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Introduction

Breast cancer is one of the most common malignant tumors 
in women, which is highly heterogeneous in molecular 
changes, cellular composition, therapeutic response, and 

clinical outcomes. Based on the transcriptional level, breast 

cancer can be divided into five intrinsic subtypes, luminal 

A (LumA), luminal B (LumB), HER2-enriched, basal-like, 

and normal-like (1). According to immunohistochemistry 
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staining, breast cancer can be further categorized as luminal 
subtypes (A/B), HER2-overexpression subtype and triple 
negative breast cancer (TNBC). With the number of 
available treatment options, it becomes increasingly difficult 
and complex to make the most appropriate treatment 
choice for different breast cancer subtypes. Therefore, more 
personalized management of breast cancer are required.

A variety of clinicopathologic factors, including tumor 
size, lymph node status, and histological grade, together 
with molecular markers, such as estrogen receptor (ER), 
progesterone receptor (PR), human epidermal growth 
factor receptor 2 (HER2), and Ki-67 were used to describe 
the specific features and prognosis of breast cancer (2). 
However, the traditional clinicopathological factors cannot 
accurately recognize low-risk groups. The toxic effects and 
high costs of overtreatment remain the critical issues in the 
treatment of low-risk patients. Meanwhile, the high-risk 
patients confront the risk of undertreatment. Therefore, 
the focus of current individualized treatment for breast 
cancer patients is to predict the prognosis accurately and 
distinguish high-risk group from the majority of patients 
with low recurrence risk who may avoid chemotherapy.

Prognostic model refers to the use of statistical methods 
to determine the quantitative relationship between the 
risk factors and the probability of clinical outcomes based 
on the patient’s disease state. Breast cancer prognostic 
models can help clinicians and healthcare providers make 
more informed medical decisions on chemotherapy 
exemption. Those models based on clinical variables, 
such as Nottingham Prognostic Index (NPI), Adjuvant! 
Online and PREDICT, are the earliest and most widely 
used models. With the more profound comprehension of 
breast biology, a series of updates made since launch have 
introduced new prognostic variables (HER2, Ki67) and 
refined the prediction algorithm. However, conventional 
clinicopathological models cannot reveal the extensive 
molecular heterogeneity seen between breast tumors even 
in the hormone-receptor-positive subgroup, leading to 
bias in predicting clinical outcomes. To achieve a more 
accurate prediction of the prognosis, a series of prognostic 
models added genomic information on the basis of 
clinicopathological factors and molecular markers. The 
AJCC tumor staging system recommends the use of gene 
expression assays for prognostic stratification, and the 21-
gene assay (21-GA) Oncotype DX® was recommended 
as class I evidence (2). The ASCO biomarker guidelines 
also approved the use of 70-gene test MammaPrint® to 
provide information on the benefits of chemotherapy 

for ER-positive patients with high-risk clinical features. 
MammaPrint also became the only test approved for 
patients with 1–3 positive lymph nodes (3). In recent 
years, artificial intelligence technology has developed 
rapidly, and data-driven machine learning (ML) methods 
have been developed to realize the prediction of breast 
cancer prognosis by learning statistical rules or patterns 
from historical data. The use of ML methods to analyze 
the texture information of histopathological sections and 
imaging images broke through the limitations of human eye 
recognition by improving the data dimension, and provided 
more detailed and reliable information for the prognosis 
prediction. In this study, the development, validation, and 
classification of the existing classical prognostic models 
of breast cancer were reviewed to provide a reference for 
clinical work.

We present the following article in accordance with 
the Narrative Review checklist (available at https://dx.doi.
org/10.21037/gs-21-441).

