < 0.001 | | Multifocality, n (%) | 87 (9.0) | 29 (14.8) | 62 (11.4) | 0.038 | | Central lymph node metastasis, n (%) | 0 | 196 (100.0) | 147 (30.6) | < 0.001 | | Number of central lymph node (mean \pm SD, SEM) | | | | | | Total | 4.97±3.92 (0.14) | 5.99±3.99 (0.29) | 5.15±3.83 (0.18) | 0.004 | | Positive | 0.0±0.0 | 1.80±1.14 (0.08) | 0.72±1.52 (0.07) | < 0.001 | | Recurrence, n (%) | 14 (1.5) | 5 (2.6) | 13 (2.4) | 0.332 | | Follow-up duration, years (mean ± SD, SEM) | 10.25±1.60 (0.05) | 10.10±1.47 (0.10) | 10.13±1.47 (0.06) | 0.278 | Group A-1: patients with no central lymph node metastasis and no pathologic microscopic capsular invasion. Group A-2: patients with 1–5 positive central lymph nodes and pathologic microscopic capsular invasion. Group B: patients with >5 positive central lymph nodes, or pathologic microscopic capsular invasion. SEM, standard error of the mean. Table 5 Comparison of the P values from the post-hoc analysis among three groups | Variable | Р | | | | | |--------------------------------|-----------------------------|---------------------------|---------------------------|--|--| | | (Group A-1) vs. (Group A-2) | (Group A-1) vs. (Group B) | (Group A-2) vs. (Group B) | | | | Sex* | 0.001 | 0.358 | <0.001 | | | | Age, years* | 0.114 | 0.906 | 0.115 | | | | Tumor size, cm** | 0.786 | <0.001 | 0.017 | | | | Cancer subtype* | 0.397 | 0.010 | 0.052 | | | | Microscopic capsular invasion* | N/A | <0.001 | <0.001 | | | | Multifocality* | 0.014 | 0.137 | 0.217 | | | | Central lymph node metastasis | <0.001 | <0.001 | <0.001 | | | | Number of central lymph node | | | | | | | Total (retrieved) ** | 0.004 | 0.730 | 0.038 | | | | Positive** | <0.001 | <0.001 | <0.001 | | | | Recurrence* | 0.348 | 0.187 | 1.000 | | | Group A-1: patients with no central lymph node metastasis and no pathologic microscopic capsular invasion. Group A-2: patients with 1–5 positive central lymph nodes and no pathologic microscopic capsular invasion. Group B: patients with >5 positive central lymph nodes, or pathologic microscopic capsular invasion. *, P values calculated using the χ^2 test or Fisher's exact test (adjusted P value =0.016). **, P values calculated using the Scheffe test or the Dunnett T3 test. **Figure 2** Kaplan-Meier curve of recurrence-free survival in the three groups. (A) Group A-1 and Group A-2 (P=0.179). (B) Group A-1 and Group B (P=0.095). (C) Group A-2 and Group B (P=0.978). Group A-1: patients with no central lymph node metastasis. Group A-2: patients with 1–5 positive central lymph nodes. Group B: patients with >5 positive central lymph nodes, or pathologic microscopic capsular invasion. Table 6 Postoperative complications of Group A and Group B | Variable | Group A (n=1,159) | Group B (n=543) | P value | |---------------------------------|-------------------|-----------------|---------| | Complication, n (%) | | | 0.400 | | Absent | 1,085 (93.6) | 514 (94.7) | | | Present | 74 (6.4) | 29 (5.3) | | | Hematoma, n (%) | | | 0.657 | | Absent | 1,156 (99.7) | 541 (99.6) | | | Present | 3 (0.3) | 2 (0.4) | | | Seroma, n (%) | | | 0.854 | | Absent | 1,145 (98.8) | 537 (98.9) | | | Present | 14 (1.2) | 6 (1.1) | | | Hoarseness (transient), n (%) | | | 0.896 | | Absent | 1,147 (99.0) | 537 (98.9) | | | Present | 12 (1.0) | 6 (1.1) | | | Chyle leakage, n (%) | | | 1.000 | | Absent | 1,151 (99.3) | 540 (99.4) | | | Present | 8 (0.7) | 3 (0.6) | | | Hypocalcemia (transient), n (%) | | | 0.165 | | Absent | 1,141 (98.4) | 539 (99.3) | | | Present | 18 (1.6) | 4 (0.7) | | | RLN injury, n (%) | | | 0.556 | | Absent | 1,156 (99.7) | 543 (100.0) | | | Present | 3 (0.3) | 0 | | Group A: patients with ≤5 positive central lymph nodes and no pathologic microscopic capsular invasion. Group B: patients with >5 positive central lymph nodes, or pathologic microscopic capsular invasion. RLN, recurrent laryngeal nerve. with high-risk DTC (45-47). In line with these studies, the ATA guidelines do not recommend RAI therapy for patients with low-risk DTC but recommend it for patients with high-risk DTC. Nonetheless, the effectiveness of RAI therapy in patients with intermediate-risk DTC remains controversial. Orosco *et al.* demonstrated that RAI therapy in patients with intermediate-risk DTC was not associated with disease-specific mortality (48). Wang *et al.