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Background and Objective: We have witnessed tremendous advances in artificial intelligence (AI) 
technologies. Breast surgery, a subspecialty of general surgery, has notably benefited from AI technologies. 
This review aims to evaluate how AI has been integrated into breast surgery practices, to assess its 
effectiveness in improving surgical outcomes and operational efficiency, and to identify potential areas for 
future research and application.
Methods: Two authors independently conducted a comprehensive search of PubMed, Google Scholar, 
EMBASE, and Cochrane CENTRAL databases from January 1, 1950, to September 4, 2023, employing 
keywords pertinent to AI in conjunction with breast surgery or cancer. The search focused on English 
language publications, where relevance was determined through meticulous screening of titles, abstracts, and 
full-texts, followed by an additional review of references within these articles. The review covered a range 
of studies illustrating the applications of AI in breast surgery encompassing lesion diagnosis to postoperative 
follow-up. Publications focusing specifically on breast reconstruction were excluded. 
Key Content and Findings: AI models have preoperative, intraoperative, and postoperative applications 
in the field of breast surgery. Using breast imaging scans and patient data, AI models have been designed to 
predict the risk of breast cancer and determine the need for breast cancer surgery. In addition, using breast 
imaging scans and histopathological slides, models were used for detecting, classifying, segmenting, grading, 
and staging breast tumors. Preoperative applications included patient education and the display of expected 
aesthetic outcomes. Models were also designed to provide intraoperative assistance for precise tumor 
resection and margin status assessment. As well, AI was used to predict postoperative complications, survival, 
and cancer recurrence.
Conclusions: Extra research is required to move AI models from the experimental stage to actual 
implementation in healthcare. With the rapid evolution of AI, further applications are expected in the 
coming years including direct performance of breast surgery. Breast surgeons should be updated with the 
advances in AI applications in breast surgery to provide the best care for their patients.
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Introduction

Background

The first concept of computer systems as an imitator of 
human intelligence was conceived by Turing in 1950 (1). 
Artificial intelligence (AI) is a particular computer system 
or machine that can solve problems that usually require 
human intelligence. Early generations performed a simple 
algorithm of ‘if, then’ rules, but subsequent developments 
in technology and coding have resulted in complex systems 
that can operate similarly to human intelligence, including 
the ability to learn from past errors and cross-check results 
(1-3). Such capacity, coupled with fast processing times and 
no requirement for rest has created a formidable tool at the 
heart of the fourth industrial revolution.

Machine learning (ML) is a subset of AI in which the 
algorithm improves its performance (mode of analysis and 
patterns) by learning from new datasets without being 
explicitly re-programmed. The data used for learning may 
exist in the form of imported features (e.g., breast lesion 
density) or the form of raw data (e.g., radiological images). 
Deep learning (DL) is a subset of ML that involves the 
stacking of multiple algorithmic components into layers, 
each feeding into the next, operating on raw data and self-
learn high-level features. DL models include convolutional, 
recurrent, and artificial neural networks (CNN, RNN, and 
ANN), generative adversarial networks (GAN), deep belief 
nets, and autoencoders (4-9). CNN are designed specifically 
to analyze and find features from images as seen in  
Figure 1 (10). Large language models (LLMs) are another 
type of AI that utilizes natural language processing methods 
to synthesize user inputs and generate human-like speech 
(11-13). They have been used to aid diagnosis, medical 
research, and improve hospital workflow (14-20).

Rationale and knowledge gap

AI models are rapidly evolving and present one of the most 
significant developments in information processing and 
problem solving in health care the past 50 years (21). As 
widespread health data collection creates enormous volumes 
of information, this data must be processed by consequently 
more complex systems. AI models are currently applied to 
optimize different aspects of patients’ care including disease 
risk prediction, diagnosis, treatment decision-making, 
predicting treatment response, and predicting survival 
(2,4,5,22-24). By being able to operate on large volumes 
of data with high precision, AI models offer distinct 

advantages over unassisted human performance. A recent 
publication has successfully elucidated the applications of AI 
technologies within breast reconstructive procedures, where 
the authors highlight the promising role of AI in advancing 
breast reconstruction techniques (25). However, authors 
state refinement of AI algorithm with cross-disciplinary 
partnerships for prioritizing their dataset. The scope of 
breast surgery is much greater than reconstruction alone 
and further research is needed to characterize the current 
and prospective implementation of AI in the field.

