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Background: Triple-negative breast cancer (TNBC) is a highly heterogeneous disease and the current 
prognostic system cannot meet the clinical need. Interactions between immune responsiveness and tumor 
cells plays a key role in the progression of TNBC and macrophages are vital component of immune cells. A 
prognostic model based on macrophages may have great accuracy and clinical utility. 
Methods: For model development, we screened early stage (without metastasis) TNBC patients from The 
Cancer Genome Atlas (TCGA) database. We extracted messenger RNA (mRNA) expression data and clinical 
data including age, race, tumor size, lymph node status and tumor stage. The follow up time and vital status 
were also retrieved for overall survival calculation. Cell-type Identification by Estimating Relative Subsets 
of RNA Transcripts (CIBERSORT) was used to calculate the immune cell composition of each sample. 
Weighted gene co-expression network analysis (WGCNA) was used to identify M1-like macrophage-related 
genes. Combining least absolute shrinkage and selection operator (LASSO) with multivariate Cox regression, 
the M1-like macrophage polarization-related prognostic index (MRPI) was established. We obtained TNBC 
patients in Gene Expression Omnibus (GEO) database through PAM50 method and retrieved the mRNA 
expression data and survival data. The Harrell’s concordance index (CI), the area under the receiver operating 
characteristic (ROC) curves (AUCs) and the calibration curve were used to evaluate the developed model.  
Results: We obtained 166 early TNBC cases and 113 normal tissue cases for model building, along with 76 
samples from GSE58812 cohort for model validation. CIBERSORT analysis suggested obvious infiltration 
of macrophages, especially M1-like macrophages in early TNBC. Four genes were eventually identified for 
the construction of MPRI in the training set. The AUCs at 2 years, 3 years, and 5 years in the training cohort 
were 0.855, 0.881 and 0.893, respectively; and the AUCs at 2 years, 3 years, and 5 years in the validation 
cohort were 0.887, 0.792 and 0.722, respectively. Calibration curves indicated good predictive ability and 
high consistency of our model. 
Conclusions: MRPI is a promising biomarker for predicting the prognosis of early-stage TNBC, which 
may indicate personalized treatment and follow-up strategies and thus may improve the prognosis.
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Introduction

Triple-negative breast cancer (TNBC), known as the most 
aggressive subtype of breast cancer, accounts for around 
15% of all breast cancer cases (1). It is highly invasive and 
heterogeneous and is prone to metastasizing in the early 
stage. Even after application of aggressive treatment, nearly 
40% of patients with TNBC still succumb to the disease 
within 5 years (2,3), and thus TNBC has the worst survival 
prognosis of among the breast cancer subtypes. 

An increasing amount of evidence indicates that the 
tumor microenvironment (TME) has a key role in the 
progression of TNBC (4-6). As a vital component of 
immune cells, macrophages are pivotal to the immune 
response. Under the influence of TME, monocytes 
differentiate into M0 macrophages and then polarize into 
classically activated type 1 (M1-like) and alternatively 
activated type 2 (M2-like) macrophages.  M1-like 
macrophages mainly play pro-inflammatory and antitumor 
roles, while M2-like macrophages are crucially involved 
in aggravating tumor development (7). During tumor 
development, M1-like and M2-like can be transformed into 
each other (8). In TNBC tumors, there exists significant 
infiltration of macrophages (9). Previous studies also have 
explored the function of macrophages in immune regulation 
and tumor therapy (10,11). 

Due to a deficiency of estrogen receptor (ER), 

progesterone receptor (PR), and human epidermal growth 
factor receptor 2 (HER2), limited treatment options are 
left for patients with TNBC, and thus chemotherapy 
remains the primary systematic treatment (2). Although 
TNBC is highly aggressive, some early-stage patients can 
be completely cured with chemotherapy; nonetheless the 
treatment of patients with advanced TNBC is exceedingly 
complicated, and the treatment effect is poor. The median 
overall survival (OS) with current treatment options is only 
13 to 18 months for those who develop metastatic disease 
(12,13). Therefore, early detection, early diagnosis, and 
early treatment of early TNBC is particularly important. In 
clinical practice, the prognosis of early-stage TNBC varies 
considerably, and traditional TNM staging performs poorly 
for survival prediction. The high degree of heterogeneity 
poses critical challenges to the diagnosis and treatment 
of TNBC, and effective biomarkers that can help guide 
individualized treatment in early-stage TNBC still remains 
a clinically unmet need. 

Several studies have reported that the regulation 
of macrophage polarization can affect the progression 
of TNBC (14-16). Specifically, Xu et al. mapped the 
TME of TNBC and explored the M1-like macrophage-
associated prognostic genes (17). However, these studies 
did not construct a prognostic model for clinical usage. 
There are some studies have been published for prognosis 
prediction for TNBC. Guo et al. retrieved clinical 
and survival data of 21,419 TNBC patients from the 
Surveillance, Epidemiology, and End Results Program 
(SEER) database and developed a nomogram to predict 
the OS and breast cancer specific survival (18). The 
C-indexes for their model were larger than 0.77 in both 
internal and external validations. However, their external 
validation data were also from the SEER database, which 
was not strictly “external validation” and might exaggerate 
the predictive accuracy in validation cohort (18). Shi  
et al. also developed nomograms for overall and disease-
free survival prediction in TNBC patients (19). However, 
their model was developed with limited patient numbers 
(N=255) in only one center. This may bring some concern 
when extend their model in other medical institutions. 
Given the critical role of macrophages in TNBC immune 
response, we believe a model based on macrophages may 
yield great survival prediction in TNBC. Therefore, we 
constructed and validated a predictive model based on a 
macrophage polarization-related prognostic index (MRPI) 
to predict survival outcomes in patients with early-stage 
TNBC. Using prognostic stratification, our model can 

Highlight box

Key findings
•	 We screened 4 key macrophage-related genes and constructed a 

prognostic model for patients with early-stage TNBC.