* suggested that RAI therapy improves disease-specific survival in selected patients with intermediate-risk DTC (49). Due to differences in the results of several studies on RAI therapy and the lack of large-scale randomized clinical trials, there are no definitive guidelines for RAI therapy in patients with intermediate-risk DTC. Therefore, when the final pathology report after TL shows findings indicative of intermediate risk, physicians face the dilemma of whether to perform CT for RAI therapy. Interestingly, the recurrence rate in patients with DTC whose risk had been upgraded after surgery (Group B) was very low (2.4%, 10-year RFS: 98.2%). Bosset et al. demonstrated that the recurrence rate of intermediaterisk PTC was higher than low-risk PTC in patients who underwent TL (28.6% vs. 7.1%) (50). However, they included aggressive histologic cancer types like poorly-differentiated cancer and diffuse sclerosing PTC. Additionally, there was no mention of central LN dissection, and they did not analyze central LN metastasis. We thought that this may have affected the recurrence rate. We considered this to be the result of R0 resection with sufficient prophylactic CCND. Since the average number of LNs retrieved through prophylactic CCND was reported to be 13±5, we considered that the LNs of our patients were sufficiently removed (21,51). In addition, although the incidence of complications after CT is relatively diverse (0.5% to 20%), these complications can be completely prevented by avoiding unnecessary surgery (10-12). Therefore, we believe that CT for RAI is not necessary in patients with DTC whose risk is upgraded after surgery if an experienced endocrine surgeon performs TL with prophylactic CCND. The recurrence rate of Group B did not differ from that of Group A at long-term follow-up, and the recurrence rate was very low. In addition, there was no disease-specific mortality during this period. As this result was obtained in a sufficient number of enrolled patients over the follow-up period, we suggest that periodic surveillance without CT is sufficient for patients with DTC whose risk is upgraded after surgery. Subgroup analysis was performed to compare the prognosis of patients with very low-risk DTC (Group A-1) and those with intermediate-risk DTC (Group B), and it revealed that the recurrence rate of patients with intermediate-risk DTC did not differ from that of those with very low-risk DTC. The only factor affecting recurrence was multifocality, and there was no difference between Groups A-1 and B. Although there were more patients with FTC in Group B than in Group A-1, the effect on recurrence could not be analyzed because there was no recurrence in patients with FTC. When we calculated the statistical power, it was 0.363. Assuming a power of 0.8 and significance level of 0.05, the required sample sizes were 2,918 and 1,646, respectively. Since the progression of DTC is slow and the recurrence rate is low, the 10-year followup duration of our study is rather short. To compensate for this, a larger number of patients or longer follow-up will be needed in the future. Although the number of recurrence was too small for statistical analysis, the ratio of lateral neck dissection in Group B was higher than that of Group A (4/13, 30.8% vs. 4/19, 21.1%). Because several studies demonstrated that central LN metastasis was associated with lateral LN metastasis, we believe that this difference occurred from higher central LN metastasis of Group B (52-54). However, the recurrence rate of lateral neck was very low (8/1,702, 0.4%). Therefore, active and frequent follow-up was thought to be sufficient for patients with DTC whose risk is upgraded after surgery. Criteria for classifying ATA intermediate-risk include the existence of vascular invasion and aggressive pathology type. However, we could not identify the presence of vascular invasion due to a lack of records. In addition, most of the PTCs were the conventional type and only a few of them were the diffuse sclerosing type; therefore, there were not enough numbers to analyze. Although all preoperative clinical T3 and N1 patients had intermediate risk, these patients underwent TT and were excluded from this study. Therefore, the patients in Group B did not represent all ATA intermediate-risk but only those whose risk had been upgraded to intermediate-risk after surgery. Considering