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Background: The aim of the present study was to construct a novel gene signature on the tumor 
microenvironment (TME) to predict the prognosis of patients with pancreatic ductal adenocarcinoma 
(PDAC).
Methods: We downloaded gene expression profiles and clinical information of PDAC from The Cancer 
Genome Atlas (TCGA) datasets, as well as Gene Expression Omnibus (GEO) datasets (GSE78229, 
GSE62452, and GSE28735). Differentially expressed genes were generated by comparing high versus 
low score groups of immune/stromal subgroups based on the Estimation of STromal and Immune cells in 
MAlignant Tumor tissues using Expression data algorithm. Subsequently, a prognostic risk score model was 
constructed and validated through univariate and multivariate Cox regression analyses. Finally, functional 
enrichment analysis and protein–protein interactions were performed to predict the functional implication of 
the prognostic model.
Results: We picked out 1,797 upregulated genes in immune groups and stromal groups. Through 
further analysis, we constructed a 7-gene signature on the TME. The risk score from the model effectively 
differentiated patients into high-risk and low-risk groups with different overall survival and was validated by 
GEO datasets. A functional analysis suggested that 7 selected genes and their co-expressed genes were mainly 
enriched in immune response, extracellular structure organization, and cell adhesion molecule binding. 
Conclusions: Our results showed that the 7-gene model on the TME can be used to assess the prognosis 
of patients with PDAC.

Keywords: Pancreatic cancer; tumor microenvironment (TME); overall survival (OS); The Cancer Genome Atlas 

(TCGA); Gene Expression Omnibus (GEO)

Submitted Nov 09, 2020. Accepted for publication Apr 21, 2021.

doi: 10.21037/gs-21-28

View this article at: http://dx.doi.org/10.21037/gs-21-28

1409

https://crossmark.crossref.org/dialog/?doi=10.21037/gs-21-28


1398 Yang et al. Genes model on microenvironment

© Gland Surgery. All rights reserved.   Gland Surg 2021;10(4):1397-1409 | http://dx.doi.org/10.21037/gs-21-28

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a highly 
malignant neoplasm with a poor prognosis and high 
mortality; its overall 5-year survival rate is reported to 
be <7% (1). In the USA, PDAC has become the fourth 
leading cause of cancer-related death, and more than 45,000 
Americans died of PDAC in 2019 (1). The absence of early 
detection tests and recognizable symptoms leads to only 
15–20% of cases being diagnosed in the early resectable 
stages (2). The median overall survival for patients 
treated with pancreaticoduodenectomy in combination 
with adjuvant therapy is only approximately 35.0– 
54.4 months (3). Therefore, there is an urgent need to 
make a breakthrough in the research of pancreatic cancer 
in terms of early diagnosis and treatment. In addition to the 
progress in surgical resection and other adjuvant therapies, 
more specific and sensitive biomarkers for the prediction 
early diagnosis and prognosis can help in the development 
of effective therapeutic strategies.

Tumors are complex environments composed of 
endothelial cells, mesenchymal cells, immune cells, 
inflammatory mediators,  and extracellular matrix 
molecules, known as the tumor microenvironment (TME) 
(4-7). Immune and stromal cells are 2 main components of 
the TME, and have been reported to be significant for the 
diagnostic and prognostic assessments of tumors (8-10).  
Yoshihara et al. developed an algorithm to predict the 
abundance of immune and stromal cells based on the 
gene expression data from The Cancer Genome Atlas 
(TCGA) database, which is called Estimation of STromal 
and Immune cells in MAlignant Tumor tissues using 
Expression data (ESTIMATE) (11). Subsequently, the 
algorithm was quickly applied to a variety of tumor-related 
analyses, such as colon cancer (12), breast cancer (13), and 
glioblastoma (14), demonstrating the broad utility of the 
ESTIMATE algorithm. Nevertheless, the ESTIMATE 
algorithm has not been previously investigated in 
pancreatic cancer. 

There have been many studies focused on the prognosis 
of PDAC (15,16). Some scholars have proposed risk models 
as to predict the long-term survival status of patients, and 
optimize the choice of treatment modalities. However, 
previous researches have mainly focused on the tumor itself, 
and few have focused on the TME. Our study took this 
perspective and investigated the gene changes related to 
microenvironment. In our study, by using TCGA database 
of pancreatic cancer, we identified a list of significantly 

differentially expressed genes (DEGs) with the prognostic 
significance relying on ESTIMATE algorithm-derived 
immune and stromal scores. Importantly, a reliable 
prognostic signature for PDAC patients was set up and 
validated in the Gene Expression Omnibus (GEO) database.