What is known and what is new? 
•	 TNBC is a highly heterogeneous disease with poor prognosis, and 

the current TNM staging system performs poorly for prognosis. 
TME plays an important role in TNBC progression, and 
macrophages are a vital immune component in TME. 

•	 In this study, 4 genes were identified and incorporated into a 
macrophage polarization-related prognostic index for the survival 
prediction of patients with early-stage TNBC. Our model 
possessed good accuracy and consistency in both the training and 
validation cohorts.

What is the implication, and what should change now? 
•	 The current prognostic system for TNBC survival does not satisfy 

the need and should be improved or replaced. Our model can 
predict individual prognosis based on MRPI and thus facilitate the 
selection of treatment and follow-up options.



Gland Surgery, Vol 12, No 2 February 2023 227

© Gland Surgery. All rights reserved.   Gland Surg 2023;12(2):225-242 | https://dx.doi.org/10.21037/gs-23-6

Figure 1 The flowchart and screening process of this study. (A) The work flow and technical plan of the study. (B) The patients’ 
screening process. TCGA, The Cancer Genome Atlas; BRCA, breast cancer; STAT1, Signal transducer and activator of transcription 1; 
DEG, differentially expressed genes; LASSO, least absolute shrinkage and selection operator; AIC, akaike information criterion; MRPI, 
macrophage polarization-related prognostic index; ROC, receiver operating characteristic; TNBC, triple-negative breast cancer.
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facilitate the identification of patients with poor-prognosis 
as candidates for intensive treatment so as to improve the 
survival prognosis of these patients. Figure 1A presents 
the study’s technical procedure and workflow while Figure 
1B outlines the patient screening process. We present 
the following article in accordance with the TRIPOD 
and MDAR reporting checklists (available at https://
gs.amegroups.com/article/view/10.21037/gs-23-6/rc).

Methods

Selection of patients and acquisition of data

We collected RNA sequencing (RNA-seq) data and the 
clinicopathological details of patients with breast cancer 
(BRCA) from The Cancer Genome Atlas (TCGA) database 
(https://portal.gdc.cancer.gov/projects/TCGA-HNSC) and 
the GSE58812 data set in the Gene Expression Omnibus 

https://gs.amegroups.com/article/view/10.21037/gs-23-6/rc
https://gs.amegroups.com/article/view/10.21037/gs-23-6/rc
https://portal.gdc.cancer.gov/projects/TCGA-HNSC
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(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Due 
to the incomplete information of ER, PR and HER2 in 
some samples, PAM50 typing was used to select basal-like 
samples for subsequent analysis. The study only enrolled 
patients who met the following 2 criteria: (I) with complete 
survival and prognostic information including follow-up 
time and vital status and (II) without distant metastasis. 

Finally, a total of 166 early TNBC cases and 113 
normal tissue cases were included in TCGA cohort. We 
chose TCGA data set as a training set because it had a 
relatively sufficient number of cases and complete clinical 
information. The GSE58812 cohort, which included 76 
samples obtained through the PAM50 method, was used as 
the validation set. We extracted the following data for each 
patient in TCGA data set: age, race, tumor size, lymph node 
status, and tumor stage. Each of these clinical characteristics 
was treated as a categorical variable. Age was divided into 
≤50 years old and >50 years old groups; race included 
White, Asian, Black, and other race categories; lymph node 
status was divided into no and yes groups; and tumor stage 
was divided into I + IIA and IIB + III groups. OS was our 
primary outcome. In TCGA cohort, the follow-up days 
were acquired through investigation of the days to last 
follow-up or days to death; the interest event outcome was 
decided according to vital status, and death was regarded 
as the event of interest. In the GEO cohort, we extracted 
the messenger RNA (mRNA) expression data and survival 
outcomes. For model building, TCGA dataset included 
163 cases, and the median follow-up time was 2.08 years.  
During the follow-up period, 18 deaths occurred. 
Meanwhile, the GEO data set included 76 cases, the median 
follow-up time was 6.92 years, and 3 deaths occurred 
during the follow-up time. After data screening, there were 
no missing data in our analysis. We included all eligible 
data from the GEO and TCGA databases to maximize the 
sample size in our study and gain the best predictive ability 
and generalizability of our developed model.

Moreover, online platform Cistrome Cancer (http://
cistrome.org/CistromeCancer/) was used to acquire 
potential signal transducer and activator of transcription 1 
(STAT1) target gene data in BRCA by combining TCGA 
molecular profiling data with public transcription factor 
chromatin immunoprecipitation sequencing (ChIP-Seq) 
profiles (20). TCGA data portal (https://portal.gdc.cancer.
gov/) was used to obtain the somatic mutation profiles. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Differential expression analysis

In TCGA cohort, differentially expressed genes (DEGs) 
were screened by using the “DEseq2” package in R (The 
R Foundation for Statistical Computing; adjusted P value 
<0.05, |log2fold change [FC]| >1), followed by variance 
stabilizing transformation (VST) transformation of the 
expression profile. Principal component analysis (PCA) was 
performed to visualize the disparity between the 2 groups 
with the R package “FactoMineR”, and the percentage 
of explained variances was analyzed with the R package 
“Factoextra”. To visualize the DEGs, R packages “ggpubr” 
and “ComplexHeatmap” were used to draw volcano maps 
and heat maps, respectively.

Tumor-infiltrating immune cell analysis

The Cell-type Identification by Estimating Relative Subsets 
of RNA Transcripts (CIBERSORT) algorithm is a widely 
used and effective tool for calculating the fractions of the 22 
types of tumor-infiltrating immune cells with deconvolution 
analysis (21). First, we downloaded 22 immune cell 
reference marker gene expressions from the CIBERSORT 
website (https://CIBERSORT.stanford.edu/). We then 
used the R program “CIBERSORT” package to estimate 
the abundance of different immune cell subtypes in each 
TCGA sample. Subsequently, we applied the Wilcoxon 
test to compare the differences of infiltrating immune cells 
between tumor and normal tissue.

