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Abstract: The presence of axillary lymph nodes metastases in breast cancer is the most significant 
prognostic factor, with a great impact on morbidity, disease-related survival and management of oncological 
therapies; for this reason, adequate imaging evaluation is strictly necessary. Physical examination is not 
enough sensitive to assess breast cancer nodal status; axillary ultrasonography (US) is commonly used 
to detect suspected or occult nodal metastasis, providing exclusively morphological evaluation, with low 
sensitivity and positive predictive value. Currently, sentinel lymph node biopsy (SLNB) and/or axillary 
dissection are the milestone for the diagnostic assessment of axillary lymph node metastases, although its 
related morbidity. The impact of magnetic resonance imaging (MRI) in the detection of nodal metastases 
has been widely investigated, as it continues to represent the most promising imaging modality in the breast 
cancer management. In particular, diffusion-weighted imaging (DWI) and apparent diffusion coefficient 
(ADC) values represent additional reliable non-contrast sequences, able to improve the diagnostic accuracy 
of breast cancer MRI evaluation. Several studies largely demonstrated the usefulness of implementing 
DWI/ADC MRI in the characterization of breast lesions. Herein, in the light of our clinical experience, 
we perform a review of the literature regarding the diagnostic performance and accuracy of ADC value as 
potential pre-operative tool to define metastatic involvement of nodal structures in breast cancer patients. 
For the purpose of this review, PubMed, Web of Science, and SCOPUS electronic databases were searched 
with different combinations of “axillary lymph node”, “breast cancer”, “MRI/ADC”, “breast MRI” keywords. 
All original articles, reviews and metanalyses were included.
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Introduction

Breast cancer is  the most common cancer among 
women in the world (1-5). The main causes of cancer-
related death are invasion and metastases. The usual 
site of spread outside the breast is to the lymph nodes 
in the axilla (6,7). Axillary lymph node metastasis is 
one of the most important prognostic factors in breast 
cancer patients (8). For this reason, the meticulous 
detection of axillary metastases in newly diagnosed breast 
cancer is essential for disease staging and treatment 
decision making (9-14). Unfortunately, the non-invasive 
differentiation between benign and malignant lymph 
nodes remains highly problematic, delaying the diagnosis, 
in case of metastatic risk in lymph nodes, to pathological 
examination (15,16). The sentinel node biopsy (17)  
is currently performed during conservative surgery and 
is eventually followed by axillary dissection. However, 
up to 70% of clinically non-metastatic patients are found 
to be free from malignant axillary disease at dissection 
and, furthermore, this surgical procedure may determine 
complications such as lymphedema, arm pain, infection, or 
seroma (18,19). With magnetic resonance imaging (MRI) 
(20,21), computed tomography (22), and ultrasonography 
(23-28), the preoperative study of axillary lymph node status 
is limited to qualitative and quantitative features such as 
morphological presentation (cortical thickness, presence 
of fatty hilum and cortical vascular flow, enhancement 
patterns, presence of grouping of lymph nodes) (29-31) 
and measurement of nodal dimensions (maximum long-axis 
diameter or long/short-axis ratio). All these criteria remain 
controversial and unsatisfactory for differentiation between 
metastatic and non-metastatic lymph nodes. We present 
the following article in accordance with the NARRATIVE 
REVIEW reporting checklist (available at http://dx.doi.
org/10.21037/gs-20-546).

Basic physics of diffusion-weighted imaging 
(DWI) 

An emerging potential in breast cancer MRI diagnosis 
is represented by DWI (32). DWI is a functional MRI 
technique that provides a new contrast mechanism 
and represents an informative tool about biological 
microenvironment changes (33). It is characterized by 
elevated sensitivity in the detection of tissues alterations 
evaluating the phenomenon known as Brownian motion 
of free water molecules, which primarily reflects the 

degree of tissues cellularity (34). Water molecule diffusion 
is prevented by tissues with a high cellular density, such 
as tumor tissues, but it is facilitated by a poorly cellular 
environment containing or by altered cell membranes, 
especially in case of necrotic lesions. Water motion degree 
in soft tissue results inversely correlated with tissue 
cellularity and integrity of cell membranes. Variations of 
extracellular and intracellular water protons will be reflected 
by proportional changes in the diffusion coefficient of the 
tissue, allowing collection of in vivo information about 
the biophysical properties of tissues. This parameter can 
be quantitatively defined and derived by DWI images 
expressing the entity of tissues restriction of diffusion (35). 
The strong point of DWI compared to dynamic contrast 
enhanced (DCE)-MRI is its high sensitivity to identify 
histological changes in the microscopic environment 
without need for contrast medium administration, which 
should be avoided in cases of pregnancy and impaired renal 
function (36-40).