all of the above, and since there was no significant difference in long-term prognosis between patients with low-risk DTC and those with DTC whose risk was upgraded after surgery, we suggest that TL with prophylactic CCND is sufficient for patients with DTC whose risk is upgraded after surgery. In addition, we carefully recommend that strict surveillance without RAI after immediate CT is sufficient in these patients. This study had some limitations. First, various biases may have occurred because this was a retrospective study. Multivariate analysis was performed to correct this, but large-scale randomized clinical trials will be needed to confirm our findings in the future. Second, recent studies have demonstrated that BRAF or TERT promoter mutations are associated with aggressive features and a poor prognosis in patients with thyroid cancer (55-58). However, the effects of these mutations on prognosis could not be analyzed in this study because of limited data. Additional research is needed in the future. Third, since DTC has a generally good prognosis, the 10-year follow-up duration is rather short. To address this, longer-term follow-up and analysis will be needed. Finally, there is a possibility of selection bias owing to the relatively large number of patients who were lost to follow-up (39.9%). However, there were no differences between the characteristics of the enrolled patients and those who were lost to follow up, and the effect of this factor on the outcome was considered negligible because the number of enrolled patients was sufficient. The recurrence rate of the enrolled patients was higher than that of those lost to follow up (1.9% vs. 0.5%, P=0.002); however, this might be due to the short follow-up period of the patients lost to follow up. Since the difference in recurrence rate between the two groups was not large, it did not affect the interpretation of the results. #### **Conclusions** In conclusion, TL with prophylactic CCND is sufficient for patients with DTC whose risk was upgraded after surgery, because they have a good prognosis at long-term follow-up. Larger-scale randomized clinical trials are required to confirm our findings. # **Acknowledgments** The authors thank Ji Young Kim (Severance Hospital), Hwanju Lee (Severance Hospital), Hee Chang Yu (Severance Hospital), and Hoyoung Kim (Severance Hospital) for their technical support. *Funding:* None. # **Footnote** Reporting Checklist: The authors have completed the STROBE reporting checklist. Available at https://gs.amegroups.com/article/view/10.21037/gs-22-158/rc *Data Sharing Statement:* Available at https://gs.amegroups.com/article/view/10.21037/gs-22-158/dss *Peer Review File*: Available at https://gs.amegroups.com/article/view/10.21037/gs-22-158/prf Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://gs.amegroups.com/article/view/10.21037/gs-22-158/coif). The authors have no conflicts of interest to declare. Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). The study was approved by the Institutional Ethics Committee of Severance Hospital (No. 4-2021-0614), and obtaining individual consent for this retrospective analysis was waived. Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the noncommercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/. #### References - Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin 2014;64:9-29. - 2. Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg 2014;140:317-22. - Brito JP, Al Nofal A, Montori VM, et al. The Impact of Subclinical Disease and Mechanism of Detection on the Rise in Thyroid Cancer Incidence: A Population-Based Study in Olmsted County, Minnesota During 1935 Through 2012. Thyroid 2015;25:999-1007. - 4. Mao Y, Xing M. Recent incidences and differential trends of thyroid cancer in the USA. Endocr Relat Cancer - 2016;23:313-22. - Nixon IJ, Ganly I, Patel SG, et al. Changing trends in well differentiated thyroid carcinoma over eight decades. Int J Surg 2012;10:618-23. - Hassanain M, Wexler M. Conservative management of well-differentiated thyroid cancer. Can J Surg 2010;53:109-18. - Vaisman F, Momesso D, Bulzico DA, et al. Thyroid Lobectomy Is Associated with Excellent Clinical Outcomes in Properly Selected Differentiated Thyroid Cancer Patients with Primary Tumors Greater Than 1 cm. J Thyroid Res 2013;2013:398194. - Nixon IJ, Ganly I, Patel