Weighted gene co-expression network analysis (WGCNA)

We selected immune cells of interest as clinical traits. 
With the help of the R package “WGCNA”, trait data and 
expression data were used to build a scale-free co-expression 
network to develop the gene module that was most strongly 
associated with macrophages (22). First, the expression 
profile underwent a hierarchical clustering analysis to 
identify any outliers. Via the calculation of the Pearson 
correlation coefficient between genes, the expression data 
were transformed into a similarity matrix. The similarity 
matrix was then converted into an adjacency matrix. Next, 
to describe the strength of the relationship between genes, 
the adjacency matrix was converted into a topology matrix 
using the topological overlap measure (TOM). Finally, a 
dynamic hybrid cutting method was applied for module 
identification. 

https://www.ncbi.nlm.nih.gov/geo/
http://cistrome.org/CistromeCancer/
http://cistrome.org/CistromeCancer/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://CIBERSORT.stanford.edu/
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Identification of candidate genes and construction of the 
M1-like MRPI 

Among the modules, we selected the hub module with the 
highest relevance: the M1-like macrophage. Furthermore, 
we chose every gene in the hub module and created a 
protein-protein interaction (PPI) network using the Search 
Tool for the Retrieval of Interacting Genes (STRING; 
https://string-db.org/) database. The minimal interaction 
score was set as the highest confidence level (0.9) to look 
for central nodes (23). In order to visualize the top 20 
genes according to the Matthews correlation coefficient 
(MCC) value, we made use of the cytoHubba plugin in 
Cytoscape (24). We identified candidate genes according 
to the intersection of genes in the hub module and those 
targeted by core genes in the PPI network through Venn 
analysis (http://bioinformatics.psb.ugent.be/webtools/
Venn/). To gain insight into the function of candidate genes, 
we used the Metascape web tool (http://metascape.org) for 
enrichment analysis to identify the top 20 pathways and 
processes (25). The candidate genes were further screened 
by univariate regression and least absolute shrinkage and 
selection operator (LASSO) regression for the most robust 
genes (26). The minimum Akaike information criterion 
(AIC) value was selected to construct the final model. The 
top 20 pathways and processes were visualized using the 
Metascape web tool (http://metascape.org) for enrichment 
analysis (17). Univariate regression and LASSO regression 
were further used to screen the candidate genes for the most 
robust genes (18). To build the final Model, the minimum 
AIC value was chosen.

Validation of the MRPI model

The Harrell’s concordance index (CI), calibration curve 
and time-dependent receiver operating characteristic curve 
(ROC) were used to validate the accuracy of the MRPI 
model in training and validation sets. We calculated the area 
under the curve (AUC) of 2-year, 3-year and 5-year survival 
prediction in both training and validation sets.

The CI indicates the performance of the predictive 
model. A value of 0.7 or higher indicates that the model 
possesses relatively good discriminative ability. The 
calibration curve reflects the accuracy of prediction model. 
If the predictive model perfectly predicted the outcomes, 
the calibration curve will fall along the diagonal 45° line. 
ROC is also widely used for model evaluation. Generally 
speaking, when the AUC is larger than 0.7, the model 

shows relatively good accuracy. 

Additional bioinformatic 

R software (version 4.0.0; http://www.rproject.org) was 
used to analyze the data and create graphs. To obtain a 
clustering based on the gene expression matrix, nonnegative 
matrix factorization (NMF) consensus clustering (R 
package “NMF”) was used to reduce the dimensionality 
of the original matrix. To delineate the survival curves, the 
Kaplan-Meier method was used, while the log-rank test 
was used to assess the survival difference. With the help of 
the R package “survivalROC”, it was possible to compare 
the predictive capacity of survival among different variables 
using time-dependent receiver operating characteristic 
(tROC) analysis. Calibration curves and nomograms were 
drawn using R package “rms”, and risk assessment scatter 
charts were plotted using the R package “ggrisk”. Gene set 
enrichment analysis (GSEA) software (version 4.1.0; http://
www.gsea-msigdb.org) and the Metascape network tool 
were used to perform enrichment analysis (25,27). The R 
package “maftools” was used to analyze somatic mutation 
data in Mutation Annotation Format (MAF). 

Statistical analyses

Between the 2 groups, categorical variables were compared 
using the chi-squared test. The Kaplan-Meier survival curve 
and log-rank test were used to depict and compare the 
survival differences between the two groups. A two-sided P 
value ≤0.05 was considered statistically significant. 

Results 

Differentially expressed genes and immune cell infiltration 

A total of 13,875 DEGs between tumor and normal 
tissues were found in TCGA TNBC cohort, comprising 
8,543 upregulated genes and 5,332 downregulated genes  
(Figure 2A). PCA analysis suggested that these differential 
genes could distinguish TNBC from normal tissues 
(Figure 2B). The expression heatmap displayed the top 100 
upregulated and downregulated genes in TNBC tissues and 
normal tissues (Figure 2C). 

CIBERSORT analysis suggested that macrophages 
were the most infiltrated immune cells in early TNBC 
samples (Figure 3A), and there was a substantial distinction 
in macrophage infiltration compared with normal samples 

https://string-db.org/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
http://metascape.org
http://metascape.org
http://www.gsea-msigdb.org
http://www.gsea-msigdb.org
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Figure 2 Differential expression analysis. (A) DEseq2 identified 13,875 differentially expressed genes (tumor vs. normal) on a volcano map. 
Upregulated genes are represented by red dots, while downregulated genes are represented by blue dots. The top 10 up- and downregulated 
genes are displayed. (B) Principal component analysis suggested that differential genes could distinguish the TNBC group from the normal 
group. (C) The DEGs’ expression heatmap (100 upregulated genes and 100 downregulated genes). TNBC, triple-negative breast cancer; 
DEG, differentially expressed genes.
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(Figure 3B and Figure S1). 

