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Introduction 

Essential hypertension accounts for the vast majority of 
cases of hypertension in adults, while secondary causes of 
hypertension have a prevalence of 10–15% (1,2). Prevalence 
of secondary hypertension increases with younger age, 
documented to account for up to 30% in adults under  
40 years of age and up to 80% in children under 6 (3-5).  
While most cases of both essential and secondary 
hypertension are polygenic, a number of disorders have 
been found to have monogenic etiology. The diagnosis of 
these hereditary conditions can be challenging, but can 

also be critical for guiding appropriate care for patients and 
potentially affected family members. 

Here we provide an overview of known hereditary 
disorders that specifically impact mineralocorticoid action 
and ultimately cause low renin hypertension (Table 1). These 
conditions include familial hyperaldosteronism, defects 
in steroidogenesis, altered mineralocorticoid receptor 
activation in the kidney, and changes in the endpoint of 
mineralocorticoid action, namely the renal epithelial sodium 
channel (ENaC). These disorders should be considered in 
the differential diagnosis of young patients presenting with 
hypertension and hypokalemia, particularly those with a 
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family history of hypertension with hypokalemia. The aim 
of this overview is to be a useful guide in the work-up of 
patients with low renin hypertension.

Hereditary causes of primary aldosteronism (PA) 

The most common cause of secondary hypertension is PA, 
which accounts for up to 20% of resistant hypertension 
and ~8% of all hypertension (6). Although PA is classically 
characterized by hypokalemia and hypertension, it has 
become clear that its spectrum extends to normokalemic 
hypertension as well. The underlying etiology is either a 
unilateral aldosterone producing adenoma (APA) or bilateral 
adrenal aldosterone excess, both present in roughly 50% of 
cases. On diagnostic testing, hypokalemia can be mild or 
absent, but aldosterone is elevated with suppressed renin. 
Confirmatory testing includes salt loading, saline infusion, 
or fludrocortisone application to evaluate for suppression of 
urinary aldosterone, and, ultimately, adrenal vein sampling 
for lateralization. In the setting of strong family history of 
PA and bilateral origin of aldosterone excess, genetic testing 
for pathogenic variants in genes mentioned below should be 
considered. Unilateral adrenalectomy is an option in cases 
of lateralization of aldosterone overproduction; otherwise 
medical management with mineralocorticoid antagonists is 
recommended.

Four types of familial hyperaldosteronism have been 
recognized. Familial hyperaldosteronism type 1, also 
known as glucocorticoid-remediable aldosteronism (GRA), 
is an autosomal dominant condition due to the fusion of 
CYP11B1 and CYP11B2 encoding for 11β-hydroxylase 
and aldosterone synthase, respectively (7). Transcription 
of CYP11B1 is usually induced by adrenocorticotropic 
hormone (ACTH) leading to cortisol synthesis, and 
transcription of CYP11B2 by angiotensin 2 results in 
aldosterone synthesis. In the setting of GRA-associated 
gene fusion, CYP11B2 expression becomes ACTH 
responsive, resulting in ACTH-induced aldosterone 
production. Notably, GRA has been associated with 
increased risk for early hemorrhagic cerebrovascular 
events (8). In addition to basal plasma aldosterone 
and renin testing, recommended diagnostic testing 
includes dexamethasone suppression of aldosterone and 
genetic testing. The typical protocol for dexamethasone 
suppression testing is to measure aldosterone before and 
after administering dexamethasone 0.5 mg every 6 hours 
for 4 days (9,10), though dexamethasone dosing and 
duration ranging from 0.75–2.0 mg per day, administered 

for 2–15 days, have been reported (11). Unlike other forms 
of PA, glucocorticoids at physiologic and below physiologic 
dosing have been shown to be an effective therapeutic 
option, suppressing ACTH and thereby decreasing 
aldosterone production (12).

Familial hyperaldosteronism types 2, 3, and 4 are not 
responsive to glucocorticoids. Familial hyperaldosteronism 
type 2 is clinically indistinguishable from sporadic PA. No 
notable differences in age of disease onset, plasma renin, 
serum aldosterone, or potassium levels are seen. Both APAs 
and bilateral excess aldosterone production are associated 
with familial hyperaldosteronism type 2 (13-15). It is likely 
inherited in an autosomal dominant pattern and has been 
associated with gain-of-function mutations in the CLCN2 
gene, encoding for chloride channel protein 2 expressed in 
adrenal glomerulosa cells (16,17). The penetrance of this 
genetic disorder is currently unknown, but it is suggested to 
be incomplete.