Objective

Breast cancer is increasing in prevalence and is the leading 
cause of cancer death among women (26-29). Breast 
surgery can be used as a prototypical example for the 
application of AI in healthcare. It is a field comprising 
population health, risk prediction, diagnostic tests, medical 
and surgical treatments and integrated health systems 
and economics, all of which can directly benefit from 
various mechanisms of AI (30,31). We performed this 
review aiming to summarize the current literature findings 
on the application of AI in diagnosing breast lesions as 
well as preoperative, intraoperative, and postoperative 
applications of AI in breast surgery. We present this 
article in accordance with the Narrative Review reporting 
checklist (available at https://gs.amegroups.com/article/
view/10.21037/gs-23-414/rc).

Artificial 
Intelligence

Machine 
Learning

Deep 
Learning

CNN, RNN, 
ANN, GAN, 
DBN, and 

autoencoders

Figure 1 Subsets of artificial intelligence. CNN, convolutional 
neural networks; RNN, recurrent neural networks; ANN, artificial 
neural networks; GAN, generative adversarial networks; DBN, 
deep belief network.

https://gs.amegroups.com/article/view/10.21037/gs-23-414/rc
https://gs.amegroups.com/article/view/10.21037/gs-23-414/rc
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Table 1 Search strategy for this review

Item Specification

Date of search 13/9/2023

Databases searched PubMed, Google Scholar, EMBASE, Cochrane CENTRAL

Search terms used #1 (“artificial intelligence” [Mesh] OR “machine learning” [Mesh] OR “deep learning” [Mesh]))

#2 (“breast surgery” [Mesh] OR “breast neoplasm” [Mesh])
#1 AND #2

Timeframe 1/1/1950 to 4/9/2023

Inclusion and 
exclusion criteria

Studies that discussed any application of artificial intelligence in breast surgery were included in this review

Studies reported in a language other than English were excluded

Selection process I.S., B.L., K.J., D.G. and Y.X. conducted the selection, searched and discussed which studies were relevant until 
consensus was reached

Methods

PubMed, Google Scholar, EMBASE, and Cochrane 
CENTRAL databases were searched by two authors for 
relevant studies using the keywords: (“artificial intelligence” 
[Mesh] OR “machine learning” [Mesh] OR “deep learning” 
[Mesh]) AND (“breast surgery” [Mesh] OR “breast cancer” 
[Mesh]) from January 1st, 1950 to 4th of September, 2023. 
Relevant English publications were included in our review 
without publication time constraints. Publication relevance 
was determined by title and abstract screening followed by 
a full-text screening. In addition, the reference lists of the 
included publications were screened for inclusion of further 
relevant studies. We included studies that discussed the 
applications of AI in different aspects of breast surgery from 
breast lesion diagnosis to postoperative follow-up (Table 1). 
Publications focusing specifically on breast reconstructions 
were excluded from this review. 

Results

AI applications in breast lesion diagnosis

Recent advances in CNN-based computer vision algorithms 
and growing training datasets has allowed AI to be 
used in medical imaging and histopathology for breast 
pathologies (32-35). Such systems can not only create 
streamlined workflows for reporting clinicians but may 
also improve diagnostic accuracy. This is especially true 
in large population breast screening programs (6,7,33,34). 
Modern feedforward ANN utilize multilayered perceptron 
to analyze images by classifying them to different color 
channels, processing the pixel-level images using nonlinear 

functions, and outputting probability distributions (36). As 
such, these algorithms have the promise to detect lesions 
not easily visible to human observers. 

Digital mammography (DM)
DM is  a  breast  imaging technique that  produces 
2-dimensional radiographic images. This imaging 
modality is used for breast cancer screening because of its 
feasibility and efficacy in detecting asymmetries, distorted 
architecture, and abnormal calcifications in breast lesions. 
Nevertheless, DM image interpretation is difficult and 
needs extensive experience (37). Smaller lesions can be 
missed due to obscuration by the overlying breast tissue. 
This is encountered mostly in younger females who have 
high breast tissue densities due to higher concentrations of 
fibroglandular tissue. Therefore, DM images are taken in a 
mediolateral oblique view and a craniocaudal view (38). 