Identification of M1-like macrophage polarization-related 
genes

Considering the large amount of infiltration of macrophages 
in TNBC, we selected macrophages as the clinical trait 

and built a scale-free coexpression network together with 
differentially expressed genes. Three outliers were excluded 
from the hierarchical cluster analysis (Figure S2). After 
the removal of 3 outliers, the samples were clustered based 
on Euclidean distance (Figure S3). To meet the scale-free 
network role, we used the soft threshold β =3 (Figure 4A,4B).  
The 26 gene modules were established by setting the 

https://cdn.amegroups.cn/static/public/GS-23-6-supplementary.pdf
https://cdn.amegroups.cn/static/public/GS-23-6-supplementary.pdf
https://cdn.amegroups.cn/static/public/GS-23-6-supplementary.pdf


Gland Surgery, Vol 12, No 2 February 2023 231

© Gland Surgery. All rights reserved.   Gland Surg 2023;12(2):225-242 | https://dx.doi.org/10.21037/gs-23-6

Figure 3 CIBERSORT tumor-infiltrating immune cell analysis. (A) The proportion of 22 immune cells infiltrating the sample. (B) Box 
plot of differential infiltrating immune cells in the TNBC group and the normal group. ns, P>0.05; *, P≤0.05; **, P≤0.01; ***, P≤0.001; ****, 
P≤0.0001. TNBC, triple-negative breast cancer; CIBERSORT, Cell-type Identification by Estimating Relative Subsets of RNA Transcripts.
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Figure 4 Identification of M1-like macrophage polarization-related genes. (A) The scale-free fit index of a 1–20 soft threshold power and 
β=3 was selected to satisfy the scale-free network. (B) The average connectivity of the 1–20 soft threshold power. (C) Genes were finally 
clustered into 26 modules. The branches of the tree diagram represent genes, and genes clustered in the same module are colored the same. 
The gray module summarizes the oligogenes. (D) The module-trait relationship suggested that the brown module was mostly associated 
with M1-like macrophages. *, this module was selected for following analysis. (E) A scatter plot showing the brown module’s genes, with 
each brown dot representing a gene. (F) A PPI network (minimum interaction score 0.9) was constructed for all genes in the brown module. 
According to the MCC value, the top 20 genes were visualized, and STAT1 was one of the core genes. (G) The potential target genes of 
STAT1 were intersected with M1-like macrophage-related genes in the brown module, and 291 genes related to M1-like macrophage 
polarization were obtained. (H) Gene Ontology enrichment analysis was performed on 291 M1-like macrophage polarization-related genes, 
the biological processes involved in candidate genes were shown above, and molecular functions are shown below. (I) NMF clustering 
analysis divided 163 TNBC samples into 2 groups based on the expression of 291 genes. (J) GSEA analysis indicated that 291 genes with 
high expression levels were enriched in M1-like macrophage as compared to the monocyte upregulated gene set pathway. GO, Gene 
Ontology; NES, normalized enrichment score; PPI, protein-protein interaction networks; MCC, Matthews correlation coefficient; NMF, 
non-negative matrix factorization; TNBC, triple-negative breast cancer; GSEA, gene set enrichment analysis.
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minimum module size to 50 and merging threshold to 0.25 
(Figure 4C). Among the 26 modules, the brown module had 
the strongest connection with the M1-like macrophage-
related genes (R2 =0.55; P=2e-14) (Figure 4D). Moreover, 
1,106 genes in the brown module were substantially linked 
with membership degree and gene significance (correlation 
=0.82; P<1e-200; Figure 4E). As seen in Figure 4D, since 
genes in the brown module had the highest correlation with 
their traits, we extracted all genes in the brown module, 
constructed a PPI network and found STAT1 to be one of 

the core genes (Figure 4F). Considering that STAT1 has a 
vital function as a key transcription factor in initiating M1-
like macrophage polarization through the JAK-STAT1 
pathway (28,29), we intersected the 1,106 genes in M1-like 
macrophage–related modules with 3,391 genes potentially 
targeted by STAT1 in breast cancer. Ultimately, 291 
candidate genes in the intersection were considered to be 
M1-like macrophage polarization-related genes (Figure 4G).  
According to Gene Ontology (GO) analysis, these 291 
genes were mostly involved in immune receptor activity and 
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cytokine receptor binding, adaptive immune response, and 
lymphocyte activation, among other processes (Figure 4H).

We further clustered 163 TCGA TNBC tumor samples 
(training set) with NMF analysis based on the expression 
of the 291 M1-like macrophage polarization-related genes. 
As shown in Figure 4I, 2 clusters were identified with an 
optimal k of 2. The M1-like macrophage versus monocyte 
upregulated gene set pathway was considerably enriched in 
cluster 1 compared to cluster 2 according to GSEA analysis, 
suggesting that these 291 candidate genes were involved in 
M1-like polarization (Figure 4J).

M1-MRPI development for OS prediction in patients with 
early-stage TNBC

First, the univariate Cox regression algorithm was used 
to select genes significantly related to OS from 291 
candidate genes. In the subsequent analysis, 27 genes with 
P values less than 0.05 were included. Next, LASSO and 
Cox analysis was carried out to screen the most robust 
prognostic genes from the 27 survival-associated genes. 
To overcome the overfitting effect, the optimal λ value 
0.019 was chosen by using 10-fold cross-validation, and 
7 genes were screened out (Figure 5A). Following this, 
a multivariate Cox regression analysis was conducted 
to determine the role of the 7 genes as an independent 
predictive factor for patient survival. The forward and 
backward stepwise regression method was employed to 
further select the best model. The model was determined 
when the minimum AIC was 130.14. Finally, 4 genes 
including GCH1, KIR2DL4, KLHDC7B, and SDS were 
selected for the M1-MRPI (Table 1). The Cox model 
accorded with the proportional risk hypothesis (Figure S4). 
Multivariate Cox regression analysis was used to construct 
the model for MRPI calculation. To be specific, MRPIs for 
each sample were calculated as follows: MRPI = (–0.6780 × 
expression level of GCH1) + (–0.6412 × expression level of 
KIR2DL4) + (–0.1985 × expression level of KLHDC7B) + 
(1.1180 × expression level of SDS) (Figure S5).

