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Introduction

Thyroid carcinoma (THCA) mostly originates from thyroid 
follicular epithelial cells (1,2), and its morbidity is currently 
showing an annually increasing trend. It has become the 
main cause of death among head, neck, and endocrine 

tumors (3). Since the pathological type of tumor is mainly 
low-grade differentiated thyroid cancer, most patients have 
a longer survival time after surgery (4,5). However, due to 
the abundance of thyroid vascular nerves and the complex 
anatomy and physiological structure of the thyroid, surgery 
often fails to completely remove cancer tissue, and the 
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probability of recurrence after surgery is high (6,7). The 
recurrence of TC usually requires a second operation, 
which will bring increased complications and can easily lead 
to death (8). Therefore, it is vitally important to accurately 
predict the recurrence of THCA after surgery.

Transcription factors (TFs) are the convergence point 
for various signaling pathways in eukaryotic cells. The 
deregulation of TFs may lead to a range of diseases such as 
inflammatory disorders, endocrine disorders, cardiovascular 
disease, and various cancers (9). To date, more than 
1,600 TFs have been found, of which 365 TFs have been 
identified by tumor cell line histochemistry screening and 
have been studied in depth. The function of TFs is to 
regulate the expression of downstream genes (10). Other 
studies have reported that the target gene network of 
TF microRNA (miRNA) is associated with survival and 
recurrence of ovarian cancer (11), and that FOXM1 can 
mediate the proliferation of liver cancer cells by regulating 
KIF4A (12).

Reports have shown that TFs play a crucial role in 
the thyroid. For example, HOXA9 has been found to 
regulate RUNX2 to enhance the ability of papillary thyroid 
carcinoma (PTC) migration and invasion (13). However, 
the function of TFs in the recurrence of thyroid cancer has 
not been reported. In this study, we obtained the highly 
expressed TFs as well as differentially expressed genes 
(DEGs) in THCA, based on bioinformatics analysis. Then, 
we analyzed the clinical effects of TFs and DEGs on the 
recurrence of THCA patients, and explored the functions 
of TFs and DEGs in THCA progression. We identified 
GATAD1 as a novel potential diagnostic biomarker in 
THCA recurrence patients. The GATAD1-SRRM2 axis was 
shown to mediate human THCA recurrence progression, 
which can serve as an underlying therapeutic target for 
THCA treatment. We present the following article in 
accordance with the MDAR reporting checklist (available 
at https://gs.amegroups.com/article/view/10.21037/gs-22-
666/rc).

Methods

Bioinformatic analysis of gene expression data

The whole genome expression and survival data of recurring 
and non-recurring THCA samples were downloaded 
from The Cancer Genome Atlas (TCGA) database, and 
the genome-wide differences were analyzed using the R 
language analysis program (The R Foundation of Statistical 

Computing, Vienna, Austria). Meanwhile, the list of 
common TFs and their downstream genes were obtained 
using the Viper data package of R language. The copy 
number of TFs and survival map of patients with increased 
copy numbers of TFs were obtained by cBioPortal database 
(https://www.cbioportal.org/). The activity bar graph of 
TFs in thyroid cell lines was obtained by DepMap database 
(https://depmap.org/portal/). The relationship between 
GATAD1 and SRRM2 expression levels was analyzed using 
R software. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Cell lines and transfection

The HEK293T, FTC133, and TT human THCA cell 
lines were purchased from the American Typical Culture 
Collection Center (ATCC; Manassas, VA, USA). The 
FTC133 cells were cultured in Dulbecco’s modified Eagle 
medium (DMEM), nutrient mixture F-12 (1:1, by volume) 
which containing 2% penicillin/streptomycin, 10% fetal 
bovine serum (FBS), and 1% amphotericin B (14). The TT 
cells were cultured in F12K medium containing antibiotics, 
2 mM glutamine, and 10% FBS (15). All culture reagents 
were obtained from Gibco (Invitrogen, Life Technologies 
Inc., Carlsbad, CA, USA). Cells were cultivated at 37 ℃ 
in an atmosphere with 5% CO2 (16). No mycoplasma 
contamination was found in the cell lines. 