DWI of lymph node metastases: current 
evidences

Recent literature reports that DWI with ADC values 
can be regarded as a useful method in the diagnosis 
and quantitative measurement of neoplasms (41-43); in 
particular, several evidences reported significantly lower 
ADC values in malignancies than in benign lesions and 
normal tissues (44,45). The ADC value has also been used 
to predict nodal metastases in many different cancers and to 
differentiate malignant from benign lymph nodes in various 
body regions and organs, such as head and neck, uterine, 
and cervical cancers (46-51). The possible functional 
mechanism is that high cellularity in lymph node metastases 
produced by the tumor cells, may decrease extracellular and 
intracellular spaces, and restrict water molecules mobility, 
finally leading to a reduction of ADC value (52). The first 
results about DWI sequences in lymph nodes were shown 
in patients affected by uterine malignancy. Nakai et al. (53) 
pointed out that the identification of pelvic pathologic 
lymph nodes for uterine malignancy is much higher on 
DWI than conventional T2-weighted (T2W) images. This 
was related to the clear gap between lymph nodal signal 
and the surrounding structures such as bowel and vessels. 
Also, Kim et al. (54) showed that ADC value of pathologic 
lymph nodes was lower than those of not-pathologic 
lymph nodes in patients with uterine cervical cancer. On 
the contrary, Sumi et al. (55) showed that the ADC values 
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for metastatic lymph nodes in the neck tumors are lower 
than in non-metastatic, but the resulting differences were 
not statistically significant. Most of the available studies 
were focused on cervical lymph nodes in patients with 
head and neck cancer, and those from pelvic uterine cancer 
(endometrial and cervical), rectal and prostate; there were 
reports of similar assessments for oesophageal, lung and 
abdominal malignancies. Furthermore, other researchers 
have described no statistically significant differences 
between ADC values of benign and malignant lymph 
nodes (54-63). On the contrary, in some studies (55,64) 
metastatic lymph nodes demonstrate ADC values higher 
than those not pathologic, phenomena with different results 
conflicting with those above reported, that may depend on 
the cytological and histological features of metastases: the 
presence of necrotic area, inflammation and oedema justifies 
the lowest tissue cellularity and could increase diffusivity 
with T2 shine through effect characterized by DWI low 
signal intensity (65). In addition, in some malignant lymph 
nodes, benign tissue elements may be present alongside the 
malignant components, especially in the case of presence 
of micro-metastases, not possibly highlighted by DWI 
sequences.

DWI of axillary lymph nodes in breast cancer

The above-mentioned studies indicated that ADC values 
of lymph nodes with metastasis were lower compared 
to those of benign lymph nodes, which may provide a 

