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Introduction

Breast cancer is the most common malignancy in women in 
most of the world (1). Despite recent improvement in the 
5-year survival rate due to treatment advances, more than 
40,000 women in the US die from breast cancer every year. 
For many malignancies, cancer stem cells (CSCs) have been 
implicated in the metastasis and recurrence due to treatment 

resistance (2). CSCs are a small population of cells in the 
tumor that have unique characteristics, such as self-renewal 
and the ability to generate heterogenic lineages of cancer 
cells (3). These characteristics make CSCs a likely source of 
tumor initiation, heterogeneity, progression, metastasis, and 
recurrence (4). In numerous solid tumors, including those 
in brain, pancreatic, ovarian, and breast cancers, CSCs show 
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resistance to chemotherapy and radiotherapy. Furthermore, 
CSCs exhibit characteristics of epithelial-to-mesenchymal-
transition (EMT), a known mechanism of metastasis (5).  
Although several biomarkers have been developed for 
CSCs, CSC characterization is not currently part of 
standard clinical practice. In this review, we will discuss our 
current understanding of the characteristics and biomarkers 
of CSCs in breast cancer and describe H19, a new novel 
potential biomarker of breast cancer stem cells (BCSCs).

BCSCs

The origin and characteristics of BCSCs

Modern stem cell theory was developed from studies on 
hematological malignancies in the 1960s, and BCSCs 
were first isolated from solid tumors in 2003. The 
tumorigenicity of BCSCs was suggested by their phenotype: 
CD44+CD24low/− and lack of lineage markers, such as CD2, 
CD3, CD10, CD16, CD18, CD31, CD64, and CD104b (6).  
Several theories have been proposed for the origin of 
BCSCs, including improper regulation or mutations that 
may lead to the transformation of dormant normal stem 
cells into BCSCs (7), de novo misplacement of somatic stem 
cells (8), and intratumoral lineages differentiated from 
common progenitor cells (9).

Common BCSC characteristics have been reported in 
several studies. BCSCs have the ability for self-renewal 
and high proliferation and are able to generate heterogenic 
lineages of cancer cells, so called “pluripotency.” These 
BCSC characteristics are recognized as one of the reasons 
for treatment failure.

Therapy resistance

Treatment modalities for breast cancer include surgery, 
chemotherapy, endocrine therapy, and radiotherapy. One 
of the clinical problems with BCSCs is their resistance 
to current chemotherapy, endocrine therapy, and 
radiotherapy. There are four major mechanisms that lead 
to treatment resistance in BCSCs: overexpression of ATP-
binding cassette (ABC) transporters, increased aldehyde 
dehydrogenase (ALDH) activity, increased DNA repair, and 
elevated reactive oxygen species (ROS) scavenging.

ABC transporters are transmembrane proteins that 
can pump various compounds and small molecules from 
the cell. These transporters are considered important in 
multidrug resistance in various cancers (10). Among the 49 

known ABC transporters, ABCB1 [P-glycoprotein (PgP), 
multidrug resistance protein 1 (MDR1)], ABCC1 [multidrug 
resistance-associated protein 1 (MRP1)], and ABCG2 [breast 
cancer resistance protein (BCRP)] have been shown to be 
related to multidrug resistance in breast cancer, because 
these transporters pump out anthracycline or taxans, two 
key drugs for breast cancer treatment (11). Furthermore, 
Jonker et al. demonstrated that ABCB1 and ABCG2 
contribute to the stem cell phenotype in normal murine 
mammary glands (12). Britton et al. demonstrated that the 
CSCs present in breast cancer cell lines show increased 
expression of ABCG2 and increased drug resistance (13,14). 
These results suggest the important role of ABCB1 and 
ABCG2 in BCSCs.

ALDH is  a  family  of  enzymes involved in the 
oxidation of intracellular aldehydes to carboxylic 
acids and retinoic acid and in γ-amino butyric acid 
biosynthesis, and ALDH plays a significant role in the 
survival and differentiation of BCSCs (15,16). ALDH 
induces radioresistance in BCSCs both through direct 
removal of oxygen radicals and indirect production of the 
antioxidant compound nicotinamide adenine dinucleotide 
(phosphate) (17). ALDH1 is also associated with breast 
cancer malignancy, metastasis, and invasion (18). We 
reported that ALDH1 expression in breast cancer is 
related to aggressive phenotypes and poor prognosis (19).  
ALDH1-positive tumors exhibit paclitaxel and epirubicin 
resistance, and the population of ALDH1-positive cells was 
shown to increase after chemotherapy (20).