N e x t ,  t o g e t h e r  w i t h  t h e  M R P I  a n d  o t h e r 
clinicopathological variables (age, lymph node status, race 
and stage), we explored a MRPI-based prognostic model 
for quantifying risk assessment in early-stage patients with 
TNBC. For model building, TCGA data set had 163 cases, 
and the median follow-up time was 2.08 months. During 
the follow-up period, 18 deaths occurred. After univariate 
and multivariate Cox model regression analysis, we found 
MRPI, age, lymph node status, and stage to be statistically 

significant independent prognostic variables. Race was not 
correlated with the prognosis and was excluded from the 
nomogram building. We developed the nomogram with 
multivariate Cox regression analysis and plotted the model 
(Figure 5B) and summarized the univariate and multivariate 
Cox regression analysis results (Figure 6). By simply 
summing the risk score in each variable, we obtained a total 
risk score for a given patient, and then we could acquire 
the survival probabilities at different times by checking the 
probabilities according to the risk score. In Figure 5B, the 
red arrow in the plot represents an example.

Comparison between MRPI and clinical characteristics 

The detailed clinicopathological features of patients in 
different MRPI groups from the 163 patients with breast 
cancer in TCGA cohort are shown in Table 2, with the 
parameters generally balanced (except race) between 
the MRPI-high and MRPI-low groups. Univariate Cox 
regression analysis showed that higher MRPI [hazard 
ratio (HR) = 2.720; 95% CI: 1.810–4.090; P<0.001], Black 
race (HR: 2.970; 95% CI: 1.120–7.900; P=0.029), more 
advanced tumor stage (HR: 2.870; 95% CI: 1.110–7.430; 
P=0.030), and lymph node metastasis (HR: 2.870; 95% CI: 
1.110–7.420; P=0.029) were risk factors for patients with 
TNBC (Figure 6A). 

Furthermore, despite control for other clinicopathological 
markers, multivariate Cox regression analysis revealed that 
MRPI remained an independent predictive predictor (HR: 
2.649; 95% CI: 1.702–4.125; P<0.001; Figure 6B). 

Evaluation and validation of the MRPI prognostic model 

We further evaluated and validated the model from 
different perspectives. A GEO cohort was used as the 
validation cohort. The risk assessment scatter plot revealed 
that patients could be classified into high- and low-MRPI 
groups when the median cutoff values were –1.87 and 6.44 
in TCGA and GEO cohorts, respectively. The survival 
time decreased and the mortality rate increased with 
increasing MRPI score (Figure 7A). Subsequently, using the 
median MRPI as the cutoff value, we categorized patients 
into 2 groups: high MRPI and low MRPI. Kaplan-Meier 
analysis revealed that patients with a higher MRPI had a 
considerably worse outcome (P<0.001; Figure 7B). 

The time-dependent ROC curves showed that the area 
under the curves (AUCs) of 2-, 3-, and 5-year survival 
prediction were 0.855, 0.881, and 0.893, respectively, in 

https://cdn.amegroups.cn/static/public/GS-23-6-supplementary.pdf
https://cdn.amegroups.cn/static/public/GS-23-6-supplementary.pdf
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Figure 5 The process for MRPI development and our constructed nomogram. (A) The most robust prognostic genes were identified using 
the LASSO Cox regression technique. (B) Constructed nomogram and an example. MRPI, macrophage polarization-related prognostic 
index; LASSO, least absolute shrinkage and selection operator. 
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Table 1 Overview of the 4 M1-like macrophage polarization-related genes

Gene symbol Entrez ID Full name Location HR P value Expression

GCH1 2643 GTP cyclohydrolase 1 14q22.2 0.54 0.018 Up

KIR2DL4 3805 Killer cell immunoglobulin like receptor,  
2 Ig domains and long cytoplasmic tail 4

19q13.42 0.29 0.004 Up

KLHDC7B 113730 Kelch domain containing 7B 22q13.33 0.79 0.022 Up

SDS 10993 Serine dehydratase 12q24.13 2.00 0.001 Up

HR, hazard ratio.



Luo et al. MRPI for survival prediction in early stage TNBC patients 236

© Gland Surgery. All rights reserved.   Gland Surg 2023;12(2):225-242 | https://dx.doi.org/10.21037/gs-23-6

Figure 6 Univariate and multivariate Cox regression forest map. (A) Univariate Cox regression forest map indicated that MRPI score, race, 
stage, and lymph node status were prognostic factors of TNBC. (B) Cox regression forest map indicated MRPI was as the only independent 
prognostic factor. MRPI, macrophage polarization-related prognostic index; TNBC, triple-negative breast cancer.
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Table 2 Comparison of the clinical characteristics in the TCGA 
MRPI subgroups

Variable
MRPI low  

(n=82)
MRPI high  

(n=81)
P value

Age (years) 0.566

≤50 35 (42.68%) 31 (38.27%)

>50 47 (57.32%) 50 (61.73%)

Race 0.014

White and asian 56 (68.29%) 40 (49.38%)

Black and other 26 (31.71%) 41 (50.62%)

Tumor size 0.515

≤2 cm 13 (15.85%) 16 (19.75%)

>2 cm 69 (84.15%) 65 (80.25%)

LN status 0.380

No 56 (68.29%) 50 (61.73%)

Yes 26 (31.71%) 31 (38.27%)

Tumor stage 0.478

I + IIA 54 (65.85%) 49 (60.49%)

IIB + III 28 (34.15%) 32 (39.51%)

TCGA, The Cancer Genome Atlas; MRPI, macrophage 
polarization-related prognostic index; LN, lymph node.

TCGA group (Figure 7C). Meanwhile, the CI was 0.858 
after 1,000 bootstrap repeats, and the corrected CI was 0.834. 
These results indicated that our prognostic model had a 
high accuracy. Consistent with the TCGA cohort’s reliable 
results, the predictive AUC of MRPI for the patients’ 2-, 
3-, and 5-year survival rates in the GEO group were 0.887, 
0.792, and 0.722, respectively (Figure 7D). Furthermore, the 
3- and 5-year calibration curves of the 2 cohorts also support 
the consistency of MRPI (P=0.0072; Figure 7E-7H).