diagnostic value for the evaluation of metastatic lymph 
node in breast cancer (9). Most part of breast cancer 
literature focusing on axillary nodal involvement diagnosis 
shows that, among different studies, lower ADC values 
were observed in metastatic lymph nodes, and that 
ADC mean values were statistically significant different 
between metastatic and non-metastatic axillary lymph 
nodes (9,35,46,66-73). Yamaguchi et al. (67) in their study 
showed ADC value of metastatic axillary lymph nodes 
ranging from 0.553×10−3 mm2/s to 1.135×10−3 mm2/s and 
those of non-metastatic axillary lymph nodes ranged 
from 0.722×10−3 mm2/s to 1.739×10−3 mm2/s; Fornasa 
et al. (52,66) described mean ADC values of metastatic 
lymph nodes of 0.878×10−3 mm2/s and mean ADC values 
of benign lymph nodes of 1.494×10−3 mm2/s. These results 
are following the majority of authors, who affirm the 
reliability of DWI in the identification of lymph nodes 
involved in malignant diseases. This might depend on 
the relatively high cellularity and rare necrosis in nodal 
metastases derived from neoplastic mammary epithelial 
cells. The range of reported values, in other studies, is 
broad ranging from 0.666×10−3 mm2/s to 1.369×10−3 mm2/s  
(64,67,69,70).  In our unpublished experience, we 
retrospectively evaluated breast MRI performed on a 1.5T 
scanner (Signa Excite, General Electric Medical System, 
Milwaukee, WI, USA) of 107 patients with newly diagnosed 
breast cancer who had undergone axillary dissection/
sentinel lymph node biopsy and whose definitive surgical 
and histological reports were available (median age 51±6, 
70 patients affected by invasive ductal carcinoma, 28 by 
invasive lobular carcinoma, 3 by tubular adenocarcinoma 
and 6 by papillary carcinoma). Two groups were identified 
according to the nodal status: 50 women with breast 
carcinoma and metastatic nodal disease and 57 patients with 
breast carcinoma, but without metastatic axillary lymph nodes 
involvement. We found that median ADC value in the metastatic 
nodal disease group (median =0.638×10−3 mm2/s) was statistically 
significantly lower than that of the non-metastatic axillary lymph 
node group (median =1.24×10−3 mm2/s) (P≤0.001) (Figure 1). 
The area under the receiver operating characteristic (ROC) 
curve was 0.876 (95% CI: 0.783–0.939). The sensitivity 
analysis indicated that an ADC value of 0.8×10−3 mm2/s was 
the optimal cut-off value for the discrimination between 
metastatic and non-metastatic lymph-nodes (Figures 2,3). 
This cut-off value obtained a sensitivity, specificity, positive 
predictive value and negative predictive value of 82.6%, 
86%, 70.4% and 92.5%, respectively (Table 1). These results 
confirm the accuracy and the validity of DWI sequence and 

Figure 1 ADC values of metastatic and non-metastatic lymph 
nodes. ADC values of metastatic lymph nodes were significantly 
lower than those of non-metastatic lymph nodes (P<0.001). ADC, 
apparent diffusion coefficient.
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ADC maps to predict lymph-nodal involvement in breast 
cancer, and to exclude nodal involvement with high ADC 
values with high specificity (86%) and high NPV (92.5%).

DWI of axillary lymph nodes: technical 
considerations

The variability of the data reported in literature may 
be due to the differences in specimen population, MRI 
system, different b-values, differences in the use of 
contrast media and differences in tumor histology. In 
particular, in a systematic review (43), differences due 
to country stratified analyses and MRI machine types 
emerged; ADC values on DWI were apparently decreased 
in metastatic lymph nodes among China, Italy, and 
Egypt, while such association was not found in Japan 
and Korea. One Japanese study shows ADC values of 
metastatic lymph nodes to be significantly greater than 
that of the benign ones, probably because of low cellularity 
of nodal metastases connected with low cellularity 
primary breast lesions, necrotic areas or oedema (64).  
Moreover, there is no correlation between decreased ADC 
values and metastatic lymph nodes when ADC values are 
calculated on non-Philips 1.5T MRI scanners, while there 
is no statistically significant difference described in ADC 
values calculated by Philips 1.5 MRI scanners. These results 
implied that the MRI scanner technical specifications 
might affect the association between ADC values and nodal 
involvement (43). Region of interest (ROI) sampling is 
another important issue for the assessment of ADC values; 
in the authors’ experience, circular ROIs are placed in 
the axillary lymph node on DWI, carefully located in the 

Figure 2 The area under the ROC curve was 0,876. Using an 
ADC cut-off value of 0.8×10−3 mm2/s, sensitivity and specificity 
for diagnosing metastatic axillary lymph node were 82.6% and 
86% respectively. ROC, receiver operating characteristic; ADC, 
apparent diffusion coefficient.

Figure 3 Graphical representation of ADC cut-off value and 
related specificity and sensitivity. ADC, apparent diffusion 
coefficient.