Increased DNA repair is another mechanism of therapy 
resistance. Radiation and several chemotherapy drugs 
damage DNA by inhibiting DNA synthesis or topoisomerase 
activity, or by promoting the formation of DNA crosslinks. 
Double strand breaks are the most lethal type of DNA 
damage, which is critical for cancer cells. DNA repair failure 
usually results in cell death (21); however, BCSCs can 
repair this lethal type of DNA damage two ways, through 
homologous recombination (HR) or non-homologous 
end-joining (NHEJ). HR is similar to chromosomal 
crossover during meiosis; it requires the presence of a 
nearly identical sequence, and sister chromatids are used 
as a template for repair of the break. Although HR can 
be used as a repair mechanism only during S to G2 phase 
after DNA replication, (owing to the requirement for a 
sister chromatid), HR introduces fewer errors than NHEJ. 
However, in NHEJ, the ends of a double-strand break are 
directly ligated without the need for a homologous template, 
and repair via NHEJ can occur in G1 phase; however, it is 
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associated with increased errors compared to HR (22).
ROS are chemically reactive molecules containing 

oxygen that are formed as a natural byproduct of normal 
oxygen metabolism. At normal levels, ROS participate 
in the regulation of various physiological events, such 
as cell proliferation, cell migration, wound healing, and 
angiogenesis (22). However, excess ROS produced in 
response to environmental stresses, such as radiation, UV, or 
heat exposure, interact with cell components, such as DNA, 
proteins, and lipids, which typically induces cell death (23). 
However, CSCs have specific mechanisms to guard against 
the genotoxic effects of ROS, including effective ROS 
scavenging and lower levels of ROS production. In addition, 
the genes encoding superoxide dismutase, catalase, and 
glutathione peroxidase, all of which are involved in ROS 
scavenging, are significantly upregulated in BCSCs (24). 
These four mechanisms of therapy resistance in BCSCs are 
correlated with each other.

Identification of BCSC markers

BCSCs were first identified and isolated according to their 
CD44+/CD24−/low Lin− phenotype in 2003 (6). Since then, 
the CD44+/CD24− phenotype has been used as a reliable 
phenotype for the isolation of BCSCs (25-27). CD44 is a 
transmembrane glycoprotein that binds to many extracellular 
matrix proteins, of which hyaluronic acid is the most common. 
Hyaluronic acid is a key element for cell adhesion, motion, 
migration, proliferation, invasion, and angiogenesis (28),  
and its interaction with osteopontin leads to tumor 
progression (29). In contrast, the absence of CD24, another 
small surface glycoprotein, enhances tumor growth and 
metastasis (30). Higher levels of CD44 mRNA and protein 
expression were observed in the basal subtype of breast 
cancer, which has a poor clinical outcome (31). Patients 
with tumors overexpressing CD44 have significantly worse 
overall survival. Whole genome analysis revealed that CD44 
expression was enriched in basal-type breast cancer and was 
correlated with EMT and CSC gene profiles (31). Another 
recent study showed that CD44 expression was elevated in 
tumor-initiating cells in many cancers (32). Thus, CD44 
is thought to be a biomarker for CSCs (33). Subsequent 
functional studies have shown that CD44 is involved in 
tumorigenesis and metastasis in breast cancers (34-36) and 
many other cancers, such as colon (37-39), bladder (40), and 
gastric (41) cancer.

As mentioned above, ALDH is a recognized BCSC 
marker (42). ALDH is a family of cytosolic enzymes that 

oxidizes intracellular aldehydes and retinol during the 
differentiation of rudimentary stem cells (43). ALDH1, 
which is the dominant enzyme in mammals, mediates the 
conversion of retinaldehyde to retinoic acid (44). Similar 
to CD44, ALDH1 expression and activity is increased in 
normal tissue and in many malignancies. ALDH1 also 
appears to have increased activity in BCSC populations (45).

Intriguingly, studies have suggested that the ALDH1-
active cell population only slightly overlaps with the 
CD44+CD24 low/− BCSC populat ion.  Although the 
population of ALDH1-active, CD44+CD24low/− cells was 
very small, tumorigenic capacity of this population was 
highly enriched (42).

Other markers that have been used to identify BCSCs 
include EpCAM/ESA, nestin, ganglioside GD2, CD133 
(prominin-1), CD61/β3 integrin, CD24hi/CD49Fhi/DNERhi, 
CD24+CD29+, Sca1, CD44+ CD49fhi CD133/2hi, CD49f and 
CD61, CXCR4, CXCL1, and HMGCS (26,46-49).

Several clinical trials have aimed to characterize BCSCs 
in both healthy populations and breast cancer patients (45), 
which have improved our understanding of BCSC markers. 
However, there are no standard criteria to identify BCSCs 
in human breast cancer.

