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Introduction

Modern multidetector computed tomography (MDCT) 
scanners acquire the entire abdominal volume and provide 
high-resolution images within seconds. CT is widespread, 
relatively cheap, and allows for panoramic examinations 

with high diagnostic performance. For these reasons, CT 
plays a central role in the evaluation of pancreatic diseases 
and their complications, from the evaluation of pancreatitis, 
trauma, and for the management of disease with different 
degree of malignancy [(e.g., neuroendocrine tumors (NET) 
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and pancreatic ductal adenocarcinoma (PDAC)] (1-7).
Conversely, magnetic resonance imaging (MRI) with 

MR-cholangiopancreatography is considered the imaging 
modality of choice, and a problem-solving tool for the 
evaluation of pancreatic diseases, thanks to the optimal 
contrast resolution of soft tissues, biliary and pancreatic 
ducts, as well as for the differentiation of pancreatic lesions 
to fibrosis after chemoradiation therapy, all in absence of 
radiation exposure (8,9). At the same time, CT demonstrates 
its drawbacks with lower accuracy in the detection of small 
lesions and cystic lesions, in the differentiation of residual 
PDAC from fibrosis after chemotherapy or radiotherapy, 
in the differentiation of PDAC, and in detection chronic 
pancreatitis and of ductal injuries (2,4,10-12). Moreover, the 
radiation exposure still represents a significant issue in young 
patients requiring serial examinations in follow-up (13-15).

However, the most recent advances in CT technology, 
such as Dual-Energy CT (DECT), perfusion CT (PCT), 
and the application of Radiomics and Artificial Intelligence 
(AI) are promising techniques for improving the diagnostic 
performances by moving the limits of CT from qualitative 
to quantitative imaging (16).

In this paper, an overview on the recent advances in 
pancreatic CT with the main clinical applications will 
be provided. After a brief summary on the current CT 
technique, the main applications of DECT, PCT, Texture 
Analysis, Radiomics and AI will be discussed. Finally, 
basic concepts on the role of imaging in the screening 
of pancreatic diseases will be provided. We present the 
following article in accordance with the NARRATIVE 
REVIEW reporting checklist (available at http://dx.doi.
org/10.21037/gs-20-551).

Research strategy

The research strategy involved the online databases 
“PubMed” (https://pubmed.ncbi.nlm.nih.gov/) and “Scopus” 
(https://www.scopus.com/). The searching strategy included 
the following keywords: Pancreas, CT, Protocol, Dual 
Energy, Perfusion, Radiomics, Radiogenomics, Artificial 
Intelligence, Screening. Papers in English published between 
January 1980 and May 2020 were included for review. 
Proceedings’ abstracts were excluded from this review.

The CT study of the pancreas: the standard 
protocol

The CT evaluation of the pancreatic lesions requires the 

administration of intravenous contrast material and a 
biphasic acquisition during the late arterial—pancreatic 
phase, and during the portal venous phase (17). The pancreas 
has a conspicuous arterial supply: the highest contrast 
enhancement between 35 and 45 s after the injection of the 
contrast bolus and the peak is at nearly 40 s (18). For these 
reasons, the early arterial phase is not routinely indicated 
in pancreatic studies, with the exception of angiographic 
studies (17,19). Thus, the best contrast-to-noise ratio (CNR) 
between hypoattenuating lesions, pancreatic parenchyma 
and peripancreatic vessels is achieved in the pancreatic phase 
(35–40 s after the injection of the bolus) (18,20). Conversely, 
the best CNR for hypoattenuating liver metastases and the 
best visualization of venous structures without artifacts is 
achieved during the portal venous phase, after 55–60 s since 
the bolus injection (20,21). 

The standard CT protocol can be optimized in several 
ways. First, while the suggested injection rate of contrast 
material is 3–5 mL/s, higher fluxes (up to 8 mL/s) allow 
for earlier and better contrast enhancement of pancreatic 
parenchyma (22). Similarly, high-concentration contrast 
materials and doses tailored on body weight significantly 
improve the contrast enhancement of pancreatic parenchyma 
(23,24). Finally, the use of bolus tracking techniques allows 
for further optimization of the contrast enhancement (22). 

The split-bolus technique consists in the acquisition of 
only one post-contrast phase after the administration of two 
boluses separated by a nearly 35 seconds interval, in order 
to obtain the pancreatic and portal venous phase in the same 
image with consequent reduction of radiation exposure (25).