Table 1 ADC cut-off value and diagnostic performance

Parameters Value

Cut-off value (ADC) ≤0.8×10−3

Sensitivity (95% CI) 82.61 (61.2–95.0)

Specificity (95% CI) 85.96 (74.2–93.7)

+PV (95% CI) 70.4 (49.8–86.2)

−PV (95% CI) 92.5 (81.8–97.9)

+PV, positive predictive value; −PV, negative predictive value; 
ADC, apparent diffusion coefficient; CI, confidence interval.
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central part of the lymph node with normal cortex-medulla 
ratio or in the central part of the lymph node “package”, 
taking particular care in avoiding necrotic areas, and then 
copied to the ADC map (Figures 4,5). For an accurate 
correlation between histological and DWI findings, during 
the MR images review, the location of the selected lymph 
node within the axilla is evaluated with the breast surgeon 
with the support of the operative and histological report 

and defined by Berg levels (74). Axillary lymph nodes with 
short-axis diameter equal to or greater than 4 mm are 
included in our analysis. T2W fat suppression images are 
employed to identify involved lymph nodes, as anatomical 
reference, evaluating size, shape, and depth from the skin 
surface. Then, the lymph node of interest is identified 
on DWI through slice by slice comparison of T2W fat 
suppression and DWI. ADC values are calculated using two 

Figure 4 MRI images in patient with breast cancer and metastatic 
lymph nodes. (A) Axial T2-weighted fat suppression image for 
the localisation of the lymph node under analysis; (B) ADC map 
with three ROI positioning; ADC value is obtained by the mean of 
three measured values. MRI, magnetic resonance imaging; ADC, 
apparent diffusion coefficient; ROI, region of interest.

Figure 5 MRI images of a patient with breast carcinoma and 
benign lymph nodes. (A) Axial T2-weighted fat suppression image 
for the localisation of the lymph node under analysis; (B) ADC 
map with three ROI positioning; ADC value is obtained by the 
mean of three measured values. MRI, magnetic resonance imaging; 
ADC, apparent diffusion coefficient; ROI, region of interest.
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b-values (0 and 800 s/mm2) through the specific formula: 
ADC =ln(SI1/SI2)/800 in which SI1 and SI2 are signal 
intensities for b =0 and 800 s/mm2.

Currently, there is not homogeneity about DWI 
acquisition timing, whether before (66) or after (67) contrast 
medium injection. Some studies showed that gadolinium 
may lead to reduced micro-perfusion and might alter the 
ADC values (75) while others affirm that gadolinium does 
not alter tissue diffusion (76-78). In our protocol, DWI 
images are acquired in the axial plane [free-breathing 
acquisition, echo planar imaging (EPI) sequence, repetition 
time (TR)/echo time (TE) 4,000/55.2 ms; acquisition 
matrix 128×128; number of excitations (NEX) 8; field of 
view (FOV) 34×34 cm; slice thickness 3 mm with 0.3 mm 
interval, receiver bandwidth 62.5–250, acceleration factor 2, 
b values 0 s/mm2 and 800 s/mm2], before the administration 
of contrast medium (Gd-BOPTA), to overcome the possible 
influence of the contrast agent on ADC values.

Also, different magnetic field intensities and different 
b values may affect ADC values, creating a not-easily 
comparable pool of data (46,64). 

Conclusions

DWI sequences are developing rapidly with a progressive 
technical improvement, especially in spatial resolution 
and image quality, allowing a more refined morphological 
assessment (79). The DWI-ADC sequence could be used in 
the future to avoid axillary dissection in patients with low-
intermediate risk of lymph-node involvement (66) as it is 
strongly related to axillary metastatic involvement; however, 
technological advances in DWI applicability and protocol 
standardization are still not ripe to avoid axillary dissection 
on the basis of ADC results. The goal of the future will be 
to achieve the least invasive approach to the patient. Some 
authors showed how DWI could be represent the main 
element of non-enhanced MRI examination with good 
sensitivity and high specificity, particularly in the study of 
mass lesions. According to some authors, DWI sequences 
could be implemented in non-contrast MRI screening 
programmes, considering the question of gadolinium-
based contrast agent toxicity and its brain deposits, even 
in the potential hypothesis of avoiding the double reading 
(71,80-82). Moreover, the quantitative data derived will in 
the near future be the most important instrumental finding 
for radiomics analysis, which with artificial intelligence are 

revolutionizing the current concept of imaging (83,84).
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