The application of AI in DM image interpretation was 
introduced in the 1990s and has since evolved with the 
advances of DL (39-42). DL-based models such as CNNs 
autonomously learn to identify specific imaging features 
to differentiate benign breast lesions from malignant ones  
(43-45). Several studies have been conducted to evaluate 
the efficacy of AI-based systems on detecting and classifying 
breast lesions on DM images and have found that AI-based 
DM image evaluation is noninferior and may be superior 
to radiologists (39,40,42,46-49). A study conducted by 
Romero-Martín et al. evaluated the performance of DL-
based systems in DM image assessment. Their findings 
suggest that DL-based systems have an equivalent sensitivity 
in detecting and classifying breast lesions when compared 
to the best standard (radiologists). In addition, DL 
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methods have been shown to decrease over-investigation by 
decreasing breast imaging recall rates (subsequent images 
for evaluating a suspicious lesion) (48). Another study by 
Burhenne et al. detected the missed findings in 77% of false-
negative mammographic images by subsequent applications 
of AI (50). Thus, AI applications in mammography can 
improve breast cancer screening programs’ efficiency with 
reduced need for human efforts (51,52). Moreover, AI-
based models have been proven efficacious in predicting the 
risk of developing breast cancer in the future by utilizing 
data collected from DM images (53,54). 

Digital breast tomosynthesis (DBT)
DBT is an X-ray-based imaging modality that takes images 
from different angles to create a partial tomographic 
3-dimensional (3D) image, minimizing the problem of 
tissue superposition (55). However, the complexities 
associated with DBT result in difficult image interpretation, 
and longer reading times when compared to DM (56). This 
has represented another area for AI models to improve 
efficiency and accuracy. 

When evaluated versus the best available standard 
(radiologists), AI-based DBT image assessment models 
show non-inferior efficacy in detecting and classifying breast 
lesions with reduced false-negative rates (39,46-48,57). AI-
based DBT interpretation systems are cost-effective, as they 
improve radiologists’ performance and reduce DBT reading 
time (58,59). However, in contrast to in DM evaluation, AI-
based DBT image evaluation models can result in higher 
recall rates for further evaluation (48). This may be because 
DL models can pick up trivial microcalcifications in breast 
tissue (60). 

There exist differences in the utility of different AI 
models when it comes to DBT analysis. DL models that 
use multiple images as an input to compare DBT images 
show better performance in detecting and classifying 
breast masses when compared to those their single-view 
counterparts (42,61-64). This benefit extends to techniques 
that uses multiple views of the ipsilateral breast as the 
aforementioned input (64). In 2023, Ren et al. proposed 
a framework for a multi-view detection framework to 
adaptively refine single view detection scores by matching 
lesions between two ipsilateral screening views of each 
breast (65). Their framework, developed from 8,034 DBT 
cases, improved screening performance without significantly 
increasing analysis run-time. Another subset of DL, GAN, 
can generate new images from an input set of images. This 
was successfully applied in breast imaging to generate 

DM images from already existing DBT images. Hence, 
more patient data is acquired without additional radiation 
exposure (66). 

Images imported to AI-based diagnostic models are 
suspected to include lesions. These images are usually 
extracted by hand from entire DM or DBT scans (43). AI 
models can be used to support radiologists in their work by 
preselecting suspicious lesions for subsequent assessment 
by radiologists (51,52). These models can even calculate 
the regional probability of cancers from the DM or DBT 
scan (38). Accordingly, complete DM and DBT scans can 
be used as input to DL image assessment models (67-69).  
In 2017, Kooi et al. trained a CNN on a dataset of 45,000 
mammographic images and found it non-inferior to 
radiologists at triaging images, and superior to a computer 
aided detection model that relied on human input (43). 

Ultrasound (US)
US of the breast is an imaging modality that depends 
on sending sound waves through the breast tissue and 
simultaneously detecting the backscattered waves to 
construct the image. Thus, US carries no risk of ionizing 
radiation. It is, however, an operator-dependent imaging 
modality that can be difficult to read. The images 
are displayed as they are generated, and breast US 
should therefore be performed by an expert for direct 
interpretation (69). Yet, resource constraints often prevent 
a radiologist’s expertise from being available at the time 
of imaging. This represents another opportunity for AI to 
reduce burden on healthcare systems. 