Some authors suggested the additional administration of 
oral contrast agent to provide adequate gastric and duodenal 
distention. Rather than iodine, neutral oral contrast agent 
such as water is preferred (22,24).

Recent advances in pancreatic CT: acquisitions 
at low voltages and iterative reconstructions

The acquisitions at low voltages have two aims: the 
improvement of contrast enhancement and CNR, together 
with dose reduction (17).

The low voltages in CT aim to provide X-ray spectra 
with an energy the closest as possible to the k-edge of 
iodine, which is 33.2 keV, with significant increase of 
photoelectric absorption and iodine attenuation. However, 
by lowering the voltage, the contrast increases together 
with the noise. To compensate the increased noise, a higher 
tube current is necessary (26). Indeed, the spreading of low-
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voltage acquisitions is related the newer generation, high-
performance X-ray tubes, capable to deliver high current (up 
to 1,200 mA) at low voltages (down to 70 kV); the automatic 
current modulation can be adopted to further decrease the 
radiation dose (27,28).

The low-voltage acquisition protocols have demonstrated 
promising results in pancreatic imaging. Several studies 
recorded both improved contrast enhancement and 
conspicuity of PDCA, with acceptable image quality, when 
the low-voltage acquisition protocols are used (29-31).

The optimization of low-dose protocols strongly relies on 
iterative reconstructions (IR). These algorithms have different 
architecture: the shared aim is the selective suppression 
of image noise with improvement of image quality and  
contrast (32). The application of IR showed promising results 
in depiction of pancreatic duct (33,34). However, some 
authors raised concerns related to the altered image texture 
when the IR algorithms are applied, with potential issues in 
the so-called low contrast recognition tasks (35,36).

Together with improvement in contrast enhancement 
and lesion conspicuity, the low-voltage acquisitions allow for 
reduction of radiation exposure. When compared to standard 
120 kVp, the low-dose acquisitions reduce the radiation 
exposure by nearly 25%, further decreased by the IR (37,38). 
The selective noise suppression achieves acceptable image 
quality and lesion conspicuity at reduced doses (30,39); 
however, some issues remain in obese patients (17).

Dual energy CT: qualitative and quantitative 
evaluations

After the introduction of the first dual energy (DECT) 

scanner in 2006, several different technologies have been 
developed, relying on tube technology (Dual Source,  
Fast kV Switching, and Split Filter) or on detectors (Dual 
Layer) (40). The photon counting technology belongs to 
the second group, but still not commercially available (41).

The DECT consists in acquisitions of the same volume 
at two different voltages (40,42). The theoretical bases 
of DECT assume that any material can be detected and 
quantified if its spectral curve is known and observed at 
least from two points of view (i.e., the different acquisition 
voltages). Once the material is detected, it can be quantified 
or selectively subtracted (material-selective images, e.g., 
iodine maps and virtual unenhanced, VUE). Moreover, a 
virtual monochromatic X-ray beam can be simulated to 
irradiate the known material with the known spectral curve 
and quantity, the so-called energy-selective images (e.g., 
virtual monochromatic images) (40).

The monochromatic images are one of the main 
applications of DECT in pancreatic imaging: a virtual 
beam close to the k-edge of iodine significantly improves 
the contrast enhancement (40). In pancreatic CT, the 
monochromatic images at low keV (<65 keV) improved 
lesion detection and conspicuity of PDAC, in particular when 
compared to standard 120 kVp images (Figure 1) (43-45).  
Similarly low-voltage acquisitions, the visualization of 
pancreatic duct is improved with monochromatic images at 
low keV (Figure 2); this is valuable in chronic pancreatitis (46).  
Another application of monochromatic images at low keV 
is the optimization of contrast enhancement, with the 
possibility of post-processing in case of inadequate contrast 
bolus injection or with the aim of contrast dose reduction 
in patients with impaired renal function (47,48). A relatively 

Figure 1 CT of pancreatic ductal adenocarcinoma (PDAC); male, 78 y.o. Dual energy acquisition, 100/150 Sn kV, pancreatic phase (Somatom 
Force, Siemens Healthineers, Forcheim). (A) Mixed image 0.7. (B) monochromatic plus 45 keV. (C) iodine map. The arrows point the hypo-
attenuating lesion on the pancreatic head. Note the improved contrast resolution of the lesion on the monochromatic image at 45 keV (B). 
The iodine map shows lower iodine uptake of the pancreatic lesion compared to the remnant pancreatic parenchyma (C).
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interesting application of energy-selective images is the 
spectral analysis of the biliary content of gallbladder. The 
spectral curve of hypo-attenuating gallstones, poorly 
detectable on CT, presents a slope typically opposite to 
water at low-keV: this may be relevant in patient with 
acute biliary pancreatitis (Figure 3) (49). Conversely, the 
monochromatic images at high keV may be helpful in the 
management of streaking artifacts in patients with biliary 
prostheses (12). The monochromatic images also improve 
the detection of liver metastases, both hypervascular and 
hypovascular, while staging the PDAC in CT (50,51). A 
drawback of monochromatic images in previous generation 