Enriched pathways and molecular characteristics in the 
different MRPI groups

GSEA was used to examine the gene sets that were enriched 
in various MRPI subgroups. Compared with those of MRPI-
high group, the gene sets of the MRPI-low group were 
enriched in inflammatory response, interferon-γ (IFN-γ) 
response, and complement response [P<0.05; false discovery 
rate (FDR) <0.25; Figure 8A], suggesting possible active 
antitumor immune responses in the MRPI-low group. Next, 
we analyzed the genetic mutations in the 2 MRPI- groups, 
and the top 20 gene mutations and 7 mutation types are 
shown in Figure 8B. In the 2 groups, missense variations 
accounted for the highest proportion of mutation types, with 
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Figure 7 Evaluation and validation of the MRPI prognostic model. (A) The risk assessment scatter plot in TCGA training cohort and GEO 
validation cohort. (B) Kaplan-Meier curve in TCGA training cohort and GEO validation cohort. (C,D) The time-dependent ROC curve 
in (C) TCGA training cohort (163 cases) and (D) the GEO validation cohort (76 cases). (E-H) The 3-year and 5-year calibration curves in 
(E,G) TCGA training cohort and (F,H) the GEO validation cohort. MRPI, Macrophage polarization-related prognostic index; TCGA, The 
Cancer Genome Atlas; GEO, gene expression omnibus; ROC, receiver operating characteristic.
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Figure 8 Enriched pathways and molecular characteristics in different MRPI groups. (A) GSEA was used to examine the gene sets that were 
enriched in various MRPI subgroups. (B) The top 20 most frequently mutated genes are depicted in the low-MRPI (left) and high-MRPI 
groups (right). (C) The lollipop diagram shows the different mutation locations of TP53 between the 2 groups. NES, normalized enrichment 
score; MRPI, macrophage polarization-related prognostic index; GSEA, gene set enrichment analysis.
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TP53 being the most commonly mutated gene. However, 
the mutation type and mutation location of TP53 were 
different (Figure 8C). In addition, the mutation rates of 
TP53, TTN, and MUC16 were higher than 10% in both 
groups.

Discussion

As the most deleterious breast cancer subtype, TNBC 
has a terrible prognosis. Accumulated evidence indicates 
that immune regulation is critical in the progression of 
TNBC (30,31). Therefore, a deeper understanding from 
the perspective of the TME may provide new ideas for 
clinicians to improve the effectiveness of therapies in 
TNBC.

In our study, we screened the DEGs between TNBC 
and normal tissue, and further used WGCNA and 
CIBERSORT to identify macrophage modules. Univariate, 
LASSO, and multivariate Cox analyses were performed to 
construct the MRPI for predicting TNBC prognosis. The 
MRPI included 4 genes: GCH1, KIR2DL4, KLHDC7B, and 
SDS. Patients with low MRPI had a better prognosis than 
did those with high MRPI. ROC curves, CI, and calibration 
curves indicated that the model had good predictive ability 
and high consistency. Traditional clinical variables were 
included in the Cox multivariate analysis with MRPI, 
which demonstrated that MRPI was still an independent 
prognostic factor. However, our model has a few limitations 
that should be noted. First, it was calculated through the 
expression of 4 genes, which may limit the practicability 
of our model in clinic due to the cost and difficulties of 
gene expression detection; second, our results were verified 
retrospectively, and thus prospective validation may be 
required to confirm the reliability and clinical utility of our 
model. 

We also developed a nomogram combining MRPI with 
clinicopathological characteristics for the clinical prediction 
and prognosis of patients with early-stage TNBC. With our 
model, we can identify poor-prognosis patients with MRPIs 
and intervene with intensive treatment so as to improve the 
survival prognosis of these patients. Moreover, our study 
may also be informative for exploring the progression of 
early-stage TNBC. 

The 4 genes in the prognostic model also play important 
roles in a variety of cancer types and have been widely 
reported on. GCH1, also known as GTP cyclohydrolase 
1, is a rate-limiting enzyme in the production of BH4 
synthesis. Published studies have reported on both the 

pro- and antitumor effects of GCH1 in a variety of 
carcinomas. One study revealed that inhibiting GCH1 
slowed tumor development and enhanced macrophage M2-
like polarization (32). Another study also demonstrated 
that high GCH1 expression promotes TNBC proliferation 
and contributes to poor survival (33). These studies point 
to GCH1 as having protumor properties. However, other 
research has shown that GCH1 overexpression can lead 
to elevated levels of BH4 synthesis, which can stimulate 
CD4 and CD8 T cell responsiveness, thus the enhancing 
antitumor activity of GCH1 in vivo (34). The functions 
of a specific gene may vary considerably across different 
tumor type and may depend highly on the TME and the 
interacted proteins. Therefore, the specific function of these 
genes in patients with early-stage TNBC requires further 
exploration. 

KIR2DL4 (killer cell immunoglobulin like receptor, 2 Ig 
domains and long cytoplasmic tail 4) is an atypical member 
of the KIR family, is expressed in natural killer (NK) 
cells (35), and participates in the stimulation of NK cell 
activity and secretion of IFN-γ (36). One recent study has 
indicated that the binding of KIR2DL4 with the HLA-G 
ligand can inhibit antibody-dependent cell-mediated 
cytotoxicity (ADCC) and contribute to trastuzumab 
resistance in breast cancer (37). 

KLHDC7B (Kelch domain containing 7B) belongs to 
a protein-coding gene containing a Kelch domain that is 
composed of a 4-stranded β-sheet of the Kelch motif that 
serves as 1 blade of a β-propeller structure (38). According 
to research, KLHDC7B is overexpressed in breast cancer and 
may facilitate the malignant growth of disease (39,40). In 
another study, it was found that those with pancreatic cancer 
had higher levels of the long noncoding RNA lKLHDC7B 
reverse transcription (KLHDC7B-DT), which is associated 
with a worse prognosis. Furthermore, KLHDC7B-DT can 
promote macrophage M2-like polarization and accelerate 
pancreatic ductal adenocarcinoma (41). Finally, SDS (serine 
dehydratase) encodes 1 of the 3 enzymes that are involved 
in metabolizing serine and glycine. Many studies have 
shown that high rates of serine biosynthesis may promote 
the growth of tumor cells (42,43). 