DL was initially used in conjunction with US for 
classifying breast lesions into benign or malignant (68-72). 
Studies on breast lesion detection and classification using 
DL from US images have concluded a high accuracy in 
detecting and classifying lesions when the input is full US 
images, and a much higher accuracy when the input consists 
of US images of suspicious lesions (71,73-76). To classify US 
images of breast lesions, radiologists use the Breast Imaging 
Reporting and Data System (BI-RADS) that incorporates 
the probability of lesion malignancy and the recommended 
management (77). However, inter-observer variability can 
be high, and misclassification can result. DL models have 
been applied to effectively assist radiologists in choosing the 
appropriate BI-RADS class (78,79). DL systems have also 
been implemented for image segmentation of breast lesions 
(detecting the lesion size and extent) (80-82). Moreover, DL 
applications with US have broadened to include predicting 
the molecular subtype of malignant breast lesions. This was 
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investigated for predicting triple negative, HER2 (+), and 
HR (+) subtypes and showed high efficacy (1,78). 

AI models increase radiologists’ classification specificity 
in cases where the radiologist has already detected a lesion 
(83-85). Some lesions in the breast could, however, be 
missed by the radiologist (86). Another proposed method 
is the application of an AI system integrated into the US 
device where, when the US is performed, the system 
directly analyzes the constructed image and provides timely 
detection of breast lesions (87). 

Another application of DL in breast US imaging is in 
the assessment axillary lymph nodes for malignant lesion 
metastases. DL models have superior accuracy when 
compared to radiologists in detecting suspicious axillary 
lymph nodes for biopsy (88). DL models have also been 
used to predict axillary lymph node metastasis using the 
features of the breast lesion without the need for axillary US  
images (89). It does so by aiding in extracting relevant 
information by retaining only the intermediate lesion 
position in the images (89). It also utilizes random 
horizontal flipping, elastic transformation, and random 
cropping to simulate various scenarios (89). When 
compared to radiologists, DL models display comparable 
sensitivity and specificity (90). Such models could be further 
improved and implemented in US imaging to reduce the 
time needed for axillary lymph node imaging. 

Another model was designed to predict response to 
neoadjuvant chemotherapy (NAC) using only the initial 
lesion US image (91). GAN have been applied in US 
imaging for reconstructing high-resolution images using 
low-resolution ones, for reducing the required time for 3D 
image acquisition, and for generating US images of the 
breast with and without lesions for educational purposes (for 
radiologists and DL models) (92,93).

Magnetic resonance imaging (MRI)
MRI of the breast depends on exciting water molecules using 
a heavy magnetic field and short-pulsed radio waves. When 
water molecules fall back to their ground form, radio waves 
are transmitted. These radio waves are detected to create 
the MR image (3D image). When an intravenous contrast is 
administered, a 4D image is created, with time captured as 
a fourth dimension. It is worth mentioning that MRI is the 
most sensitive breast cancer imaging modality (94). 

Several AI models have been applied to breast MRI for 
breast lesion detection, classification, and segmentation. 
Here, AI models also show a superior specificity and a 
comparable sensitivity when compared to the best standard 

(radiologists) (95-98). Models have also been designed and 
successfully applied to predict the molecular subtype of 
breast cancer based on MRI image data (99-103). In 2021, 
Liu et al. evaluated the ability of a novel CNN architecture 
to predict 5-year cancer recurrence after MRI imaging of 
breast lesions. The AI was able to identify image features 
relevant to prognostic outcomes and increased the accuracy 
of tumour classification (103). 

Like their integrations with US technology, DL models 
have been designed for detecting axillary lymph node 
metastasis using MRI scans. These models have shown 
superior accuracy in detecting pathological axillary lymph 
nodes when compared to radiologists (104-106). AI models 
have also been used to predict the NAC treatment response 
of breast cancer. Some models use the pre- and post 
MRI scans whereas others use only the initial MRI scans  
(107-110). GAN have been applied in breast MRI to 
normalize the variations in MRI intensity and noise 
distribution between different brands of MRI machines (111). 
They have also been applied to minimize issues that arise 
from heterogeneous fat suppression (112).