We present the following article in accordance with the 
REMARK reporting checklist (available at http://dx.doi.
org/10.21037/gs-21-28). 

Methods

Data and sources

Gene expression profiles (level 3, RNA sequencing) and 
clinical information of PDAC were obtained from TCGA 
(https://cancergenome.nih.gov/) up to July 1, 2019. Three 
microarray gene expression arrays and related clinical 
information of PDAC datasets (GSE78229, GSE62452, 
and GSE28735) were downloaded from the GEO database 
(https://www.ncbi.nlm.nih.gov/gds/). Non-tumor cases 
were discarded, and the remaining cases were used as the 
validation cohort. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). 

The ESTIMATE algorithm can calculate the percent 
abundance of immune and stromal cells (known as 
immune and stromal scores) via gene expression profiles in 
complex tissues (11). TCGA datasets were analyzed by the 
ESTIMATE algorithm, and immune and stromal scores 
were obtained. The workflow of this experiment is shown in 
Figure 1.

Identification of DEGs

The differential analysis was performed using the limma 
R package (version: 3.36.5; http://www.bioconductor.
org/packages/release/bioc/html/limma.html) [|log2 fold-
change (FC)| >1, false discovery rate (FDR) <0.05]. First, 
TCGA datasets were divided into a high immune score 
subgroup and low immune score subgroup, according 
to the median value. The DEG analysis was performed, 
and we obtained a series of immune-related DEGs. We 
repeated the procedure and obtained another set of 
stromal-related DEGs.

Volcano plot and heatmap

Volcano plots and heatmaps were generated by the 
GGPLOT (Version: 3.3.3; https://cran.r-project.org/web/

http://dx.doi.org/10.21037/gs-21-28
http://dx.doi.org/10.21037/gs-21-28
https://cancergenome.nih.gov/
https://cran.r-project.org/web/packages/ggplot2/index.html)
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Figure 1 The workflow of our experiment. Seq, RNA sequencing.
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packages/ggplot2/index.html) and pheatmap (Version: 
1.0.12; https://cran.r-project.org/web/packages/pheatmap/
index.html) R packages, respectively (17,18).

Venn diagram

A Venn diagram was generated by an open source web tool 
Venny 2.1 (https://bioinfogp.cnb.csic.es/tools/venny) with 
upregulated/downregulated genes from the immune and 
stromal subgroups (19). 

Gene co-expression analysis

Pearson’s correlation coefficients between core genes of 
the risk model and DEGs were calculated with the limma 
R package, and the cut-off criteria were set as follows: 
correlation coefficients ≥0.6 and P<0.05.

Pathway enrichment analysis

Pathway enrichment analysis, including Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses, were implemented by the cluster Profiler 
R package (Version: 3.18.0; http://www.bioconductor.org/
packages/release/bioc/html/clusterProfiler.html) (20). The 
cut-off criterion was set as P<0.05.

Protein–protein interaction (PPI) network and module 
analyses

The PPI analysis was performed by the STRING database 
(Version: 11.0; https://string-db.org) with DEGs (21). A 
confidence score ≥0.4 was used as the critical value, and 
Cytoscape (Version: 3.7.1; https://cytoscape.org) was 
used for further analysis. Molecular complex detection 
(MCODE) was then used to detect hub clustering modules 

https://cran.r-project.org/web/packages/ggplot2/index.html)
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
http://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html
http://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html
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in the PPI network (22).

Survival analysis and receiver-operating characteristic 
(ROC) curve

To eliminate the interference of surgical blow to the overall 
prognosis of patients, cases with overall survival <10 days 
were excluded from our subsequent analysis. Univariate Cox 
analysis was performed with R package survival by setting a 
cut-off point of P<0.05. Multivariate Cox regression analysis 
was also implemented by R package survival. Subsequently, we 
constructed a prognostic risk score model with the following 
formula: risk score = expression of gene 1 × β1 + expression 
of gene 2 × β2 +…+ expression of gene n × βn, where β is the 
regression coefficient. The risk score of each patient was then 
calculated, and cases were grouped into high- and low-risk 
subgroups according to the median values. Predictive accuracy 
and sensitivity were evaluated by ROC curve analysis with R 
package survival ROC.