Familial hyperaldosteronism type 3 is a rare, highly 
penetrant, autosomal dominant disorder due to mutations 
in the potassium channel gene KCNJ5 (18). The initial 
cases described were in a single family, with multiple 
members presenting with refractory hypertension and 
bilateral adrenal gland hyperplasia (19). All family members 
ultimately required bilateral adrenalectomy to manage 
their hypertension. Most of the subsequent reported cases 
of KCNJ5 pathogenic variants similarly have childhood 
onset severe hypertension, associated with hypokalemia, 
aldosterone levels greater than 100 ng/dL and low renin 
activity less than 1.0 ng/mL/h, ultimately requiring 
either life-long mineralocorticoid antagonist therapy or 
bilateral adrenalectomy for management (19-21); adrenal 
pathology often shows hyperplasia of the zona glomerulosa 
or fasciculata. However, milder phenotypes and ACTH-
dependent aldosterone overproduction have also been 
reported (22,23). 

Familial hyperaldosteronism type 4 is a rare condition 
due to mutations in CACNA1H, encoding for calcium 
channels expressed in adrenal glomerulosa (24,25). Similar 
to familial hyperaldosteronism type 2, type 4 is typically 
indistinguishable from sporadic PA in clinical presentation, 
and may present with normal appearing adrenal glands, 
single adenoma, or bilateral hyperplasia. 

Another gene with variants associated with PA, which 
is not classified as a type of familial hyperaldosteronism, is 
CACNA1D. Pathogenic variants in this gene, encoding for 
calcium channel Cav1.3, can lower depolarization potential 
and impair channel inactivation; the resulting increase 
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in calcium influx is thought to stimulate aldosterone 
production and glomerulosa cell proliferation (26,27). Few 
individuals with CACNA1D mutations have been described, 
and notably present with a syndrome of PA, seizures and 
neuromuscular abnormalities (26,28). 

Defects in steroid hormone synthesis

Congenital adrenal hyperplasia (CAH) encompasses 
a group of inherited disorders resulting in defects in 
cortisol synthesis. While the most common form of 
CAH, 21-hydroxylase deficiency, is associated with 
mineralocorticoid deficiency, 11β-hydroxylase deficiency 
and 17α-hydroxylase deficiency are the two types of CAH 
associated with mineralocorticoid excess, resulting in 
hypertension.

11β-hydroxylase deficiency

11β-hydroxylase deficiency is the second most common 
form of CAH, accounting for approximately 5% of CAH 
cases in some series (29). 11β-hydroxylase deficiency is 
caused by autosomal recessive mutations in CYP11B1, 
of which more than 20 pathogenic variants have been 
identified (30-34). CYP11B1 encodes for the function 
of 11β-hydroxylase, which converts 11-deoxycortisol 
to cortisol; the expression of the CYP11B1 gene in 
the zona fasciculate is regulated by ACTH. Reduced 
activity of 11-hydroxylase causes decreased production 
of cortisol, which results in elevation of ACTH. This 
elevation then causes accumulation of steroid precursors, 
deoxycorticosterone (DOC) and 11-deoxycortisol, as well 
as overproduction of androgens. The mineralocorticoid 
activity of DOC and related metabolites causes salt 
retention, hypertension, and hypokalemia. The clinical 
presentation of 11β-hydroxylase deficiency can be 
variable (35), depending on degree of enzyme deficiency: 
c lass ic  11β-hydroxylase  def ic iency presents  with 
ambiguous genitalia in genetic females and features of 
hyperandrogenism in both sexes, while these symptoms 
may be mild in the non-classic form (36). Hypertension is 
seen in approximately two-thirds of individuals with the 
classic form of 11β-hydroxylase deficiency (37) and often 
within the first year of life, but is not seen in those with the 
non-classic form. In male patients with 11β-hydroxylase 
deficiency, hypertension and hypokalemia alone can be 
the clinical presentation. Diagnosis is made by identifying 
elevated basal 11-deoxycortisol or elevated ACTH-

stimulated 11-deoxycortisol levels, the latter reaching 3-5 
times the upper limit of normal in non-classic cases and 
much higher in classic 11β-hydroxylase deficiency (36). The 
clinical mineralocorticoid excess is entirely due to DOC, 
and aldosterone is usually low or absent due to the low 
renin state. Treatment involves use of glucocorticoids to 
suppress ACTH-stimulated androgen overproduction and/
or mineralocorticoid receptor antagonists. Spironolactone 
can be used in females for both mineralocorticoid as well as 
androgen antagonism.  