Model development

Variable screening and variable processing

Breast cancer is a highly heterogeneous disease, and the 
prognosis of patients is affected by a variety of factors. 
The selection of prognostic variables is the basis for 
the construction of a prognosis prediction model. For 
traditional clinical variables, statistically significant 
prognostic factors were identified preliminarily through 
performing univariate and multivariate analyses by t-test, 
Logistic regression, Cox proportional risk regression, Lasso 
regression, etc. Then, candidate variables were further 
screened by adjusting the influence of confounders and 
combining them with clinical practice experience. Finally, 
the parameters are transformed in the form necessary to 
enter the prediction model. Among the clinicopathological 
factors, lymph node status, tumor size, tumor grade, age 
at diagnosis, and ER status were most commonly used to 
develop prognostic models for breast cancer (4).

For gene expression assays, these statistical methods 
mentioned are also used to select genes related to the 
prognosis of breast cancer from published literature, 
genome databases, or DNA array experiments based on 
tumor tissue. In addition, cluster analysis is an effective 
method to obtain genomes with similar functions or 
characteristics. Then, using minimization algorithms such 
as top “N” t-test statistics, top cluster index scores and, 

https://dx.doi.org/10.21037/gs-21-441
https://dx.doi.org/10.21037/gs-21-441


2817Gland Surgery, Vol 10, No 9 September 2021

© Gland Surgery. All rights reserved.   Gland Surg 2021;10(9):2815-2831 | https://dx.doi.org/10.21037/gs-21-441

variance inflation factor (VIF), to remove redundant and 
irrelevant parts, researchers will obtain the minimized gene 
sets with prognostic value.

Model construction 

Prognostic models were trained by combining prognostic 
factors with the long-term clinical outcomes in the 
development cohorts. Mathematical prediction models are 
divided into parametric models, semi-parametric models, 
and non-parametric models. Parameterized models include 
Linear regression, Logistic regression, Poisson regression, 
and Discriminant analysis. Cox proportional hazards 
regression and Competitive hazards model are the main 
semi-parametric models. Non-parametric models, namely 
ML algorithms, mainly include K-Nearest Neighbor 
(KNN) algorithm, support vector machines (SVM), penalty 
regression model, artificial neural networks, Bayesian 
networks, random forest, decision trees and so on. Among 
them, Cox proportional hazards regression was the most 
commonly used method for model development, followed 
by artificial neural networks, decision trees, Logistic 
regression, and Bayesian networks (4). Following parameter 
estimation and model fitting, these prognostic models can 
be presented as formulas, nomograms, web calculators, or 
scoring systems to quantify the likelihood or risk of the 
clinical outcome and classify patients into different risk 
groups. 

Model validation 

The evaluation of the prognostic model includes internal 
and external verification. Internal verification refers 
to assessing the reproducibility of the model in the 
same patient cohort as the development cohorts, or the 
development cohorts with longer follow-up, or specific 
subgroups of the development cohorts, or the combination 
of the development cohorts and newly recruited patients 
in the same centers. The sampling methods for internal 
validation mainly include cross-validation, random-
splitting, bootstrap and so on. External verification refers 
to validating the model’s generalizability in patients 
independent of the development cohort, comparing the 
predicted outcomes with observations, predictions from 
other models, or predictions from single prognostic factors. 

The evaluation of the prognostic model mainly includes 
four aspects. (I) Discrimination, the extent to which the 
model distinguishes patients with the outcomes from 

those without the outcomes (disease/no disease, effective/
ineffective, death/survival). Harrell’s C-index/AUC [area 
under the receiver operating characteristic (ROC) curve], 
precision-recall curve, Kaplan-Meier curve, Log-rank test, 
net reclassification improvement (NRI), and integrated 
discrimination improvement (IDI) are commonly used 
metrics to evaluate the discrimination of different models. 
(II) Calibration, the level of agreement between the 
predicted and observed outcomes, can be measured by the 
calibration plot and Hosmer-Lemeshow goodness-of-fit 
test. (III) Overall performance, the evaluation integrating 
the discrimination and calibration of the model. Explained 
variation R2, Brier scores, Akaike information criterion 
(AIC), Bayesian information criterion (BIC) were commonly 
used statistical indexes. (IV) Clinical usefulness, the ability 
to provide clinicians with decision-making guidance, can 
be evaluated based on accuracy rate, sensitivity/specificity, 
Kaplan-Meier survival curve, and decision curve analysis 
(DCA). In addition, some studies comparing two or more 
models used the Kappa coefficient (κ) and correlation 
coefficient (Pearson or Spearman) to test for consistency 
between the models. 