SG, et al. Thyroid lobectomy for treatment of well differentiated intrathyroid malignancy. Surgery 2012;151:571-9. - Nixon IJ, Palmer FL, Whitcher MM, et al. Thyroid isthmusectomy for well-differentiated thyroid cancer. Ann Surg Oncol 2011;18:767-70. - Gulcelik MA, Dogan L, Akgul GG, et al. Completion Thyroidectomy: Safer than Thought. Oncol Res Treat 2018;41:386-90. - Ito Y, Kihara M, Kobayashi K, et al. Permanent hypoparathyroidism after completion total thyroidectomy as a second surgery: How do we avoid it? Endocr J 2014;61:403-8. - 12. Rafferty MA, Goldstein DP, Rotstein L, et al. Completion thyroidectomy versus total thyroidectomy: is there a difference in complication rates? An analysis of 350 patients. J Am Coll Surg 2007;205:602-7. - Erdem E, Gülçelik MA, Kuru B, et al. Comparison of completion thyroidectomy and primary surgery for differentiated thyroid carcinoma. Eur J Surg Oncol 2003;29:747-9. - 14. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1-133. - Vaisman F, Momesso D, Bulzico DA, et al. Spontaneous remission in thyroid cancer patients after biochemical incomplete response to initial therapy. Clin Endocrinol (Oxf) 2012;77:132-8. - 16. Tuttle RM, Tala H, Shah J, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid - Association staging system. Thyroid 2010;20:1341-9. - 17. Dhir M, McCoy KL, Ohori NP, et al. Correct extent of thyroidectomy is poorly predicted preoperatively by the guidelines of the American Thyroid Association for low and intermediate risk thyroid cancers. Surgery 2018;163:81-7. - 18. Lang BH, Shek TW, Wan KY. The significance of unrecognized histological high-risk features on response to therapy in papillary thyroid carcinoma measuring 1-4 cm: implications for completion thyroidectomy following lobectomy. Clin Endocrinol (Oxf) 2017;86:236-42. - Kluijfhout WP, Pasternak JD, Lim J, et al. Frequency of High-Risk Characteristics Requiring Total Thyroidectomy for 1-4cm Well-Differentiated Thyroid Cancer. Thyroid 2016;26:820-4. - 20. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 1994;97:418-28. - 21. Shen WT, Ogawa L, Ruan D, et al. Central neck lymph node dissection for papillary thyroid cancer: comparison of complication and recurrence rates in 295 initial dissections and reoperations. Arch Surg 2010;145:272-5. - 22. Tufano RP, Bishop J, Wu G. Reoperative central compartment dissection for patients with recurrent/persistent papillary thyroid cancer: efficacy, safety, and the association of the BRAF mutation. Laryngoscope 2012;122:1634-40. - 23. McDow AD, Pitt SC. Extent of Surgery for Low-Risk Differentiated Thyroid Cancer. Surg Clin North Am 2019:99:599-610. - 24. Haigh PI, Urbach DR, Rotstein LE. Extent of thyroidectomy is not a major determinant of survival in low- or high-risk papillary thyroid cancer. Ann Surg Oncol 2005;12:81-9. - 25. Mendelsohn AH, Elashoff DA, Abemayor E, et al. Surgery for papillary thyroid carcinoma: is lobectomy enough? Arch Otolaryngol Head Neck Surg 2010;136:1055-61. - Barney BM, Hitchcock YJ, Sharma P, et al. Overall and cause-specific survival for patients undergoing lobectomy, near-total, or total thyroidectomy for differentiated thyroid cancer. Head Neck 2011;33:645-9. - 27. Adam MA, Pura J, Gu L, et al. Extent of surgery for papillary thyroid cancer is not associated with survival: an analysis of 61,775 patients. Ann Surg 2014;260:601-5; discussion 605-7. - 28. Sherman SI. Thyroid carcinoma. Lancet 2003;361:501-11. - 29. Trimboli P, Ulisse S, Graziano FM, et al. Trend in thyroid carcinoma size, age at diagnosis, and histology in a - retrospective study of 500 cases diagnosed over 20 years. Thyroid 2006;16:1151-5. - Lee YC, Na SY, Park GC, et al. Occult lymph node metastasis and risk of regional recurrence in papillary thyroid cancer after bilateral prophylactic central neck dissection: A multi-institutional study. Surgery 2017;161:465-71. - Choi SM, Kim JK, Lee CR, et al. Completion Total Thyroidectomy Is Not Necessary for Papillary Thyroid Microcarcinoma with Occult Central Lymph Node Metastasis: A Long-Term Serial Follow-Up. Cancers (Basel) 2020;12:3032. - 32. Patron V, Hitier M, Bedfert C, et al. Occult lymph node metastases increase locoregional recurrence in differentiated thyroid carcinoma. Ann Otol Rhinol Laryngol 2012;121:283-90. - 33. Almeida MFO, Couto JS, Ticly ALT, et al. The impact of minimal