17α-hydroxylase deficiency 

17α-hydroxylase deficiency is a rare form of CAH caused 
by mutations in CYP17A1, encoding for enzyme activity 
of both 17α-hydroxylase and 17,20-lyase (38,39). In most 
affected individuals, both enzyme activities are impacted, 
but deficiency of 17,20-lyase with intact 17α-hydroxylase 
has also been reported (40,41). More than 100 mutations 
have been identified in the CYP17A1 gene in association 
with 17α-hydroxylase deficiency (42-44). 17α-hydroxylase 
converts progesterone and pregnenolone to 17OH-
progesterone and 17OH-pregnenolone, respectively (45).  
S u b s e q u e n t l y,  1 7 , 2 0 - l y a s e  c o n v e r t s  2 1 - c a r b o n 
17-hydroxysteroids to 19-carbon precursors of sex steroids. 
17α-hydroxylase deficiency therefore decreases production 
of cortisol and sex hormones, resulting in elevation 
of ACTH and shunting of precursors to DOC and 
corticosterone production. Subsequent volume expansion 
and hypokalemia then suppress renin and aldosterone 
production. Adrenal crises are rare in the presence of excess 
DOC and corticosterone. Classic clinical presentation is 
characterized by hypertension and absence of secondary 
sexual characteristics in an adolescent; both genetically XX 
and XY individuals with severe complete deficiency can 
have female external genitalia and primary amenorrhea 
(45,46). In partial 17α-hydroxylase deficiency, hypertension 
or hypokalemia may not be present, sexual development 
is impaired to a lesser extent, and XY individuals may be 
identified to have ambiguous genitalia in infancy (47). 
Diagnosis is made when basal or ACTH-stimulated 
DOC and corticosterone are elevated along with low 
cortisol, androgens, and estrogens (48). Management of 
17α-hydroxylase deficiency includes mineralocorticoid 
antagonism, physiologic dosing of glucocorticoids and sex 
hormones to achieve the desired gender and secondary 
sexual characteristics. In individuals maintaining female 
phenotype, spironolactone is the drug of choice.
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Inappropriate activation of the mineralocorticoid 
receptor

In addition to overproduction of mineralocorticoids, the 
overactivation of mineralocorticoid receptors can also 
result in low renin hypertension. Syndrome of apparent 
mineralocorticoid excess and constitutive activation of the 
mineralocorticoid receptor are two such disorders in which 
mineralocorticoid receptors are inappropriately activated 
in the absence of mineralocorticoid excess, with associated 
suppression of aldosterone and renin production.  

Apparent mineralocorticoid excess

Under normal function of the enzyme 11β-hydroxysteroid 
dehydrogenase type 2 (11β-HSD), the vast majority of 
cortisol is converted peripherally to cortisone in tissues 
where this enzyme is expressed (49). Cortisol binds as 
avidly to mineralocorticoid receptors as aldosterone does, 
while cortisone does not. In the setting of 11β-HSD 
deficiency, cortisol, present in the plasma at a concentration 
approximately 1,000 times higher than aldosterone, binds 
mineralocorticoid receptors, resulting in the clinical 
presentation of the aptly named syndrome of apparent 
mineralocorticoid excess (50,51). A rare disorder with less 
than 100 cases reported in the literature (52), apparent 
mineralocorticoid excess is caused by autosomal recessive 
mutations in HSD11B2 (53). Patients present in childhood 
with hypertension, poor growth, and polydipsia. Initial 
lab findings include hypokalemia with low renin, low 
aldosterone, and low levels of other mineralocorticoids. 
Patients may also have metabolic alkalosis. Presentation may 
be mild in instances of partial residual enzyme function (54).  
On diagnostic testing, the 24-hour urinary cortisol to 
urinary free cortisone ratio is high (50). A number of 
genetic testing options are available. Treatment of apparent 
mineralocorticoid excess requires use of mineralocorticoid 
antagonists. Spironolactone may be effective initially, but 
its effectiveness can wane. Cortisol suppression with small 
doses of dexamethasone (e.g., 0.75 mg) can be considered in 
refractory cases. The clinical course can also be complicated 
by hypercalciuria or nephrocalcinosis, though the etiology 
of this is not well studied. It is thought to be related to 
chronic hypokalemia, as seen in Bartter syndrome, and can 
be treated with thiazide diuretics (55,56). Cure of apparent 
mineralocorticoid excess after renal transplantation has 
been reported (57).