Positron emission tomography (PET)
PET and scintigraphy scans are nuclear medicine imaging 
modalities that use radionuclide-attached metabolites 
circulating in the body. When radionuclides decay, photons 
are emitted, the detection of which can be used to construct 
3D PET and 2D scintigraphy images. Thus, nuclear 
medicine scans represent the metabolic activity of tissues 
rather than anatomical structure alone (112). 

In breast cancer, PET scans are used for cancer staging. 
DL has been used to assist radiologists in detecting axillary 
lymph node metastasis on PET scans (113). In 2021, 
Li et al. found that AI assistance considerably improved 
the diagnostic accuracies of clinicians in a retrospective 
trial involving 414 pre-procedure PET scans of the axilla 
from patients with biopsy-proven breast cancer (113). 
The sensitivity of the radiologists was improved but their 
specificity remained unaffected. CNN have been similarly 
applied to detect distant breast cancer metastases from 
scintigraphy scans, displaying high accuracy (114). Another 
use of DL in conjunction with PET scans is the evaluation 
of the tumor burden on the whole body as measured by the 
metabolic tumor volume. However, DL models have not 
achieved satisfying sensitivity in this application (115). In 
2020, Choi et al. have investigated the applicability of DL 
in predicting tumor response to NAC using PET scans 
as input. Their results showed improved performance in 
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comparison with the conventional predictors (116). 

Thermal imaging
AI was also applied in other proposed imaging modalities 
including thermal imaging. On digital infrared imaging, 
thermal activity is  increased in the breast t issues 
surrounding the malignant tumor. DL models have 
demonstrated high accuracy in detecting breast tumours 
from digital infrared images (117). The benefit of DL 
integration with thermal imaging extends to forecast 
modelling, where DL has been successfully applied to 
predict personal breast cancer risk (118).

Pathology
The gold standard for diagnosing breast cancer is biopsy 
evaluation by pathology (119). This allows for classifying 
and grading breast cancer as well as detecting lymph node 
metastasis, planning for treatment, evaluating resection 
margins status, and predicting patients’ prognosis (120-122). 
However, pathological evaluation of microscopic biopsies 
carries the risk of inter-observer variability. 

Applying AI models in analyzing microscopic images 
can assist pathologists in achieving faster, more precise, and 
reproducible breast cancer diagnosis (123,124). By reducing 
the workload on pathologists, AI integration can help 
compensate for resource strain within healthcare systems 
(12,125,126). In 2022, Cheng et al. applied CNN and RNN 
models in pathological classifications of breast fibroepithelial 
lesions into benign fibroadenomas and phylloid tumors. 
These models could accurately differentiate between and 
classify lesion types using images of the whole slide (127). 
AI-based models have also exhibited promising performance 
in applications to assess the risk of breast ductal carcinoma 
in situ (DCIS) invasion (128-130). 

Preoperative applications of AI in breast surgery

Decision-making in cancer treatments is complex as it 
involves a diversity of data that need to be considered (131). 
Moreover, with the advances in medicine, new therapeutic 
options are proposed. Given the large amount of data 
for consideration and the rapid updates in the field, AI 
assistance in treatment decision-making would reduce the 
burden on clinicians and help them revise their treatment 
decisions (132,133). Bouaud et al. designed a decision 
support system that is based on guidelines to provide a 
complete patient care plan. In their study, they investigated 
the performance of this system in making treatment 