Conclusions

Our research showed that MRPI is a reliable tool for 
predicting the prognosis of early-stage TNBC. The 
prognosis of patients with lower MRPI scores was better 
than that of patients with higher MRPIs. 



Luo et al. MRPI for survival prediction in early stage TNBC patients 240

© Gland Surgery. All rights reserved.   Gland Surg 2023;12(2):225-242 | https://dx.doi.org/10.21037/gs-23-6

Acknowledgments

We acknowledge TCGA and the GEO databases for 
providing these publicly available data sets included in our 
study. 
Funding: This study was supported by the Natural 
Science Foundation of Guangdong Province (No. 
2019A1515011945) and the Sun Yat-sen University Clinical 
Research 5010 Program (No. 2017011).

Footnote

Reporting Checklist: The authors have completed the 
TRIPOD and MDAR reporting checklists. Available at 
https://gs.amegroups.com/article/view/10.21037/gs-23-6/rc

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://gs.amegroups.
com/article/view/10.21037/gs-23-6/coif). The authors have 
no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and 
the original work is properly cited (including links to both 
the formal publication through the relevant DOI and the 
license). See: https://creativecommons.org/licenses/by-nc-
nd/4.0/.

References

1.	 Gruosso T, Gigoux M, Manem VSK, et al. Spatially 
distinct tumor immune microenvironments 
stratify triple-negative breast cancers. J Clin Invest 
2019;129:1785-800.

2.	 Jia H, Truica CI, Wang B, et al. Immunotherapy for triple-
negative breast cancer: Existing challenges and exciting 
prospects. Drug Resist Updat 2017;32:1-15.

3.	 Pawar A, Prabhu P. Nanosoldiers: A promising strategy 
to combat triple negative breast cancer. Biomed 
Pharmacother 2019;110:319-41.

4.	 Deepak KGK, Vempati R, Nagaraju GP, et al. Tumor 
microenvironment: Challenges and opportunities in 
targeting metastasis of triple negative breast cancer. 
Pharmacol Res 2020;153:104683.

5.	 Malla RR, Vasudevaraju P, Vempati RK, et al. 
Regulatory T cells: Their role in triple-negative 
breast cancer progression and metastasis. Cancer 
2022;128:1171-83.

6.	 Xiao Y, Ma D, Zhao S, et al. Multi-Omics Profiling 
Reveals Distinct Microenvironment Characterization 
and Suggests Immune Escape Mechanisms of Triple-
Negative Breast Cancer. Clin Cancer Res  
2019;25:5002-14.

7.	 Zhou D, Huang C, Lin Z, et al. Macrophage polarization 
and function with emphasis on the evolving roles of 
coordinated regulation of cellular signaling pathways. Cell 
Signal 2014;26:192-7.

8.	 Murray PJ. Macrophage Polarization. Annu Rev Physiol 
2017;79:541-66.

9.	 Lu X, Yang R, Zhang L, et al. Macrophage Colony-
stimulating Factor Mediates the Recruitment of 
Macrophages in Triple negative Breast Cancer. Int J Biol 
Sci 2019;15:2859-71.

10.	 Noy R, Pollard JW. Tumor-associated macrophages: 
from mechanisms to therapy. Immunity  
2014;41:49-61.

11.	 Ruffell B, Coussens LM. Macrophages and therapeutic 
resistance in cancer. Cancer Cell 2015;27:462-72.

12.	 Yin L, Duan JJ, Bian XW, et al. Triple-negative breast 
cancer molecular subtyping and treatment progress. Breast 
Cancer Res 2020;22:61.

13.	 Vagia E, Mahalingam D, Cristofanilli M. The Landscape 
of Targeted Therapies in TNBC. Cancers (Basel) 
2020;12:916.

14.	 Yang R, Xie Y, Li Q, et al. Ruyiping extract reduces lung 
metastasis in triple negative breast cancer by regulating 
macrophage polarization. Biomed Pharmacother 
2021;141:111883.

15.	 Li J, Cai H, Sun H, et al. Extracts of Cordyceps sinensis 
inhibit breast cancer growth through promoting M1 
macrophage polarization via NF-κB pathway activation. J 
Ethnopharmacol 2020;260:112969.

16.	 Meng Z, Zhang R, Wang Y, et al. miR-200c/PAI-2 
promotes the progression of triple negative breast cancer 
via M1/M2 polarization induction of macrophage. Int 

https://gs.amegroups.com/article/view/10.21037/gs-23-6/rc
https://gs.amegroups.com/article/view/10.21037/gs-23-6/coif
https://gs.amegroups.com/article/view/10.21037/gs-23-6/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Gland Surgery, Vol 12, No 2 February 2023 241

© Gland Surgery. All rights reserved.   Gland Surg 2023;12(2):225-242 | https://dx.doi.org/10.21037/gs-23-6

Immunopharmacol 2020;81:106028.
17.	 Xu B, Sun H, Song X, et al. Mapping the Tumor 

Microenvironment in TNBC and Deep Exploration for 
M1 Macrophages-Associated Prognostic Genes. Front 
Immunol 2022;13:923481.

18.	 Guo LW, Jiang LM, Gong Y, et al. Development and 
validation of nomograms for predicting overall and 
breast cancer-specific survival among patients with 
triple-negative breast cancer. Cancer Manag Res 
2018;10:5881-94.

19.	 Shi H, Wang XH, Gu JW, et al. Development and 
Validation of Nomograms for Predicting the Prognosis 
of Triple-Negative Breast Cancer Patients Based on 379 
Chinese Patients. Cancer Manag Res  
2019;11:10827-39.

20.	 Mei S, Meyer CA, Zheng R, et al. Cistrome Cancer: A 
Web Resource for Integrative Gene Regulation Modeling 
in Cancer. Cancer Res 2017;77:e19-22.