Dual Source scanners was the increased noise at low keV, 
significantly affecting the image quality and lesion detection 
when compared to low-voltage acquisitions (52). This issue 
was overcome with the introduction of noise-optimized 
monochromatic images (53): the advantage on the low-
voltage acquisition is the relatively low influence of patient’s 
size on image quality of monochromatic images (54).

In  pancrea t i c  CT,  the  iod ine  maps  and  VUE 
reconstructions are the most-used, material-selective images 
(17,55). The qualitative and quantitative evaluation of 
iodine maps are useful for parenchymal evaluation, lesions 
detection and characterization, with potential use for the 

Figure 2 CT of pancreatic ductal adenocarcinoma (PDAC) in presence of biliary stent; male, 75 y.o. Dual energy acquisition, 100/150 Sn kV,  
pancreatic phase (Somatom Force, Siemens Healthineers, Forcheim). (A) Monoenergetic plus at 70 keV. (B) Monoenergetic plus at 45 keV. 
Image shows the better depiction of pancreatic duct at low keV in B (white arrows).

Figure 3 Biliary hypo-attenuating microlithiasis of the galldbladder; male, 48 y.o. Dual energy CT, basal acquisition at 120 kV and portal 
venous phase at 100/150 Sn kV (Somatom Force, siemens Healthineers, Forcheim). (A) basal acquisition at 120 kV. (B) monoenergetic plus 
at 40 keV, portal venous phase. (C) spectral curves of the gallstones (yellow) and bile (i.e., water, white). The hypoattenuating gallstones are 
not clearly detected at 120 kV (A) while they are depicted as hypodense at 40 keV (B) (yellow arrows); the attenuation profile of gallstones is 
confirmed by the yellow spectral curve in c.

A B
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evaluation of treatment response to systemic treatments of 
PDAC. The iodine maps can be helpful in the differentiation 
of hyper-attenuating debris or hemorrhage from the residual 
parenchyma in acute pancreatitis or trauma (56). Regarding 
the lesion detection, the iodine maps have shown promising 
results in reader’s confidence for tumor detection and vascular 
involvement (Figure 1) (45). The iodine quantification has 
shown high sensitivity (up to 93.3%) and specificity (up 
to 89.5%) in discrimination of PDAC from mass-forming 
pancreatitis (57). Regarding hypoattenuating lesions, the 
demonstration of iodine uptake (e.g., >1 mg/mL) is helpful 
for the differentiation between solid and cystic lesions; 
among cystic lesions, the iodine quantification provides 
useful information about signs of malignant transformation, 
such as the presence of solid nodules (58). Moreover, the 
discrimination of an intrapancreatic accessory spleen may 
represent a diagnostic challenge: the iodine maps are helpful 
in highlighting the different contrast enhancement of 
hypervascular pancreatic lesions (17). Finally, variations of 
iodine uptakes showed promising results in the evaluation of 
treatment response of PDAC (59). 

The VUE images are other material-selective images 
used in pancreatic imaging. The selective subtraction of 
iodine from post-contrast acquisitions has the potential 
for reduction of radiation exposure by avoiding the basal 
acquisition (40). The VUE have provided acceptable image 
quality in several studies with good correlation between 
the attenuation values of VUE and the reference basal 
acquisitions (Figure 4) (60-62). Thus, using VUE as an 

acceptable substitute of basal acquisitions, a minimum dose 
reduction of 21% is possible (62). Some authors found a 
partial subtraction of calcifications in gallstones in VUE; 
the diagnostic performance for pancreatic calcifications 
requires further validation (63).

It has to be pointed that in pancreatic imaging, the 
use of DECT and what phase should be acquired with 
this technique, is still under debate (64). However, since 
the latest generation of DECT scanners are almost dose-
neutral, dual energy acquisitions are advised for pancreatic 
CT (48,65).