Statistical analysis

All statistical analyses were performed by R software (version 
3.5.3). The χ2-test was used to evaluate the association 
between the risk score and clinical characteristics. 
Univariate and multivariate Cox regression models were 
used to analyze prognostic factors. P<0.05 was considered 
statistically significant.

Results

Comparison of gene expression profile with immune and 
stromal scores in PDAC

Based on the ESTIMATE algorithm, we obtained immune 
and stromal scores from TCGA database of pancreatic 
cancer. As shown in Figure 2A, the median value of immune 
scores was 1,170.63 (range, –602.44 to 2,662.36), while the 
median value of stromal scores was 787.21 (range, –1,658.32 
to 2,171.03). To find out the potential correlation of gene 
expression profiles with immune scores and/or stromal 
scores, we divided 178 PDAC cases into top and bottom 
halves (high- vs. low-score groups) based on the median 
value of the scores. We then conducted limma analysis to 
select DEGs using gene expression data, depending on 
differences of scores. The comparison between the high- 
and low-immune groups showed that a total of 1,350 DEGs, 
including 1,290 upregulated genes and 60 downregulated 

genes, were identified (|log2 FC|>1, FDR <0.05)  
(Figure 2B). Similarly, in the stromal groups, 1,566 genes 
were upregulated and 157genes were downregulated in the 
high-score group (|log2 FC|>1, FDR <0.05) (Figure 2C). 
Distinct gene expression profiles were shown in heatmaps 
in the high- and low-score immune and stromal subgroups 
(Figure 2D,E). The Venn diagrams indicated 1,059 
commonly upregulated genes in the high-score groups, and 
33 commonly downregulated genes in the low-score groups 
(Figure 2F,G).

In the present study, considering that upregulated 
genes accounted for most of the DEGs, we focused on the 
collection of 1,797 upregulated genes and selected those 
for subsequent analysis. Of these, 1,566 genes were in the 
stromal group, while 1,290 genes were in the immune 
group. The upregulated genes here specifically referred 
to the DEGs in high-risk groups compared with low-risk 
groups, not tumor tissues versus normal tissues.

Functional enrichment analysis of DEGs

To explore the potential biologic function of the DEGs, 
functional enrichment analysis was performed for 1,797 genes. 
The top GO terms identified included T-cell activation, 
leukocyte migration, extracellular matrix, and receptor ligand 
activity (Figure 3A,B,C). KEGG analyses indicated that 
the DEGs were mainly enriched in the cytokine–cytokine 
receptor interaction, cell adhesion molecules (CAMs), and 
hematopoietic cell lineage pathway, demonstrating the 
reliability of the ESTIMATE algorithm (Figure 3D).

Construction and validation of prognostic risk score model 
for pancreatic cancer

To explore the role of DEGs in overall survival, we first 
performed a univariate Cox regression analysis for the 
selected genes and obtained a total of 279 prognosis-related 
genes, which reached statistical significance (P<0.05). 
The prognosis-related genes were further validated in an 
independent cohort, GSE62452, and 25 significantly and 
DEGs were identified (P<0.05). Subsequently, stepwise 
multivariate Cox regression analysis with 25 confirmed genes 
was performed using TCGA database; 7 genes were finally 
selected, and each regression coefficient was identified.

To effectively evaluate the prognosis of patients with 
pancreatic cancer, we constructed a prognostic risk model 
with the following formula: 

Risk score =–1.1445 × expression of the polypeptide N-
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Figure 2 Comparison of gene expression profile with immune scores and stromal scores in PDAC. (A) Immune scores and stromal scores 
were generated by ESTIMATE algorithm. (B,C) The volcano plot of the DEGs in immune group (B)/stromal group (C). (D,E) The 
heat map in immune group (D)/stromal group (E). (F,G) The Venn diagram of up-regulated genes (F)/down-regulated genes (G). DEGs, 
significantly differentially expressed genes; PDAC, pancreatic ductal adenocarcinoma.
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acetylgalactosaminyltransferase16 (GALNT16) - 0.5144 × 
expression of the corticotropin releasing hormone binding 
protein (CRHBP) + 0.7636 × expression of the C-X-C motif 
chemokine ligand 5 (CXCL5) –2.1059 × expression of the 
nucleotide binding oligomerization domain containing 
2 (NOD2) +2.8607 × expression of the carbohydrate 
sulfotransferase 11 (CHST11) +1.0661 × expression of the 
zinc finger protein 683 (ZNF683) +0.4442 × expression of 

the mucin 16 (MUC16).
We then calculated the risk score for each patient. 