extrathyroidal extension in the recurrence of papillary thyroid cancer patients. Arch Endocrinol Metab 2020;64:251-6. - 34. Amit M, Boonsripitayanon M, Goepfert RP, et al. Extrathyroidal Extension: Does Strap Muscle Invasion Alone Influence Recurrence and Survival in Patients with Differentiated Thyroid Cancer? Ann Surg Oncol 2018;25:3380-8. - 35. Ji YB, Song CM, Kim D, et al. Efficacy of hemithyroidectomy in papillary thyroid carcinoma with minimal extrathyroidal extension. Eur Arch Otorhinolaryngol 2019;276:3435-42. - 36. Iacobone M, Jansson S, Barczy ski M, et al. Multifocal papillary thyroid carcinoma--a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbecks Arch Surg 2014;399:141-54. - 37. Mazeh H, Samet Y, Hochstein D, et al. Multifocality in well-differentiated thyroid carcinomas calls for total thyroidectomy. Am J Surg 2011;201:770-5. - 38. Pitt SC, Sippel RS, Chen H. Contralateral papillary thyroid cancer: does size matter? Am J Surg 2009;197:342-7. - 39. Harries V, Wang LY, McGill M, et al. Should multifocality be an indication for completion thyroidectomy in papillary thyroid carcinoma? Surgery 2020;167:10-7. - 40. Huang H, Liu S, Xu Z, et al. Long-term outcome of thyroid lobectomy for unilateral multifocal papillary carcinoma. Medicine (Baltimore) 2017;96:e7461. - 41. Vorburger SA, Ubersax L, Schmid SW, et al. Long-term follow-up after complete resection of well-differentiated cancer confined to the thyroid gland. Ann Surg Oncol 2009;16:2862-74. - 42. Gulcelik MA, Gulcelik NE, Kuru B, et al. Prognostic factors determining survival in differentiated thyroid cancer. J Surg Oncol 2007;96:598-604. - 43. Passler C, Scheuba C, Prager G, et al. Prognostic factors of papillary and follicular thyroid cancer: differences in an iodine-replete endemic goiter region. Endocr Relat Cancer 2004;11:131-9. - 44. Lundgren CI, Hall P, Dickman PW, et al. Clinically significant prognostic factors for differentiated thyroid carcinoma: a population-based, nested case-control study. Cancer 2006;106:524-31. - 45. Jonklaas J, Sarlis NJ, Litofsky D, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid 2006;16:1229-42. - Podnos YD, Smith D, Wagman LD, et al. Radioactive iodine offers survival improvement in patients with follicular carcinoma of the thyroid. Surgery 2005;138:1072-6; discussion 1076-7. - 47. Mazzaferri EL, Kloos RT. Clinical review 128: Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001;86:1447-63. - 48. Orosco RK, Hussain T, Noel JE, et al. Radioactive iodine in differentiated thyroid cancer: a national database perspective. Endocr Relat Cancer 2019;26:795-802. - 49. Wang X, Zhu J, Li Z, et al. The benefits of radioactive iodine ablation for patients with intermediate-risk papillary thyroid cancer. PLoS One 2020;15:e0234843. - Bosset M, Bonjour M, Castellnou S, et al. Long-Term Outcome of Lobectomy for Thyroid Cancer. Eur Thyroid J 2021;10:486-94. - 51. So YK, Son YI, Hong SD, et al. Subclinical lymph node metastasis in papillary thyroid microcarcinoma: a study of 551 resections. Surgery 2010;148:526-31. - 52. Sheng L, Shi J, Han B, et al. Predicting factors for central or lateral lymph node metastasis in conventional papillary thyroid microcarcinoma. Am J Surg 2020;220:334-40. - 53. Zhao H, Huang T, Li H. Risk factors for skip metastasis and lateral lymph node metastasis of papillary thyroid cancer. Surgery 2019;166:55-60. - 54. Back K, Kim JS, Kim JH, et al. Superior Located Papillary Thyroid Microcarcinoma is a Risk Factor for Lateral Lymph Node Metastasis. Ann Surg Oncol 2019;26:3992-4001. - 55. Liu X, Qu S, Liu R, et al. TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab 2014;99:E1130-6. - 56. Melo M, da Rocha AG, Vinagre J, et al. TERT promoter - mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab 2014;99:E754-65. - 57. Moon S, Song YS, Kim YA, et al. Effects of Coexistent BRAFV600E and TERT Promoter Mutations on Poor Clinical Outcomes in Papillary Thyroid Cancer: A Meta- Cite this article as: Choi SM, Kim DG, Lee JE, Ho J, Kim JK, Lee CR, Kang SW, Lee J, Jeong JJ, Chung WY, Nam KH. Thyroid lobectomy is sufficient for differentiated thyroid cancer with upgraded risk after surgery. Gland Surg 2022;11(9):1451-1463. doi: 10.21037/gs-22-158 - Analysis. Thyroid 2017;27:651-60. - 58. Xing M, Liu R, Liu X, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol 2014;32:2718-26.