Quantitative CT: perfusion

The perfusion study consists in multiple, post-contrast 
acquisitions with high temporal resolution (12,17). 
Perfusion studies require the administration of a relatively 
small bolus of contrast material (12–18 g of iodine) with 
a high injection rate (≥4 mL/s) and a medium-to-high 
concentration (>300 mg/mL). The CT acquisition can 
be divided in two phases: the first pass requires the entire 
volume to be scanned with a temporal resolution ≤2 s for 
45 s; the interstitial phase requires a temporal resolution 
of 5–15 s (the duration and temporal resolution of the 
interstitial phase depends on the kinetic model applied for 
post-processing) (66).

The post-processing of the sequential acquisitions allows 
for the extrapolation of quantitative parameters such as 
the blood volume (BV), the blood flow (BF), the time to 

Figure 4 CT of pancreatic ductal adenocarcinoma (PDAC) in presence of biliary stent; same patient of Figure 2. Dual energy acquisition, 
100/150 Sn kV, pancreatic phase (Somatom Force, Siemens Healthineers, Forcheim). (A) Basal acquisitition at 120 kV. (B) Virtual 
Unenhanced Image. The Virtual Unenhanced Images (B) are of acceptable image quality with similar attenuation values when compared to 
the standard, basal acquisition (A). Av., average attenuation in HU. St. Dev., standard deviation.

A B

Av.: 38 HU
St. Dev.: 13 HU

Av.: 36 HU
St. Dev.: 15 HU
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peak (TTP) and time-attenuation curves (TAC). These 
parameters estimate the characteristic and abnormal changes 
of microvascularity and interstitium, both in inflammatory 
and oncological diseases, also with relevant information on 
the functional status of the pancreas (12,17,67-69).

The pancreatic parenchyma has an arterial vascularization 
with rapid enhancement and washout (69); the variations of 
the perfusion quantitative parameters provided promising 
initial results on pancreatic diseases. In patients with acute 
pancreatitis, lower BF and BV in early stage of the disease 
are able to predict the development of ischemic and necrotic 
complications (70,71). As opposite to normal parenchyma, 
in chronic pancreatitis the contrast enhancement is more 
gradual, with longer TTP and lower BV and BF. This trend 
is more pronounced in case of exocrine insufficiency where 
the perfusion decreases, and the enhancement is even more 
delayed (72). The differentiation of PDAC from chronic, 
mass-forming pancreatitis, presents several challenges in 
CT: perfusion studies may be helpful since the reduction on 

BV and BF are more pronounced in PDAC than in chronic 
pancreatitis (73,74).

Perfusion CT parameters provide valuable diagnostic 
and prognostic information about neoangiogenesis and 
interstitium of PDAC and NET (Figure 5). Higher values 
of BF and BV are associated with better response of PDAC 
to chemotherapy (75,76), while a higher BF is correlated 
to lower replication index, benign behavior, and no 
microvascular involvement in NET (77).

Nowadays, perfusion CT has a prominent role in research 
mainly due to the high radiation exposure. However, the 
latest technological advances in 4D perfusion and low-
voltage acquisitions for dose reduction have the potential for 
bringing the perfusion studies in clinical routine (78).

Quantitative CT: pancreatic volumetry and 
attenuation

The pancreatic volume can be calculated with several 

Figure 5 Volume Perfusion CT of mucinous cystadenocarcinoma in the pancreatic body (arrowheads); female, 74 y.o. (A) Dual energy 
acquisition, 100/150 Sn kV, mixed image 0.8, pancreatic phase (Somatom Force, Siemens Healthineers, Forcheim). (B,C,D) Volume 
perfusion CT, 70 kV, color maps. (B) Blood Flow. (C) Blood Volume. (D) Flow Extraction Product. The colored maps provide quantitative 
evaluation on vascularity and interstitium of the different solid components of the pancreatic lesion.

A

C

B

D
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techniques:  the most widely used are the manual 
segmentation, where the radiologist manually outlines the 
pancreatic contours, and the semiautomatic segmentation, 
where the software calculates the tridimensional volume-
of-interest (VOI) starting form references manually placed 
(79,80). The pancreatic volume is related to anthropometric 
data (e.g., gender, age and body mass index, BMI) but it is 
also related to exocrine and endocrine function (81). 

Regarding the insulinotropic activity, the pancreatic 
volume is lower in patients with diabetes mellitus (DM) (82). 
In patients with Type 1 DM, the pancreatic volume is lower 
than in Type 2 DM, and the volumetric reduction of the 
pancreas becomes more relevant during the course of the 
disease (83). Moreover, in recently diagnosed type 1 DM, 
the pancreatic volume is lower than normal population; this 
may suggest that the reduction of pancreatic volume may 
occur earlier than the disease onset and that it may have a 
role as an early indicator of DM (84).