21.	 Newman AM, Liu CL, Green MR, et al. Robust 
enumeration of cell subsets from tissue expression profiles. 
Nat Methods 2015;12:453-7.

22.	 Langfelder P, Horvath S. WGCNA: an R package 
for weighted correlation network analysis. BMC 
Bioinformatics 2008;9:559.

23.	 Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: 
protein-protein association networks with increased 
coverage, supporting functional discovery in genome-
wide experimental datasets. Nucleic Acids Res 
2019;47:D607-13.

24.	 Shannon P, Markiel A, Ozier O, et al. Cytoscape: 
a software environment for integrated models of 
biomolecular interaction networks. Genome Res 
2003;13:2498-504.

25.	 Zhou Y, Zhou B, Pache L, et al. Metascape provides a 
biologist-oriented resource for the analysis of systems-
level datasets. Nat Commun 2019;10:1523.

26.	 Zhu X, Tian X, Sun T, et al. GeneExpressScore Signature: 
a robust prognostic and predictive classifier in gastric 
cancer. Mol Oncol 2018;12:1871-83.

27.	 Subramanian A, Tamayo P, Mootha VK, et al. Gene set 
enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proc Natl 
Acad Sci U S A 2005;102:15545-50.

28.	 Li L, Wei C, Cai S, et al. TRPM7 modulates 
macrophage polarization by STAT1/STAT6 pathways 
in RAW264.7 cells. Biochem Biophys Res Commun 
2020;533:692-7.

29.	 Ding N, Wang Y, Dou C, et al. Physalin D regulates 

macrophage M1/M2 polarization via the STAT1/6 
pathway. J Cell Physiol 2019;234:8788-96.

30.	 Karn T, Jiang T, Hatzis C, et al. Association Between 
Genomic Metrics and Immune Infiltration in Triple-
Negative Breast Cancer. JAMA Oncol 2017;3:1707-11.

31.	 Kim IS, Gao Y, Welte T, et al. Immuno-subtyping of 
breast cancer reveals distinct myeloid cell profiles and 
immunotherapy resistance mechanisms. Nat Cell Biol 
2019;21:1113-26.

32.	 Pickert G, Lim HY, Weigert A, et al. Inhibition of GTP 
cyclohydrolase attenuates tumor growth by reducing 
angiogenesis and M2-like polarization of tumor 
associated macrophages. Int J Cancer  
2013;132:591-604.

33.	 Wei JL, Wu SY, Yang YS, et al. GCH1 induces 
immunosuppression through metabolic reprogramming 
and IDO1 upregulation in triple-negative breast cancer. J 
Immunother Cancer 2021;9:e002383.

34.	 Cronin SJF, Seehus C, Weidinger A, et al. The metabolite 
BH4 controls T cell proliferation in autoimmunity and 
cancer. Nature 2018;563:564-8.

35.	 Faure M, Long EO. KIR2DL4 (CD158d), an NK cell-
activating receptor with inhibitory potential. J Immunol 
2002;168:6208-14.

36.	 Rajagopalan S, Fu J, Long EO. Cutting edge: induction of 
IFN-gamma production but not cytotoxicity by the killer 
cell Ig-like receptor KIR2DL4 (CD158d) in resting NK 
cells. J Immunol 2001;167:1877-81.

37.	 Zheng G, Guo Z, Li W, et al. Interaction between HLA-G 
and NK cell receptor KIR2DL4 orchestrates HER2-
positive breast cancer resistance to trastuzumab. Signal 
Transduct Target Ther 2021;6:236.

38.	 Adams J, Kelso R, Cooley L. The kelch repeat superfamily 
of proteins: propellers of cell function. Trends Cell Biol 
2000;10:17-24.

39.	 Martín-Pardillos A, Cajal SRY. Characterization of 
Kelch domain-containing protein 7B in breast tumours 
and breast cancer cell lines. Oncol Lett  
2019;18:2853-60.

40.	 Zhang G, Fan E, Yue G, et al. Five genes as a novel 
signature for predicting the prognosis of patients with 
laryngeal cancer. J Cell Biochem 2020;121:3804-13.

41.	 Li MX, Wang HY, Yuan CH, et al. KLHDC7B-
DT aggravates pancreatic ductal adenocarcinoma 
development via inducing cross-talk between cancer 
cells and macrophages. Clin Sci (Lond)  
2021;135:629-49.

42.	 Snell K. Enzymes of serine metabolism in normal, 



Luo et al. MRPI for survival prediction in early stage TNBC patients 242

© Gland Surgery. All rights reserved.   Gland Surg 2023;12(2):225-242 | https://dx.doi.org/10.21037/gs-23-6

developing and neoplastic rat tissues. Adv Enzyme Regul 
1984;22:325-400.

43.	 Snell K, Weber G. Enzymic imbalance in serine 

metabolism in rat hepatomas. Biochem J 1986;233:617-20.

(English Language Editor: J. Gray)

Cite this article as: Luo H, Hong R, Xu Y, Zheng Q, Xia W,  
Lu Q, Jiang K, Xu F, Chen M, Shi D, Deng W, Wang S. 
Construction and validation of a macrophage polarization-
related prognostic index to predict the overall survival in 
patients with early-stage triple-negative breast cancer. Gland 
Surg 2023;12(2):225-242. doi: 10.21037/gs-23-6



© Gland Surgery. All rights reserved.  https://dx.doi.org/10.21037/gs-23-6

Figure S1 Heat map of immune cell abundance in the TNBC group and normal group.

Figure S2 The hierarchical clustering analysis was performed on the expression profile, and 3 outliers were excluded.

Supplementary



© Gland Surgery. All rights reserved. https://dx.doi.org/10.21037/gs-23-6

Figure S4 There was no statistical significance in any covariate or global test (P and GT; 0.05). The Cox model conformed to the 
proportional risk hypothesis.

Figure S3 Clustering dendrogram of samples based on their Euclidean distan.
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Figure S5 A bar graph showing the risk coefficients for the 4 gene signatures.