decisions for breast cancer patients. Clinicians changed their 
treatment decisions after reviewing the decision support 
system recommendations in 17% of the cases. The changed 
decisions were beneficial in 75% of these cases (134).  
In 2019, Xu et al. have also compared the decisions of 
their designed decision support system to the decisions of 
oncologists. The compared decisions were not concordant 
in 45% of the assessed cases. This nonconcordance was 
caused by variations in the clinical judgment in 21% of 
the cases, greater oncologists’ adherence to the guidelines 
in 15%, and inaccessibility to the suggested treatment 
by the system in 5% (135). Another decision-making 
support system evaluation was conducted by Xu et al. in 
2020 for breast cancer patients. Their support system 
resulted in treatment decision change by the physician 
in 5% of the patients and thus higher concordance with 
breast cancer treatment guidelines. In 63% of these cases, 
physicians changed their decisions because of considering 
the treatment option recommended by the system. 
Other reasons for treatment decision changes included 
highlighting certain patient factors by the system in 23% 
of the cases, and the system logic for decision making in 
13% of the cases (136). Applying ML in decision making 
would allow surgeons with low operational volume to take 
decisions similar to the most experienced surgeons, as ML 
models learn and gain experience with each input (137).

The preferred management option for early-stage 
breast cancer is conservative breast surgery with sentinel 
lymph node biopsy and subsequent radiotherapy (138-140).  
However, some patients experience complete cure from 
neoadjuvant systemic treatment (NAST). For such patients, 
it may be reasonable to adopt a “watch-and-wait” approach 
before starting therapeutic surgery (138). For that reason, 
precise detection of the patient’s response to NAST is 
necessary to avoid subjecting the patient to unnecessary 
surgery. At the same time, precise detection is crucial to 
eliminate the risk of missing residual malignant foci. AI-
models have been successfully applied in this area to detect 
responses to NAST using MRI images and pathological 
specimens. Thereafter, AI models were designed to 
evaluate patients’ responses to NAST by combining 
patients’ imaging and biopsy findings with patient data. 
These models showed high accuracy in excluding residual 
malignant foci in the breast and axilla following NAST and 
determining eligibility for breast surgery (141-145). 

An extra application of AI models is for educating 
breast cancer patients before breast surgery. A randomized 
control trial aimed at evaluating the ability of an AI 
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model to educate women about the expected aesthetic 
outcomes following locoregional breast cancer surgery 
is currently being carried out. The model is expected 
to improve women’s satisfaction with breast surgery, 
raise their psychological status, and reduce the need for 
subsequent plastic surgeries (146). A ML model was also 
applied in predicting the financial burden of breast cancer 
surgery. The investigated model showed high prediction  
accuracy (147).

Intraoperative applications of AI in breast surgery

In breast-conserving surgery, ensuring clear margins is 
crucial to prevent the recurrence of breast cancer. Malignant 
foci in the resection margins necessitate subsequent re-
excision surgery (148). Hence, intraoperative evaluation 
of resection margins is of significant value (149,150). 
Laser Raman spectroscopy (LRS) is an optical imaging 
technique that generates a biochemical tissue signature 
by detecting the vibration in the molecular bonds. Thus, 
microcalcifications as well as immortalized and transformed 
cancer tissues can be detected (151-156). In 2021, Kothari 
et al. developed a ML model that was integrated with LRS 
to evaluate resection margins intraoperatively in vivo. 
This model could rapidly generate multiple models of 
tissue classification and directly calculate the probability 
of malignancy in the margins (157). Applying this type 
of system in breast conservative therapy could improve 
resection margin precision and reduce the need for re-
excision surgeries.

Postoperative applications of AI in breast surgery

Lymphedema is a devastating condition that can occur 
immediately following axillary procedures, such as 
mastectomy with axillary clearance, or up to 20 years 
thereafter. This condition can present with a variety of 
symptoms (158). In 2018, Fu et al. designed ML models 
that assesses the occurrence of lymphedema following 
breast surgery based on symptoms reported by the 
patients. The designed model was tested and proved high 
accuracy (159). LLMs, like ChatGPT, are currently the 
most discussed AI tool to utilize in medicine, including 
breast surgery. Lukac et al. concluded that while it has 
potential, its current version is incapable of providing 
suitable recommendations for patients with primary breast 
cancer (160). Another possible devastating complication 
from axillary clearances is injury to the long thoracic, 

thoracodorsal, or intercostobrachial nerve, which sometimes 
must be sacrificed (161-163). AI could potentially be used 
to determine certain characteristics of breast tumors and 
axillary lymphadenopathy, making it safer to encroach more 
delicate structures like neurovascular bundles. They could 
also theoretically be employed to further study patient 
anatomy from pre-operative scans, which can be used 
to help predict the risk of nerve injury intra-operatively. 
During the writing of this manuscript however, the authors 
were unable to find dedicated studies to this topic.