The sequences of negative control short hairpin 
shRNA (NC shRNA), sh-GATAD1, and sh-SRRM2 
were listed as follows: sh-GATAD1 ,  5'-CGGCTG
C T G A A A A G A A A G T C T C C A C - 3 ' ;  s h - S R R M 2 , 
5'-AAUAACUCGGUUUCGGUGCTT-3'; NC shRNA, 
5'-UUCUCCGAACGUGUCACGUTT-3'; The GATAD1 
overexpressing recombinant vector pcDNA3.1-GATAD1 
and empty plasmid as negative control (NC) were obtained 
from GenePharma (Shanghai, China). The THCA cells 
were transiently transfected using Lipofectamine 3000 
(Thermo Fisher, Waltham, MA, USA) and polyetherimide 
for HEK293T cells. 

Cell proliferation assay

FTC133, together with TT cells was cultured in 96 well 
plate. The cells were cultured for 1, 2, 3, and 4 days after 
attachment. We then added 0.5% 3-(dimethylthiazol-2-
yl)-2,5-diphenyltetrazoliumbromide (MTT; Sigma, St. 
Louis, MO, USA)-containing medium and treated them 
for 2 hours. The medium was then replaced with 1 mg/mL  

https://gs.amegroups.com/article/view/10.21037/gs-22-666/rc
https://gs.amegroups.com/article/view/10.21037/gs-22-666/rc
https://www.cbioportal.org/
https://depmap.org/portal/
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Table 1 The primer sequences

Gene Forward (5'-3') Reverse (3'-5')

GATAD1 TCTCTAGCCCCAGAGACCAA AATGGTTGGCAACTGATTCC

GAPDH CTTCATTGACCTCAACTACATGG CTCGCTCCTGGAAGATGGTGAT

SRRM2 GAAGAAAGGCCTGCTGTGTC CCAAAGCTGTTCTCCCTGAG

dimethyl sulfoxide (DMSO; Sigma, USA). The optical 
density (OD) value was measured at 490 nm.

Colony formation assay

We cultured lentivirus-infected THCA cells in 6-well plates 
for 7 days. The cells were then stained with 0.5% (w/v) 
crystal violet, imaged by scanner, and quantified by ImageJ 
software (National Institutes of Health, Bethesda, MD, 
USA).

Western blot

The whole cell lysates were centrifuged for 10 minutes 
at 4 ℃, after which the bicinchoninic acid (BCA; Pierce, 
Rockford, IL, USA) method was used to test protein 
concentrations. Protein was separated using sodium dodecyl 
sulfate polyacrylamide gel (SDS-PAGE) and transferred 
to a polyvinylidene fluoride (PVDF) membrane (Bio-
Rad, Shanghai, China). The membrane was sealed with 
5% skimmed milk powder, and dyed overnight with the 
primary antibody at 4 ℃. Then, we probed the membranes 
with a peroxidase conjugated secondary antibody (1:10,000 
dilution). We also used enhanced chemiluminescence 
(ECL) reagent (Pierce, USA) to test the antigen-antibody 
complexes. Primary antibodies against SRRM2, GATAD1, 
and GAPDH were obtained from Sigma-Aldrich (Milan, 
Italy).

Real-time quantitative polymerase chain reaction (RT-
qPCR)

Total RNA was extracted from different cell lines using 
TRIzol reagent (Invitrogen, USA), and 1 μg extracted 
RNA was reverse transcribed to complementary DNA 
(cDNA), using a kit from Promega (Madison, WI, USA), 
according to the manufacturer’s instructions. RT-qPCR 
was performed by Fast Start universal SYBR Green Master 
(Roche, Indianapolis, IN, USA). All q-PCR was carried out 

in triplicate. 2−ΔΔCT was used to evaluate the expression levels 
in comparison to the control. Table 1 shows the sequences of 
RT-qPCR primer.

Luciferase assays

We transfected pRL-TK and pGL4.2 basic Luc plasmids 
into HEK293T cells. The GATAD1 expression plasmid or 
empty body were co transfected for 2 days, and the gene 
activity was analyzed. The experiment was repeated 3 times.

Cell cycle analysis

The lentivirus-infected THCA cells were harvested, 
washed in phosphate-buffered saline (PBS), and then fixed 
it for 2 hours at −20 ℃ with cold 70% ethanol. The cells 
were centrifuged for 3 minutes, washed in PBS 3 times, 
suspended in 0.5 mL PBS, and added to 100 μg/mL RNase 
A (Sigma Chemicals, St. Louis, MO, USA) and 50 μg/mL 
propidium iodide (PI; Sigma Chemicals) for 30 minutes at 
4 ℃ in the dark. Flow cytometry was used to analyze the 
contents of DNA.

Statistical analysis

The software SPSS 23.0 (IBM Corp., Armonk, NY, 
USA) was used for statistical analysis. The final data were 
presented as the mean ± SD of 3 separate studies. To 
compare 2 or 3 groups, the analysis of variance (ANOVA) 
or Student’s t-test were utilized, accordingly. A P value less 
than 0.05 was regarded statistically significant.