Model classification 

A PubMed search using the search terms “breast neoplasm”, 
“prognostic model”, “recurrence”, and “metastasis” was 
conducted, regardless of the type of article. The retrieved 
publications were screened in three levels-titles, abstracts, and 
full texts. From each selected article, relevant information 
was extracted to form the framework of this article. We 
classified prognostic models into clinicopathological models, 
gene-expression assays, and ML models, and performed a 
secondary search based on the representative model of each 
section. The prediction accuracy and clinical utility of these 
models were demonstrated. 

Clinicopathological model 

NPI
NPI is a prognostic index for patients with early-stage 
primary breast cancer to predict survival based on lymph 
node stage, tumor size, and histological grade. In 1982, 
Haybittle et al. (5) attempted to combine multiple prognostic 
factors into a prognostic index called NPI, using the Cox 
proportional hazard model in a retrospective multivariate 
analysis. The NPI allows the stratification of patients into 
three different prognostic groups and predicts the possible 
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benefit of patients receiving adjuvant therapy. The use 
of the NPI has been subsequently validated in several 
prospective cohorts (6,7), and extensive multicenter studies 
independently (8,9). To provide a more accurate survival 
estimate after breast cancer surgery, Blamey et al. (10) 
divided the patient cohorts into ten different prognostic 
groups based on the NPI value and developed interpolation 
models using continuous NPI, NPI-squared, and NPI-cubed 
covariates to evaluate the survival of individual patients. 
Those interpolation models using higher-resolution show 
better performance than the six-group NPI model initially 
described by the research group (11). In addition, NPI 
retains the ability to stratify and predict survival in patients 
with TNBC, even though TNBC seems to disseminate to 
axillary nodes and bones less frequently than non-TNBC, 
presenting a preferential hematogenous route with a 
propensity to develop metastatic deposits in viscera (12,13). 
Besides, the modified NPI (MNPI), obtained by adding the 
modified Scarff-Bloom-Richardson (SBR) grade rather than 
the SBR grade to evaluate the histological grade, could be 
used to stratify patients with stage I to III TNBC according 
to prognosis (14).

Van Belle et al. (15) observed that PR and HER2 
provided independent prognostic information and could be 
added to the NPI to develop a new prognostic index, iNPI, 
for improved disease-free survival (DFS) prediction. The 
iNPI demonstrated good discrimination and classification 
accuracy in two independent cohorts, improving the 
predictive evaluation and risk stratification in patients 
with operable breast cancer. In addition, Winzer et al. (16) 
obtained an extended NPI with improved prognostic ability 
by adding the information from hormonal status and using 
the complete information from the three NPI components, 
which were extracted through multi-variable fractional 
polynomials and further modern statistical methods.

Considering that molecular features of breast cancer 
are the critical driver of tumor behavior, Rakha et al. (17) 
developed a two-tier prognostic scoring system, NPI +, 
which combined biomarkers and traditional clinicopathologic 
variables. In NPI +, the initial assessment determined seven 
core biological classes of the tumor based on ten breast 
cancer-related biomarkers, and a second-level analysis 
identified six clinicopathological prognostic factors associated 
with breast cancer-specific survival (BCSS) subsequently, 
resulting in tailored NPI-like formulae for each biological 
class. NPI + not only overcomes the variability in the 
prognostic power of each individual clinicopathologic factor 
in the different molecular classes to achieve more accurate 

stratification of survival for breast cancer patients but also 
provides more complex personalized treatment tools for 
breast cancer patients. As a predictor of prognosis, the 
reproducibility and effectiveness of NPI + have been verified 
in multiple independent European coalitions of breast cancer 
patients (18,19). 