Applications of AI in predicting breast surgery outcomes

van Egdom et al. designed an ML model that uses patient 
data and breast cancer characteristics to predict patient-
reported outcomes postoperatively. However, when 
investigated, the model could not find a relationship 
between the input variables for predicting postoperative 
patient-reported outcomes (164). ML has, however, been 
used to effectively predict complications in the abdominal 
flap donor site following autologous breast surgery. Using 
these predictions, surgeons can tailor their operative 
techniques to achieve better outcomes and minimize the 
burden postoperatively (165).

About 15% of women with breast cancer experience 
severe pain postoperatively, which can last for years 
(166,167). Early identification of women’s susceptibility 
to developing postoperative pain would allow for early 
initiation of medical and psychological treatment for those 
in need and avoidance of unnecessary interventions for 
those less susceptible (168,169). Using ML technology, 
Lötsch et al. designed and evaluated a system for predicting 
persistent pain following breast surgery. The model showed 
high accuracy in predicting postoperative persistent pain 
and a much higher negative predictive value (170). Another 
ML predictive model designed by Sipilä et al. showed high 
negative predictive value but low accuracy (171). In 2020, 
Juwara et al. designed an ML-derived model for predicting 
neuropathic pain following breast surgery. The model was 
superior to the traditional prediction model in predicting 
postoperative neuropathic pain (172).

Identifying women with high risk for recurrence would 
aid in providing the necessary follow-up and preventing 
potentially deadly disease progression. Lou et al. designed 
an ML-derived model that could accurately predict the 
risk of breast cancer recurrence within ten years following 
breast surgery (173). Other prediction models can provide 
high accuracy in predicting breast cancer recurrence after 
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three and five years of breast surgery (174,175).
AI has been applied in predicting survival and mortality 

following breast cancer surgery as well. Huang et al. 
designed and evaluated an ANN model to predict the 
five-year mortality following surgery for breast cancer. 
The designed model showed greater accuracy when 
compared to conventional prediction methods such as the 
Nottingham prognostic index and breast cancer-specific 
survival (176-178). An additional ML model was developed 
by Moncada-Torres in 2021 to predict women’s survival 
after undergoing breast cancer surgery. The model was 
similarly accurate as conventional prediction methods, if 
not superior (179).

Discussion

AI technologies are rapidly evolving and gaining interest, 
and their applications in healthcare are broadening to 
improve patients’ outcomes (180). Models based on AI 
have the feature of learning from data, and hence, their 
performance gets improved. Breast surgery for benign 
or malignant breast lesions has markedly benefited from 
the advances in AI (4,5,12,13). These systems can rapidly 
process vast amounts of data and update the saved data, 
as well as their ability to logically operate with complex 
rules and decision trees. Thus, AI outperforms human 
cognitive functions and could assist healthcare providers 
in a diversity of tasks related to breast surgery from breast 
lesions detection and diagnosis to postoperative detection 
of breast surgery complications. As well, AI models 
assisted in predicting patient’s response to therapy and 
postoperative breast appearance, cancer recurrence, and 
patient’s survival (11,132,133,181,182). Most AI models 
currently approved by the Food and Drug Administration 
are designed to assist in breast lesion diagnosis through 
imaging and histopathological evaluation. Various models 
have been designed to assist in detecting and classifying 
breast lesions, describing breast tumor microenvironment 
and molecular subtype, predicting the risk of breast cancer, 
as well as predicting and evaluating treatment response. An 
AI-based model has been applied in US breast imaging to 
predict malignant lesion response to NAC using features 
of the lesion US before versus after one or two courses of 
NAC. In addition, some AI models have the capacity for 
reconstructing or even generating breast images (4,5,13,14). 
Our search revealed AI applications aimed at supporting 
oncologists in treatment decision-making and predicting 
postoperative outcomes (162,172,173,176,183).