Patients were divided into 2 groups, a high-risk group and 
a low-risk group, based on the median value of the risk 
score according to the previous formula. Kaplan-Meier 
curves were used to evaluate the impact of risk score on 
the prognosis of pancreatic cancer patients from TCGA. 
Our results revealed that patients with a low-risk score had 
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Figure 3 Functional enrichment analysis of differentially expressed genes (DEGs). (A-C) Top 10 GO terms. (D) Top 10 pathway of KEGG 
analyses. P<0.05. DEGs, significantly differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes.

a longer survival time than patients with a high-risk score 
(P<0.001) (Figure 4A). The ROC curve analysis showed 
that the area under ROC curve (AUC) of our risk score 
model for 1-, 3- and 5-year-overall survival was 0.724, 0.715 
and 0.719, respectively, suggesting a favorable efficiency 
in prognostic performance (Figure 4B). Remarkably, in 
accordance with the findings in TCGA, patients with 
high-risk scores had significantly worse OS than patients 
with low-risk score in the validation cohorts, GSE28735 
and GSE78229, demonstrating the reliability and general 
applicability of our prognostic risk score model (P=0.037 
and P=0.003, respectively (Figure 4C,D).

Comparison with conventional clinical characteristics

We first compared the expression of identified DEGs in 
different groups (immune and stromal groups). As shown in 
Table 1, GALNT16, CRHBP and CXCL5 were significantly 

upregulated in both the immune group and stromal groups. 
NOD2 and ZNF683 were found upregulated only in the 
immune group, while CHST11 and MUC16 upregulated 
in the stromal groups. Next, we compared the correlation 
between the risk score and conventional clinical factors. 
The results showed significantly correlation between our 
risk score and tumor differentiation (P<0.05) (Table 2). 
Subsequently we conducted univariate and multivariate 
COX regression analysis to explore the independent 
prognostic value of our risk score. Table 3 revealed that 
our risk score not only had a significant association with 
OS (P<0.05), but also remained an independent clinical 
predictor after adjusting for other clinical indicators.

Functional enrichment analysis and protein-protein 
interactions among genes of prognostic value

To better understand the functional implication of 7-genes 
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Figure 4 Construction and validation of prognostic risk score model of PDAC. (A) The Survival analysis in the high-risk and low-risk 
subgroups in TCGA dataset; (B) ROC analysis was performed in predicting 1-, 3- and 5-year OS in TCGA dataset; (C,D) Kaplan-Meier 
analysis in GEO cohorts. PDAC, pancreatic ductal adenocarcinoma; ROC, receiver-operating characteristic; OS, overall survival; TCGA, 
The Cancer Genome Atlas; GEO, Gene Expression Omnibus. 

Table 1 The expression of selected genes in different groups

Genes
Immune group (high vs. low) Stromal group (high vs. low)

log2FC FDR log2FC FDR

GALNT16 1.248 <0.001 1.116 <0.001

CRHBP 1.372 <0.001 1.208 <0.001

CXCL5 1.787 <0.001 1.827 <0.001

NOD2 1.044 <0.001 0.992 <0.001

CHST11 0.863 <0.001 1.094 <0.001

ZNF683 1.180 <0.001 0.791 0.001

MUC16 0.786 0.259 1.294 0.032

FC, fold change; FDR, false discovery rate. |log2FC >1| & FDR <0.05 is considered significant.
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prognostic model, a functional enrichment analysis 
was carried to illustrate their biological function. We 
identified 361 genes which were significantly correlated 
with 7 selected genes (Spearman |R| ≥0.6). GO analysis 
suggested that 7 selected genes and their co-expressed genes 

mainly focus on following terms: extracellular structure 
organization, extracellular matrix and cell adhesion 
molecule binding (Figure 5A,B,C). KEGG analysis showed 
that the top three signaling pathways were PI3K-Akt 
signaling pathway, Phagosome and Focal adhesion pathways 
(Figure 5D). Protein-protein interaction (PPI) networks 
were implemented to illustrate the interrelation among 
the identified DEGs. The network that consisted of 258 
nodes and 1,291 interactions was made up of 11 modules. 
We selected the top two significant modules for further 
analysis (Figure 5E). In the first module which involved 26 
nodes and 258 edges, FN1, COL1A1, COL3A1, COL1A2, 
COL5A1, BGN, and POSTN had the most connections 
with other members. Most of them are involved in 
extracellular matrix structural constituent. In the secondary 
module, ITGB2, C3AR1, THBS1, ITGAX, CD53, CCL5 
had higher degree values, most of which are associated with 
immune responses.