Adjuvant! Online
Adjuvant! Online is a web-based tool that predicts survival 
and benefits of adjuvant therapy for women with early-
stage breast cancer (stage I–III). After inputting patient 
information (age, menopausal status, comorbidity estimate) 
and tumor staging and characteristics (tumor size, number 
of positive axillary nodes, ER status), the model used 
actuarial analysis to predict the outcomes of patients with 
or without adjuvant therapy (endocrine therapy and/or 
chemotherapy). Part of the forecast results is presented 
in both numerical and graphical formats. For Adjuvant! 
Online, the 10-year survival estimates for patients without 
adjuvant therapy, including overall survival (OS), BCSS, and 
event-free survival (EFS), were derived from women aged 
35 to 69 years old who were diagnosed between 1988 and 
1992 in the United States and recorded in the Surveillance, 
Epidemiology and End Results (SEER) registry. Estimates 
of the efficacy of adjuvant therapy were derived from the 
Early Breast Cancer Trialists’ Collaborative Group 1998 
meta-analysis data (20).

In contrast with the other inputs, for which Adjuvant! 
Online used widely accepted definitions to minimize 
errors due to the subjective nature of user interpretation 
or judgment, comorbidity estimate lacks a clinically 
implemented scoring system. Ozanne et al. (21) confirmed 
that the input of comorbidity estimate affected the 
predictions of Adjuvant! Online significantly, especially for 
women aged 60 years and above, through single-variable 
deterministic sensitivity analysis. In addition, because 
Adjuvant! was developed in a cohort with relatively young 
patients, and the additional comorbidities of elderly patients 
led to an increased risk of competing deaths, the predictive 
performance of Adjuvant! Online in the elderly patient 
population was questioned widely. Applying two comorbidity 
classification models in the population-based FOCUS 
cohort of elderly patients respectively (22), Adjuvant! showed 
poor calibration for the 10-year OS and recurrence rate. 
Therefore, a prediction method specific to elderly breast 
cancer patients is needed. Tumor characteristics as well as 
detailed and standardized patient information should be 
included in the model to take into account the considerable 
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heterogeneity of the older patients with breast cancer. 
Adjuvant! has been updated several times to include 

long-term follow-up data, more reliable cause-of-death 
information, and the latest evidence of therapeutic 
efficacy, since development (23-25). In the patient cohort 
from Canadian Breast Cancer Outcomes Unit (BCOU)  
database (23), Adjuvant! Online predicted overall 10-year 
OS, BCSS, and EFS accurately, which were significantly 
overestimated in the subgroup of patients under 35 years of 
age and positive lymphatic vascular invasion (LVI). A manual 
adjustment using the prognostic factor influence calculator 
(PFIC) reduced the apparent discrepancy, but predictions by 
Adjuvant! Online were still overly optimistic for BCSS and 
EFS. Similar results were obtained in the Netherlandish (24)  
and French (26) studies, in which the OS and BCSS of 
patients under 40 were overestimated, and the BCSS of ER-
negative patients was underestimated, although the model 
showed good calibration and discrimination performance. 
The estimated bias in these subgroups of patients suggests 
consideration of including youth, LVI, and HER2 status 
in the new version of Adjuvant! Online algorithm (23,24). 
Hajage et al. (26) found that HER2 status, mitochondrial 
index (MI), and Ki67 added independent predictive 
information to Adjuvant! as well. Notably, in the cohorts 
from the United Kingdom (25), Korea (27), Taiwan (28), 
and Malaysia (29), the OS/BCSS/EFS was significantly 
overestimated by Adjuvant! Online, and OS and BCSS in 
almost all subgroups were overestimated. The differences 
in results from different regions might be correlated 
with differences in sample size, patient distribution, and 
ethnicity.