Results

Increased GATAD1 activity in THCA

We obtained 365 common TFs from the original gene 
expression data of recurrent (47 cases) and non-recurrent 
(65 cases) THCA, using the R language analysis program. 
The genome-wide differences were analyzed, which 
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showed that GATAD1 was significantly up regulated  
(Figure 1A). The activity of GATAD1 was remarkably 
increased in patients with THCA recurrence (Figure 1B), 
and its expression level was also remarkably increased  
(Figure 1C). The level of GATAD1 messenger RNA 
(mRNA) was positively correlated with the number of 
copies of GATAD1 (Figure 1D). The impact of GATAD1 
on THCA patients was revealed by Kaplan-Meier analysis. 
In specimens of recurrent (47 cases) and non-recurrent  
(65 cases) THCA, those with GATAD1 gene magnification 
had a shorter survival time (Figure 1E). These findings 
indicated that the amplification of GATAD1 copy number 
leads to the high expression of GATAD1, indicating a high 
recurrence rate of THCA.

GATAD1 promotes THCA cell proliferation

We conducted MTT assays and cell flow cytometry 
experiments to investigate the impact of GATAD1 on the 
proliferation of THCA cells. Firstly, the activity bar graph 
of GATAD1 in THCA cell lines was obtained through the 
DepMap database (Figure 2A), showing that it inhibited 
proliferation of FTC133 (Figure 2B) and TT (P<0.05) 
(Figure 2C), and arrested FTC133 cells in the G1 phase 
(Figure 2D,2E).

SRRM2 is a key downstream gene of GATAD1

To screen the key downstream genes of GATAD1, 112 
THCA patients (47 cases of recurrence and 65 cases of 

Figure 1 GATAD1 expression increase in THCA tissues. (A) Volcano plot of 365 TFs. (B) Box plot of activity of the GATAD1. (C) Box 
plot of the GATAD1 mRNA expression (P=0.12). (D) Compared with non-recurrent sample tissues, the amplification of GATAD1 gene 
copy number occurred in recurrent sample tissues. (E) Survival status of patients with thyroid cancer. THCA, thyroid carcinoma; TFs, 
transcription factors; mRNA, messenger RNA.
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Figure 2 GATAD1 promotion of THCA cell proliferation. (A) Bar chart of GATAD1 activity score in THCA cell lines; (B,C) MTT assays 
showing the proliferation of FTC133 (B) and TT (C) cells stably expressing sh-GATADA1. (D,E) Cell cycle analysis was performed on 
FTC133 cells stably expressing sh-GATAD1. **, P<0.01. OD, optical density; THCA, thyroid carcinoma; MTT, 3-(dimethylthiazol-2-yl)-
2,5-diphenyltetrazoliumbromide. 
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non-recurrence) were divided into different groups. We 
obtained 4,124 up-regulated genes according to the activity 
of GATAD1. A total of 926 up-regulated genes were found 
according to GATAD1 mRNA expression levels. The 
overall survival analysis of the activity of GATAD1 yielded 
1,601 differential genes. Moreover, there were a total of 26 
genes satisfying 3 conditions at the same time (Figure 3A). 
The binding motif prediction of GATAD1 was obtained 
by the previous reports (Figure 3B). Through the binding 
motif screening of GATAD1, we discovered a total of 16 
downstream genes with binding motif. Among them, 
SRRM2 was the most highly expressed, and the difference 
was significantly up-regulated (Figure 3C). According to 
the expression level of SRRM2 in 112 THCA patients 
(47 cases of recurrence and 65 cases of non-recurrence), 
the specimens were divided into low and high expression 
groups, and it was found that specimens with high SRRM2 
expression had poor survival (P=0.019) (Figure 3D,3E). 

SRRM2 promotes THCA cell proliferation

We conducted MTT assays, cell clone formation assays, and 
cell flow cytometry experiments to evaluate the impact of 
SRRM2 on the proliferation of THCA cells. The FTC133 
and TT cell lines were selected for experiments. It was 
revealed that SRRM2 inhibited the proliferation of FTC133 
(Figure 4A) and TT (P<0.05) (Figure 4B), and arrested 
FTC133 cells in the G1 phase (Figure 4C,4D).