Constitutive activation of the mineralocorticoid receptor 
(Geller syndrome)

In vitro studies have shown that mineralocorticoid 
receptors are specifically activated by some steroids 
such as aldosterone, antagonized by other steroids such 
as progesterone, or have no response to steroids such 
estradiol and testosterone (58). Geller et al. (58) identified 
in a 15-year-old boy with severe hypertension, a single 
missense mutation in the mineralocorticoid receptor gene 
that resulted in gain-of-function variant and constitutive 
activation of the mineralocorticoid receptor. The condition 
was found to have an autosomal dominant inheritance 
pattern, with 11 of 23 relatives studied also carrying 
diagnoses of severe hypertension before age 20. The 
individuals had low serum renin and aldosterone. Two 
affected female family members had notable hypertension 
during pregnancy, without edema or proteinuria seen in 
preeclampsia. Serum aldosterone was undetectably low, 
while it is typically elevated in pregnancy (59). The cause 
of worsening hypertension during pregnancy is thought to 
be due to mutant mineralocorticoid receptor activation by 
progesterone. Hypertension is expected to improve after 
delivery. Of note, spironolactone was found to activate 
the mutant mineralocorticoid receptors in vitro, so use of 
other antihypertensive medications is recommended. The 
syndrome of constitutive activation of mineralocorticoid 
receptors is an extremely rare syndrome and no additional 
cases have been described following the initial publication 
by Geller et al. 

Other low renin states

The final target of mineralocorticoid action is sodium 
channels of the kidney. Both Liddle syndrome and 
pseudohypoaldosteronism type 2 (PHA2) are disorders 
impacting the function of the ENaC of the distal nephron; 
the resulting increase in renal sodium reabsorption 
precipitates volume overload, suppressed renin, and 
electrolyte abnormalities. 

Liddle syndrome 

Liddle et al. (60) described a family with multiple teenage 
siblings who presented with hypertension, hypokalemia 
and metabolic alkalosis. The disorder was also termed 
pseudoaldosteronism, given its clinical similarity with PA, 



155Gland Surgery, Vol 9, No 1 February 2020

© Gland Surgery. All rights reserved.   Gland Surg 2020;9(1):150-158 | http://dx.doi.org/10.21037/gs.2019.11.20

but the individuals’ renin and aldosterone were both low, 
even when challenged with low sodium diets. On follow-up, 
the proband case developed renal disease and underwent 
kidney transplant, which resolved her disorder—and 
indicated that her condition was due to a primary renal, 
rather than mineralocorticoid issue (61). Liddle syndrome 
was ultimately found to be due to autosomal dominant 
mutations in SCNN1B and SCNN1G, encoding for subunits 
of the ENaC of the distal nephron, which results in 
constitutive activation of the channel (62). Physiologically, 
ENaC expression is the endpoint of mineralocorticoid 
action, leading to increased sodium absorption, as would be 
appropriate in the setting of volume depletion. Constitutive 
ENaC activation in Liddle syndrome causes excess sodium 
resorption in the kidney leading to hypertension with 
suppressed renin and aldosterone. Typically, patients 
present in childhood, but sometimes reach early adulthood 
before diagnosis. More than 20 pathogenic variants in the 
β and γ subunits of the ENaC have been identified (62-66). 
The diagnosis is confirmed with genetic testing for variants 
in SCNN1B and SCNN1G. The disorder is responsive to 
low salt diet and medications that block ENaC activity, 
such as amiloride and triamterene. As ENaC expression 
is not dependent on mineralocorticoid activation, 
mineralocorticoid antagonists such as spironolactone are 
ineffective (67,68). 

PHA2 (Gordon syndrome)

Gordon et al. (69) first described a case of hypertension and 
hyperkalemia in a 10-year-old girl without a history of renal 
impairment. The observation of hyperkalemia led to the 
classification of this syndrome as PHA2 and differentiates it 
from PA. PHA2 is a distinct entity from PHA types 1A and 
1B, which result in loss of function of the ENaC channel 
and are accompanied by a clinical constellation resembling 
mineralocorticoid deficiency, with salt wasting, severe 
hyperkalemia, and hypotension. PHA2 has been associated 
with autosomal dominant mutations in the WNK1 and 
WNK4 genes, which are involved in the inhibition of the 
sodium chloride cotransporter (70-72); the mutations result 
in increased sodium reabsorption in the distal convoluted 
tubule, with associated downstream effects on ENaC and 
renal outer medullary potassium channel that ultimately 
cause hyperkalemia and hyperchloremic metabolic acidosis. 
Mutations in the KLHL3 and CUL3 genes, encoding 
proteins that degrade WNK kinases, have also been 

associated with PHA2 (73,74). Affected individuals present 
in adolescence or young adulthood with normal to mildly 
elevated aldosterone levels; genetic testing confirms the 
diagnosis. The condition is responsive to low salt diet 
and thiazide diuretics, which act on the sodium-chloride 
cotransporter (75). 

Summary and conclusion

Advances in genetic studies have allowed progressive 
elucidation of hereditary causes of hypertension. In 
particular, genetic testing has helped to characterize a 
number of low-renin hypertension states that can be 
challenging to differentiate from PA. While many of these 
conditions are rare, their management is considerably 
different from polygenic essential hypertension. Therefore, 
diagnosis of these disorders is essential for effective 
treatment of affected patients, as well as guiding testing for 
family members. 
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