Discussion

In the current work, we aim to identify prognosis-related 
genes on microenvironment in the TCGA database. By 
comparing the difference between immune score and 
stromal score basing on ESTIMATE algorithm, 1,797 
up-regulated genes were extracted and confirmed to be 
involved in extracellular matrix and immune response by 
GO analysis and KEGG pathway analysis. Next, 7 genes 
were identified by univariate Cox and stepwise multivariate 
Cox regression analysis in TCGA and GSE62452 datasets 
and were selected to conduct a prognostic risk score model. 
Finally, the survival analysis in TCGA and GEO data set 
(GSE78229 and GSE28735) proved the reliability and wide 

Table 3 Univariate and multivariate Cox analysis in TCGA PC patients

Variable
Univariate Multivariate

HR 95% CI P value HR 95% CI P value

Age (>60 vs. ≤60 years) 1.412 0.866–2.301 0.166

Gender (male vs. female) 1.28 0.834–1.965 0.259

Differentiation (well vs. moderate vs. poor) 1.331 0.982–1.806 0.066

TNM stage (AJCC 8th) (I–IIA vs. IIA–IV) 2.317 1.303–4.12 0.004* 2.022 1.128–3.626 0.018*

Lymphatic invasion (no vs. yes) 1.118 0.681–1.836 0.659

Risk scores (low vs. high) 2.17 1.385–3.402 0.001* 1.955 1.241–3.081 0.004*

*, the difference is significant (P<0.05). HR, hazard ratio; CI, confidence interval.

Table 2 Relationship between the risk scores and clinicopathological 
characteristics in TCGA PDAC patients

Variable
Risk score

P value
Low High

Age 0.347

>60 years 28 (46.2%) 24 (53.8%)

≤60 years 51 (54.1%) 60 (45.9%)

Gender 0.785

Male 44(49.4%) 45 (50.6%)

Female 35 (47.3%) 39 (52.7%)

Differentiation 0.039*

Well 16 (64%) 9 (36%)

Moderate 46 (51.7%) 43 (48.3%)

Poor 17 (34.7%) 32 (65.3%)

TNM stage (AJCC 8th) 0.192

I–IIA 24 (57.1%) 18 (42.9%)

IIA–IV 55 (45.5%) 66 (54.5%)

Lymphatic invasion 0.197

No 26 (56.5%) 20 (43.5%)

Yes 53 (45.3%) 64 (54.7%)

*, the difference is significant (P<0.05). TCGA, The Cancer 
Genome Atlas; PDAC, pancreatic ductal adenocarcinoma.
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availability of our prognostic risk model in predicting the 
prognosis.

The microenvironment of PDAC is distinguished 
from other malignancies by its abundance of extracellular 
matrix components and multiple types of innate and 
adaptive immune cells (23,24). Numerous activated 
carcinoma-associated fibroblasts, infiltrating immune 
cells, endothelial cells were found around tumour cells, 
forming a immunosuppressive tumor microenvironment 
with poor tissue perfusion. Moreover, in the occurrence 
and development of pancreatic cancer, the TME is 
constantly changing in composition and function, as to 
form a microenvironment conducive to proliferation and 
survival, metastasis, resistance to chemotherapy, affecting 
the prognosis of patients (25-28). Traditional treatments 
have produced limited benefits for prognosis of the PDCA 
patients so far. With the in-depth research on tumor 
microenvironment in recent years, immunotherapy, 
with its effective therapeutic response, controlled, and 
relative safety, has gradually become a hot spot in tumor 
studies. Currently, immunotherapy for pancreatic cancer 
mainly includes immune checkpoint inhibitors, cancer 
vaccines, adoptive cell transfer, combination with other 
immunotherapeutic agents (29). Many scholars have 
focused on the combinations of immunotherapy with 
traditional treatment, which is expected to be a new option 
for treatment methods.