GATAD1 positively regulates SRRM2 expression

To determine whether GATAD1 regulates the expression of 
SRRM2 in THCA, the findings of bioinformatics analysis 
revealed that the expression of GATAD1 was positively 
associated with SRRM2 (Figure 5A). Furthermore, we 
transfected TT cell lines with the FOXM1 overexpression 
structure, which promoted SRRM2 protein as well as 
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Figure 3 SRRM2 as a key downstream gene of GATAD1. (A) Venn diagram of RNA sequencing of the downstream target gene of GATAD1. 
(B) The binding motif prediction of GATAD1. (C) Box plot of 16 downstream gene expression levels with motifs. (D) SRRM2 expression has 
a significant impact on THCA patients’ survival. (E) KM results of the survival condition of THCA patients samples stratified. DFS, disease-
free survival; THCA, thyroid carcinoma; KM, Kaplan-Meier.
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Figure 4 SRRM2 promotes the proliferation of THCA cells. (A,B) MTT assays showed the proliferation of FTC133 and TT cells stably 
expressing sh-SRRM2. (C,D) Flow cytometry showed the cell cycle of TT cells stably expressing sh-SRRM2. **, P<0.01. OD, optical 
density; THCA, thyroid carcinoma; MTT, 3-(dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide. 
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mRNA levels (Figure 5B-5D). On the contrary, shRNA-
mediated knockdown of GATAD1 reversed the result 
(Figure 5E-5G), indicating that GATAD1 regulated SRRM2 
expression.

GATAD1 binds to the SRRM2 promoter

The promoter of the SRRM2 gene has 3 conserved 
CCCNNCCC regions (BS1, −840 to −832; BS2, −758 to 
−750; BS3, −117 to 109), and GATAD1 can bind to the 
CCCNNCCC sequence of chromatin. It was speculated 
that GATAD1 promoted the transcription of the SRRM2 
gene by recognizing the conserved region of the SRRM2 
gene. To confirm this hypothesis, a different luciferase 
reporter was transfected into 293T cells with high level 
GATAD1, and the findings revealed that the full-length 
promoter construction showed increased luciferase activity 
(SRRM2 Pro Δ BS1 + BS2, BS3), indicating that GATAD1 
directly activated SRRM2 gene transcription. Several 
extensions of the TSS core promoter, including BS1, BS2, 
and BS3, can enhance transcription (Figure 6). All the results 
showed that GATAD1 enhanced SRRM2 transcription by 

binding BS1, BS2, and BS3.

GATAD1 stimulates THCA cell proliferation in a 
SRRM2-dependent manner

According to the above findings, we inferred that SRRM2 
exerts the effect of GATAD1 in the progression of THCA. 
To verify this hypothesis, SRRM2 was knocked down in 
GATAD1-overexpressing TT cells. The upregulation of 
SRRM2 induced with GATAD1 overexpression was abolished 
at the protein as well as mRNA level (Figure 7A-7C).  
The cell proliferation experiments also showed similar 
results. These results indicated that the GATAD1-SRRM2 
axis promoted THCA progression and that interfering with 
the expression of SRRM2 can block GATAD1-mediated 
THCA cell proliferation (Figure 7D).

Discussion

Research shows that TFs play a crucial role in cell  
growth (17). Mounting evidence shows that these proteins 
are closely related to the genetic level that controls the 
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Figure 5 GATAD1 positively regulates SRRM2 expression. (A) Correlation between SRRM2 and GATAD1 (R=0.48, P less than 0.01). (B-
D) RT-PCR and Western blot showed the expression of SRRM2. (E-G) RT-PCR and western blot showing the expression of SRRM2 when 
transfected with shNC or sh-GATADA1. *, P<0.05; **, P<0.01. RT-PCR, real-time polymerase chain reaction; shNC, short hairpin normal 
control.
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development of cancer (11), and may provide selective 
targets for new drug interventions (12,18). Recent drug 
reports have indicated that TFs are easily inhibited by 
drugs (9). Many currently used anticancer drugs exert their 
effects by regulating the activity of important TFs (19). 
In this study, we found that the activity and expression 
of GATAD1 were remarkably increased in patients with 
recurrent THCA. The mRNA of GATAD1 was positively 
correlated with the number of copies of GATAD1. The 
survival time of patients with recurrent THCA caused by 
GATAD1 gene amplification was shorter. The data showed 
that the amplification of GATAD1 copy number leads to 
the high expression of GATAD1, and the recurrence rate of 

THCA is high. Previous studies have shown that GATAD1 
was significantly up-regulated in hepatocellular carcinoma 
(HCC) (20) and glioma (21) through gene amplification. 
A study revealed that GATAD1 regulated cell cycle via 
PRL3 (20). We also found that GATAD1 was overexpressed 
in recurrent THCA cases, which further suggested that 
GATAD1 is crucial in the THCA recurrence process. 
Knockdown of GATAD1 reduced the number of THCA 
cell clones and inhibited the THCA cell proliferation, and 
arrested THCA cells in the G1 phase. 