PREDICT
PREDICT is an online prognostication and treatment 
benefit tool developed in the United Kingdom, which 
was based on the survival data recorded by the Eastern 
Cancer Registration and Information Centre (ECRIC) for 
5,694 women diagnosed between 1999 and 2003 (30). In 
PREDICT, breast cancer specific mortality and mortality 
from other causes (competing mortality) were modeled 
separately, while ER-negative and ER-positive tumors 
were modeled separately too. Information obtained from 
ECRIC included age at diagnosis, lymph node status, tumor 
size, histological grade, ER status, mode of detection, 
information on local therapy, and type of adjuvant systemic 
therapy. However, age at diagnosis was not found to be 
significantly associated with breast cancer specific mortality 
and was excluded from subsequent models (PREDICT 

v1.1).  Although tending to overpredict mortality, 
PREDICT v1.1 showed good calibration and discrimination 
performance in both the ECRIC and the WMCIU dataset 
for survival and treatment benefits, except that the fit was 
less good for some subgroups in WMCIU. PREDICT v1.1 
has been validated in patient cohorts from British Columbia 
and performed well across all age subgroups except in 
women aged 20–35 where it under-predicted the actual 
mortality (31).

PREDICT v1.2, known as PREDICT +, was developed 
after introducing HER2 status as a prognostic marker into 
PREDICT v1.1, which incorporated an external estimate 
of the hazard ratio (HR) associated with HER2 positivity. 
PREDICT v1.2 provided better calibration performance 
for all-cause mortality and breast cancer specific mortality, 
especially in the specific mortality of HER2-positive patient 
subgroups. At the same time, PREDICT v1.2 allowed the 
calculation of trastuzumab treatment benefit estimates as 
well (32). 

Similarly, PREDICT v1.3 was generated by applying 
the HR associated with the tumor proliferative marker 
Ki-67 to the baseline hazards used in PREDICT v1.2, 
which accommodates the prognostic differences between 
LumA and LumB subtypes in ER-positive tumors. 
PREDICT v1.3 showed better calibration (goodness-
of-fit, P=0.065) and discrimination (AUC =0.7611 vs. 
0.7676, P=0.005) performance for breast cancer specific 
mortality in ER-positive tumors (33). In addition, Drukker 
et al. (34) attempt to add the 70-gene signature (70-GS) 
(MammaPrint™) into PREDICT v1.2 in the patients 
with early-stage breast cancer and found no significant 
improvement in 5- or 10-year survival predictions. 

Despite two modifications, PREDICT v1.3 still 
underestimated breast cancer-specific mortality in women 
diagnosed at 40 years old or younger, particularly those 
with ER-positive disease. Besides, PREDICT v1.3 used 
discrete categories for tumor size and node status, resulting 
in ‘step’ changes in risk estimations on moving from 
one category to the next. Therefore, PREDICT v2 re-
included the age at diagnosis into the prediction of breast-
cancer specific death, and re-recorded tumor size and node 
status as continuous variables, significantly increasing the 
predictive value of breast-cancer specific death risk in ER-
positive young patients (35). The calibrated PREDICT v2 
demonstrated higher accuracy in outcome prediction and 
greater population-generality across a large sample of the 
Scottish SCR dataset (36).

It is worth noting that using different basic models for 
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ER-positive and ER-negative tumors is a crucial feature of 
PREDICT. In the PREDICT model, the effects of other 
prognostic variables vary with ER status, particularly in 
HER2 status. The HR for HER2-positive disease decreases 
over time in women with ER-positive breast cancer, while 
the effect of HER2 in women with ER-negative breast 
cancer is not time-dependent (32). Another feature of 
PREDICT is that the detection mode (screening or clinical) 
is used as one of the model input parameters, taking 
into account the additional survival advantage of breast 
screening.

Special clinicopathologic prognostic models
Bremer et al. (37) developed a biologic signature named 
DCISionRT for the calculation of individual decision 
score (DS), which combined molecular markers and 
clinicopathological factors associated with recurrence 
or progression of ductal carcinoma in situ (DCIS) in a 
nonlinear model. In the cohort of DCIS patients with or 
without radiotherapy after breast-conserving surgery (BCS), 
the elevated group of DS showed higher risk for 10-year 
invasive breast cancer or any ipsilateral breast events, and 
received significant radiotherapy benefit.