The reduction of the acinar cell mass, due to parenchyma 
atrophy in chronic pancreatitis or for surgical resection, has 
been related to exocrine deficiency that may lead to non-
alcoholic fatty liver disease (NAFLD); changes in pancreatic 
volume before and after surgical resection allowed for 
prediction of DM and NAFLD after surgical resection 
(85,86).

The analysis of pancreatic attenuation is used to evaluate 
the fat content of pancreatic parenchyma: the rationale is 
the theoretical decrease of pancreatic density in presence of 
visceral fat. The pancreatic attenuation is usually evaluated 
by placing a Region-of-Interest (ROI) over the pancreatic 
parenchyma on unenhanced CT and may be normalized 
by considering the splenic density. A more sophisticated 
evaluation involves the histogram analysis to extract and 
quantify the percentage of fat (<−30 Hounsfield Units, 
HU) (17). The decrease of pancreatic attenuation and the 
presence of parenchymal fat are predictive of occurrence of 
pancreatic fistula after pancreaticoduodenectomy (87).

Texture analysis, radiomics and radiogenomics

The texture analysis quantifies the tissue heterogeneity; the 
different algorithms use the gray-level values of the pixels 
together with the relationships among the pixels to extract 
numerical parameters that can unlikely be evaluated by the 
human’s eye (17,88). The definition “Radiomics” includes 
the amount of quantitative data that can be obtained 
from medical images for clinical decision support, and 
not routinely available on the radiological report. When 

the radiomic data are combined with the genomic data, a 
radiogenomic analysis is performed. The radiomics data can 
be classified in semantic and agnostic: the semantic data are 
the information provided in the radiological report, that can 
be extracted with computer assistance (e.g., shape, contour); 
conversely, the agnostic data are derived with mathematical 
analysis such as texture analysis (17).

The radiomic and texture analysis are being increasingly  
used in oncological  imaging, with diagnostic and 
prognostic intent for several diseases, but also for the 
evaluation of treatment response (89). When applied to 
pancreatic CT, texture analysis showed promising results 
in the preoperative prediction of pathological grade of 
NET (90). A significant challenge in pancreatic CT is 
the evaluation of response to chemoradiation therapy 
of PDAC: the radiomic analysis has the potential for 
overcoming the limitations of dimensional criteria (91). 
The extraction of CT texture parameters also prognostic 
information: texture parameters are able to predict 
aggressiveness and pathological grade of PDAC but also 
correlate with patients’ survival (92,93).

However, despite the promising results of radiomics, 
the texture analysis is still not included in clinical routine 
and further research is necessary for adequate correlation 
between genetic profile of PDAC and texture parameters 
(17,48,65).

Artificial intelligence and machine learning

The development of machine learning algorithms opened 
new fields of research in medical imaging and represents 
one of the major challenges in the near future (94). The 
machine learning algorithms use Bayesian statistics and 
random forest classifiers to analyze radiomic data while 
deep learning algorithms use artificial neural networks 
to learn a composition of parameters that reflect the 
analyzed data (95). The typical tasks the machine learning 
algorithms are trained for include the segmentation, 
detection or classification of tumor lesions (17,48,65). 
Potential applications for pancreatic imaging are the organ 
segmentation with automated volumetry, but also the 
classification of pancreatic lesions and the discrimination 
between fibrosis and residual tumor after treatment (17). 

Screening for pancreatic cancer

Several screening protocols have been recommended for 
subjects at high risk of pancreatic cancer, particularly in 
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individuals with familiarity, with Peutz-Jeghers syndrome, 
BRCA2 mutations, Lynch syndrome (96).

In this setting, usually MRI or endoscopic ultrasound 
are the preferred techniques because of the absent radiation 
exposure (97). However, low-dose acquisitions and 
DECT may improve the conspicuity and the detection of 
incidentally discovered pancreatic lesions during abdominal 
examinations (17,48,65).

Conclusion

CT represents a fundamental diagnostic tool for the 
evaluation of pancreatic diseases. The new CT techniques, 
such as DECT or perfusion CT, as well as new post-
processing tools, such as radiomics and texture analysis, 
will extend the information provided by CT, moving the 
limit from morphological evaluation to quantitative and 
functional evaluation of pancreatic diseases.
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