We found that SRRM2 could bind to the binding motif 
of GATDA1, and the expression level of SRRM2 was 
remarkably up-regulated. SRRM2 is a susceptible gene 



Gland Surgery, Vol 11, No 12 December 2022 1905

© Gland Surgery. All rights reserved.   Gland Surg 2022;11(12):1897-1907 | https://dx.doi.org/10.21037/gs-22-666

Figure 7 SRRM2 is required for GATAD1-induced THCA cell proliferation in vitro. (A-C) RT-PCR and western blot showed the expression 
of SRRM2 with GATAD1 overexpression (GATAD1) and SRRM2 knockdown (sh-SRRM2) lentiviral vectors. (D) Cell growth was used to 
evaluate the proliferation of TT cells stably expressing GATAD1 + sh-SRRM2. **, P<0.01. OD, optical density; THCA, thyroid carcinoma; 
RT-PCR, real-time polymerase chain reaction.

Figure 6 GATAD1 binds to the SMMR2 promoter and activates 
gene transcription. SMMR2 promoter was transfected into 293T 
cells together with GATAD1 overexpression plasmid or control 
vector. ***, P<0.001.
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of THCA (22,23), and its mutation can accelerate the 
formation of THCA (24), but its specific mechanism is still 
unclear. We found that the recurrent THCA patients with 
high SRRM2 expression showed worse survival, based on 
bioinformatics analysis. Knockdown of SRRM2 also reduced 
the number of THCA cell clones and inhibited the THCA 
cell proliferation, and arrested THCA cells in the G1 phase. 
According to the findings, we speculated that SRRM2 is also 
important in the recurrence of THCA.

Bioinformatics findings revealed that the expression 
of GATAD1 was positively associated with SRRM2. In 
addition, FOXM1 overexpression was used to construct 
transfected TT cell lines, which increased SRRM2 protein 
and mRNA levels. In contrast, shRNA-mediated GATAD1 
knockout reversed these effects, indicating that GATAD1 
regulates SRRM2 expression (21). In this study, we 
discovered 3 conservative CCCNNCCC sequences located 
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in the upstream region of the SRRM2 promoter. The 
results of the luciferase reporter indicated that GATAD1 
directly activated SRRM2 gene transcription. Based on the 
above observations, we inferred that SRRM2 exerted the 
effect of GATAD1 in the progression of THCA. To verify 
this hypothesis, SRRM2 was knocked down in GATAD1-
overexpressing THCA cells. The upregulation of SRRM2 
induced by GATAD1 overexpression was abolished at 
the protein and mRNA levels. Cell cloning and cell 
proliferation experiments also showed similar results. These 
results indicated that the GATAD1-SRRM2 axis promoted 
THCA progression and interfered with the expression 
of SRRM2, resulting in the blockade GATAD1-mediated 
THCA cell proliferation.

In summary, based on bioinformatics analysis, we 
screened out the transcription factor GATAD1 which is 
highly expressed in THCA and its key downstream gene 
SRRM2. To investigate further, we performed a Kaplan-
Meier analysis revealed the effect of GATAD1 on the 
survival of THCA patients and through cell proliferation 
and cell cycle experiments, it was proved that GATAD1 
promoted the proliferation of cancer cells and caused the 
recurrence of THCA by up-regulating its downstream 
gene SRRM2, which confirmed that GATAD1 could be 
used as a biomarker for the diagnosis of patients with 
THCA recurrence and an independent predictor of patient 
survival. This provides a strong theoretical basis for the 
diagnosis and treatment of recurrent THCA patients. In 
addition, it has been shown in the past that transcription 
factors are susceptible to drug inhibition, which means that 
GATAD1 may become a drug therapeutic target for THCA, 
improving the current situation of high recurrence rate of 
THCA and extending the survival time of THCA patients.

Conclusions

We found that GATAD1 was highly expressed in relapsing 
THCA tissues, and experimentally demonstrated that 
the GATAD1-SRRM2 axis mediated THCA recurrence 
progression through promoting cell proliferation, revealing 
the possibility of GATAD1 as a biomarker for the diagnosis 
of THCA recurrence and a therapeutic target for THCA.
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