Qiu et al. (38) found that four groups of breast cancer 
stem cells (BCSCs) (ALDH1A3, CD44+/CD24−, ITGA6, 
and PROCR) were identified as correlated with the relapse-
free survival (RFS) in early-stage breast invasive ductal 
carcinoma (BIDC). The correlated biomarkers were 
integrated into a prognostic panel to calculated relapse 
risk score (RRS). RRS demonstrated significant predictive 
power for 5-year recurrence rates, independent of age at 
diagnosis and tumor size. Notably, there was no difference 
for RFS between those hormone-treated patients and non-
treated patients in the high-risk score group (P=0.860), 
indicating that high RRS score ER-positive patients may 
not benefit from traditional endocrine therapy. 

Kate et al. (39) trained breast cancer survivability 
prediction models based on the cancer staging system from 
the SEER dataset. Previous studies found that the 5-year 
survival of patients with in situ breast cancer was as high as 
99.42%, while that of patients with distant metastasis (DM) 
was only 36.71%. Compared with the traditional combined 
models trained on all summary stages, stage-specific 
predictive models trained separately on each summary 
stage are the most suitable models to predict survivability 
for a specific stage, although both showed poor predictive 
performance for survivability in patients with distant 
metastases.

Gene-expression assays

21-gene recurrence score (RS) assay
To quantify the likelihood of distant recurrence (DR) 
in tamoxifen-treated patients with node-negative, ER-
positive breast cancer, Paik et al. (40) developed a  
21-gene RS assay based on a reverse-transcriptase (RT)-
polymerase-chain-reaction (PCR). Sixteen genes related to 
proliferation, invasion, survival, ER, and HER2, together 
with five reference genes were used in a prospectively 
defined algorithm to calculate the RS and determine a risk 
group (low, intermediate, or high) for each patient. In the 
NSABP B-14 trial (40), the DR rate in the low-risk group 
was significantly lower than that in the high-risk group 
(P<0.001), and RS could be used as a continuous predictor to 
provide an accurate estimate of the risk of DR in individual 
patients. In the NSABP B-20 trial, patients with high-RS 
(≥31) tumors who received cyclophosphamide, methotrexate 
and fluorouracil (CMF) or methotrexate and fluorouracil 
(MF) chemotherapy combined with tamoxifen had a 27.6% 
decrease in 10-year DR rate compared with those treated 
with tamoxifen alone. In contrast, patients with low-RS 
(<18) tumors derived minimal benefit from chemotherapy 
treatment (41). A prospective study of TAILORx (42) 
confirmed that endocrine therapy was non-inferior to 
chemotherapy plus tamoxifen treatment for patients with 
intermediate-RS [11–25] tumors in the analysis of invasive 
DFS. Even in the subgroup at high-risk clinical features, 
there was no evidence suggesting any chemotherapy benefit 
in the patients with intermediate-RS. Exploratory analysis 
indicated that chemotherapy was associated with a lower 
rate of DR than endocrine therapy for the women 50 years 
of age or younger, if the RS was 16–25. However, it was not 
clear whether this benefit was due to the cytotoxic effects of 
chemotherapy or the antiestrogenic effect associated with 
premature menopause induced by chemotherapy. 

Similar to the association between RS and risk for DR, 
there also existed a significant association between RS 
and the risk of local regional recurrence (LRR) in ER-
positive, node-negative patients from NSABP B-14 and 
B-20 clinical trials (43). Interestingly, the association in 
placebo-treated patients and CMF chemotherapy plus 
tamoxifen-treated patients was less robust than that in 
tamoxifen-treated patients, reflecting the differential effect 
of chemotherapy in reducing LRR by RS classification, 
similar to that shown with DR (41). In addition, unlike 
the straightforward association between RS and LRR in 
patients who underwent a mastectomy, the association 
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pattern between RS and LRR in patients who received 
radiotherapy after BCS was affected by age in the low RS 
group, suggesting that the effect of radiotherapy may not 
be uniform across RS categories but that radiotherapy may 
be more effective as RS increase. Several ongoing clinical 
trials, such as the Lumina trial, the Precision trial, and the 
IDEA study, are attempting to validate the clinical utility 
of incorporating genomic-based prognostic information 
into regional treatment decisions for low-risk, mostly node-
negative breast cancer patients (44).