H19 gene as a possible BCSC marker

H19 is a genomic imprinted oncofetal gene localized on 
human chromosome 11p15.5, and its oncogenic role was 
recently recognized as cancer stemness. H19 is only expressed 
from maternal alleles without a protein product, and it 
accumulates in the human placenta, several fetal tissues, 
and adult organs, including the mammary gland (50-53).  
Aberrant expression of H19 has been observed in breast 
cancer as well as numerous other solid tumors. Although 
the number of studies on H19 is increasing, the role of 
H19 remains controversial (51,54). Hao et al. reported that 
overexpression of H19 lowered the tumorigenic properties 
of cells, which demonstrates the tumor suppressor activity 
of H19 (55). Conversely, several studies have suggested its 
tumorigenic role in many cancers, including breast cancer 
(56-63). A relationship between H19 and cancer stemness has 
also been suggested. In many cancers, increased expression 
of H19 correlates with overexpression of stem cell surface 
markers (CD44, CD166, and TROP2) and pluripotency 
transcription factors (Oct4 and Sox2), enhanced sphere-
forming capacity, high cellular proliferation, and a high rate 
of apoptosis (57,61-63). Thus, H19 has been suggested as a 
possible marker of BCSCs.
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BCSCs and breast cancer molecular subtypes

Breast cancers have been classified into five major molecular 
subtypes, based on gene-expression profiling data: luminal 
A, luminal B, human epidermal growth factor 2 (HER2) 
overexpressing, basal like, and claudin low (64-66). 
Although these molecular subtypes are not currently used in 
most clinical settings, owing to the difficulty of use, certain 
immunohistochemical features can be used to predict these 
molecular subtypes.

The luminal-A subtype is the most common, and 
it is characterized by low-grade histological features, 
positive estrogen receptor (ER) expression, and no HER2 
expression. The luminal-B subtype is similar to luminal-A, 
but has a higher proliferation index and worse prognosis. 
HER2-overexpressing cancers have a higher histological 
grade and worse prognosis that has improved dramatically 
with HER2-targeted therapies. The basal-like subtype is 
nearly equivalent to immunohistochemical triple-negative 
breast cancer (TNBC) in that it lacks ER, progesterone 
receptor (PR), and HER2 expression, and has a poor clinical 
outcome (67-70). The claudin-low subtype is characterized 
by decreased expression of genes related to tight junctions 
and cell-to-cell adhesion. However, it lacks distinct 
histological features; therefore, it cannot be identified by 
immunohistochemical methods (64,71).

These subtypes differ not only in their rates of relapse, 
metastasis, and response to therapies, but also in the 
proportion of BCSCs. CD44+/CD24−/low BCSCs are 
generally enriched in undifferentiated subtypes, such as 
claudin-low, basal-like, and HER2-overexpressing subtypes. 
ALDH1+ BCSCs have a similarly enriched distribution in 
basal-like and HER2-overexpressing subtypes. Enrichment 
of stem-like and mesenchymal signatures in the claudin-low 
subtype was demonstrated by examining gene expression 
profiles, and such enrichment might enable EMT. This 
BCSC-like population might cause therapy resistance in 
breast cancer.

Future directions

Although our understanding of BCSCs has increased 
dramatically in recent years, we need to translate these 
basic findings to the clinical setting. BCSCs can explain 
the existence of a small population of cancer cells in human 
breast cancer with high therapy resistance, resulting in 
poor prognosis. Despite initial chemosensitivity, patients 
with basal-like subtype have a worse prognosis. This 

paradoxical characteristic of the basal-like subtype might 
be because of the presence of BCSCs in the tumor that 
remain after chemotherapy, causing a higher likelihood of 
relapse. Identification of BCSCs in breast cancer and the 
development of BCSC-targeted therapies have the potential 
to improve survival and quality of life of cancer patients.

Actually, several molecular-targeted therapies against 
BCSCs have already been developed. The Notch, 
Hedgehog, and Wnt pathways have been suggested as the 
major pathways in BCSCs (22,72). Dysregulation of the 
Notch and Hedgehog pathways, which are involved in 
normal stem cell self-renewal and differentiation, results in 
a BCSC phenotype in breast cancer (73). The Wnt pathway 
plays a pivotal role in stem cell self-renewal and preservation 
of an undifferentiated state (74). However, these pathways 
also regulate essential functions in normal tissues and stem 
cells. Since specificity is the key to developing targeted 
therapies, they are not ideal targets. Several anti-BCSCs 
drugs targeting these pathways have been developed and 
enrolled in clinical trials (45). Determining the clinical 
relevance of BCSCs will give us clues about how to 
overcome therapy resistance in breast cancer.
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