Despite the notable breakthrough of AI technologies, 
some limitations are encountered. Highlighting these 
drawbacks is essential for making improvements in the 
models. As AI models’ performance improves when more 
data are imported, the size of datasets used for learning 
matters. For some models, large datasets are not available (as 
for breast US imaging). Thus, these models are not trained 
enough and subsequently do not achieve a satisfactory 
performance. To overcome this shortcoming, data could 
be shared across medical centers. This solution cannot 
always be pursued because of patients’ privacy policies, 
privatized health systems like the USA, and ethical laws 
regarding the transfer of sensitive patient information (184).  
Alternative solutions including federated learning and 
transfer learning are proposed. Federated learning implies 
sharing the algorithm after learning from data, but 
patients’ data remains within the medical center. Transfer 
learning refers to learning from different datasets (e.g., 
US models can learn from DM images) (35,185). Special 
care must always be taken when data are imported to 
train AI models. Poor datasets could lead to inaccuracies 
(e.g., including wrong diagnosis of tumor and inter-
observer variability) and various biases could lead to 
patient population underrepresentation. For these reasons, 
large multi-central multi-reader datasets are preferred for 
training AI models (186). Prediction models that provide 
clinicians with justification for their prediction provide 
more comprehensive assistance (187,188). However, it 
was evident from the results of our search that not all AI 
models are effective in establishing relationships between 
variables and predicting outcomes. As computing powers 
and data availability increase, prediction AI models are 
recommended to incorporate multi-dimensional predictors 
for stronger prediction evidence. When patients’ physical 
examination and lab data are incorporated with their disease 
characteristics, the model can get a holistic picture and thus 
improve its performance. When an AI decision support 
model was compared to oncologists in terms of adherence 
to breast cancer treatment guidelines, oncologists showed 
better adherence. However, this was owing to the multiple 
input and factors driving the algorithm. The investigated 
algorithm was designed to take decisions not only based 
on breast cancer treatment guidelines, but also on some 
selected literature and information from textbooks (134). 
Finally, medicolegal dilemmas surround the application of 
AI in medical practice. Whether final decisions could be 
made by AI models and who would take the responsibility 
for wrong decisions are questions yet to be answered. This 
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endorses the need for a regulatory body for AI applications 
in medicine. As well, if AI is proposed to replace humans, 
ethical issues of job losses would be encountered. It should 
be noted that articles with the specific focus of breast 
reconstruction, an important part of the recuperation 
process post-mastectomy, were not included in this review. 
The applications of AI in this domain have been elucidated 
in prior research. This theme was therefore excluded to 
maintain our objective of addressing current knowledge 
gaps. 

Further improvements in AI are anticipated and AI 
models are desired to move from the experimental phase 
to actual implementation in healthcare. In breast lesion 
biopsy, future applications of AI might allow for identifying 
a few deformed cells within normal breast tissue. Regarding 
breast surgery, AI’s possible preoperative applications 
involve surgical planning. The models could be used in 
anatomical data analysis for recommending individualized 
optimal approaches for breast surgeries. Moreover, future 
intraoperative applications of AI might include assistance 
in timely image analysis for precise tumor resection and 
intraoperative decision-making. AI-integrated robotic 
models, akin to the DaVinci system, that directly perform 
breast surgery or assist surgeons could also be introduced in 
the future (3,189,190). Postoperatively, AI could be applied 
in patient monitoring and follow-up for early detection of 
breast surgery complications or breast cancer recurrence. 
As uptake of these technologies increases within healthcare 
systems, the implications for training new clinicians 
involved in the surgical management of breast lesions must 
be considered. Healthcare education in the era of increasing 
AI integration will be a major topic for research in the 
coming years. Breast surgeons should be updated with 
the recent advances and applications of AI in their field to 
provide the best care for their patients (191,192). 

Conclusions

AI algorithms are increasingly applied in all aspects of breast 
surgery. Different AI models were designed and evaluated to 
assist in breast tumor detection, classification, segmentation, 
staging, and grading. Preoperatively, AI models were applied 
in determining the need for breast cancer surgery and 
educating women. Intraoperatively, they enhanced surgical 
precision in tumor resection. Postoperatively, AI was able 
to predict breast surgery complications, survival, and cancer 
recurrence. However, more research is required to move AI 
from the experimental phase to widespread implementation 

in healthcare. Improved, novel applications of AI are already 
in development, and breast surgeons should stay updated to 
provide the best care for their patients. 
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