During the past decades, many of pancreatic prognostic 
models about TME have been reported. For example, 
Moffitt et al. identified two stromal subtypes associated 
with different prognosis (30). Tsujikawa et al. described 
the prognostic value of immune cells via a multiplexed 
immunohistochemical platform (31). However, the 
complexity or limitations of those models limited their 
clinical application. Here, we tried to propose a feasible 
and operable TME-related prognostic model based on the 
RNA-Seq of tumor tissue by combining the two aspects of 
immune cells and stromal cells. Therefore, we explored the 
relationship between TME-related genes and prognosis of 
PADC patients. In our study, a prognostic model on TME 
was proposed and was verified effectively for pancreatic 
cancer.

Our prognostic risk score model was made up of seven 
TME-related genes. Among them, MUC16 (CA125) gene 
is a protein-coding gene expressing a heavily glycosylated 
type-I transmembrane mucin and overexpressed in multiple 
malignancies including pancreatic cancer (32). Muniyan 
et al. reported that MUC16 played an important role in 

pancreatic tumor development and could facilitate the 
metastasis of tumor cells (33). In our study, MUC16 was 
up-regulated in tumor tissues with high stromal scores. 
However, there was few reports on the role of MUC16 in 
the TME and further clinical research was need. ZNF683 
(HOBIT) had demonstrated to be a core regulatory factor 
that controlled generation, proliferation, and survival of 
NK-cell progenitors and was crucial for generation of NK 
cell (34). Interestingly, our study found that, unlike what 
has been reported in other tumors (35), high expression 
of ZNF683 tended to be associated with poor prognosis 
in PDAC. CXCL5, as a chemokine that connects the 
extracellular microenvironment to the tumor (36), can be 
involved in the recruitment of immune cells by binding 
to their receptors (37) and contribute to the proliferation, 
migration and invasion of cancer cells (38-41). CRHBP is a 
corticotrophin releasing hormone binding protein gene. In 
the kidney cancer, CRHBP can promote the proliferation, 
invasion and metastasis of tumor cells by enhancing NF-
κB and p53-mediated apoptosis induction (42). CHST11 
was a key enzyme in the biosynthesis of chondroitin sulfates 
which was distributed on the surfaces of tumor cells and 
extracellular matrices (43,44). One study showed that 
CHST11 could play a role in the regulation of metastasis 
and chemoresistance via MAPK signal pathway (45).  
NOD2, a member of the intracellular NOD-like receptor 
family, had emerged as critical players in inducing 
proinflammatory and antimicrobial responses (46) and was 
assumed to be associated with the tumorigenesis of many 
kinds of cancer, such as pancreatic, gastric, colorectal, 
gallbladder, biliary tract and liver cancer (47). GALNT16 
is an N-acetylgalactosaminyltransferase gene that plays a 
role in altering protein O-glycosylation, which had great 
importance in tumor development (48). In this experiment, 
GALNT16 was associated with both immunity and matrix. 
Considering that there were few studies on GALNT16, we 
need to conduct further experiments to verify its function 
on TME.

There is certain drawback to this study. First, it only 
uses computer to simulate data and lacks the validation 
by specific clinical data, so an independent cohort study 
is need. On the other hand, the exactly mechanism of the 
seven genes in the oncogenesis and development of PDAC, 
especially on TME, remains to be fully elucidated. Further 
research will be considered to explore these mechanisms. 
Nevertheless, the combined analysis of TCGA and GEO 
databases shows that our model has great advantages in 
accuracy and stability for predicting the prognosis in 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Muniyan S%5bAuthor%5d&cauthor=true&cauthor_uid=27382435
https://www.ncbi.nlm.nih.gov/pubmed/?term=Muniyan S%5bAuthor%5d&cauthor=true&cauthor_uid=27382435
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microenvironment. Our prognostic risk score model is 
expected to be applied to clinical prognosis assessment of 
PDAC patients.

Conclusions

Our seven-genes risk score model on TME is a promising 
biomarker which could be used to predict the prognosis 
in PDAC patients. However, further studies are required 
on the mechanism of the TME. Meanwhile, prospective 
studies are needed to validate the accuracy for estimating 
prognoses in PDAC patients.
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