A retrospective analysis (45) of the SWOG8814 trial 
demonstrated that RS was also an independent predictor in 
ER-positive, node-positive breast cancer. The RS was highly 
prognostic for DFS within the tamoxifen-alone group. 
However, for those surviving beyond 5 years, the RS was no 
longer prognostic (HR =0.86; P=0.80), but the prognostic 
effect of the first 5 years persisted over the entire period. 
In addition, there was no benefit from cyclophosphamide, 
doxorubicin, and fluorouracil (CAF) chemotherapy in the 
low-RS tumors, but major 10-year DFS improvement for 
the high-RS group, adjusting for the number of positive 
nodes. The result of TransATAC research (46) further 
confirmed that RS is significantly associated with the risk of 
DR in postmenopausal hormone-receptor-positive patients 
treated with tamoxifen or anastrozole, and that high-
RS tumors are more likely to benefit from chemotherapy 
regardless of lymph node status. 

In the NSABP B-28 trial (47), there was also a 
significant correlation between RS and LRR rates in ER-
positive and node-positive patients who received both 
doxorubicin/cyclophosphamide (AC) or AC plus paclitaxel 
(ACP) chemotherapy and tamoxifen treatment. Subgroup 
analysis showed that for patients with 4 or more positive 
nodes, RS was statistically significantly associated with 
risk of LRR, while there was a statistically nonsignificant 
trend in patients with 1 to 3 positive nodes. However, in 
another SWOG8814 study (44), there was no significant 
difference by RS in the 10-year rates of LRR among the 
patients with 4 or more positive nodes who received the 
mastectomy without radiotherapy (25.9% vs. 27.0%; 
P=0.27). Therefore, these findings suggest that RS can be 
used with accepted clinical variables to assess the risk of 
LRR during radiotherapy decision-making and identify 
patients who are more suitable for general radiotherapy. 
The ongoing TailorRT study will explore the safety of 
receiving radiotherapy in patients with 1 to 3 positive 
nodes in the low-RS subgroup. Until the results of 
TailorRT, radiotherapy decision-making will continue to be 

controversial for patients with low lymph node tumor load 
and low invasive tumor characteristics.

Recently, several studies have applied RS in the decision-
making of neoadjuvant chemotherapy (NACT) in patients 
with ER-positive and HER2-negative breast cancer (48-51). 
These studies showed that pathologic complete response 
(pCR) or clinical complete response (cCR) to NACT rarely 
occurs in patients with low-RS, while approximately 10% 
of patients with high-RS (RS >25 or RS >30) achieved 
pCR. NACT decision-making based on RS can effectively 
avoid overtreatment of advanced patients with low-RS. 
However, in the study of TransNEOS (52), low-RS (RS 
<18) tumors achieved a higher proportion of clinical 
response (P<0.001 vs. RS ≥31) for ER-positive and node-
negative postmenopausal patients. Bear et al. (53) selected 
neoadjuvant therapy for ER-positive patients according to 
RS grouping. Among them, patients with RS <11 received 
hormone therapy, RS ≥26 group received chemotherapy, 
and those with intermediate RS [11–25] were randomized 
to be treated with hormone therapy or chemotherapy. 
The results showed that the clinical response rate was 
significantly correlated with the RS grouping in each group 
(P=0.049), indicating that RS could be used to guide the 
neoadjuvant treatment decision for ER-positive and locally 
advanced postmenopausal breast cancer. 

In conclusion, 21-GA provides early-stage prognostic 
information and the likelihood of benefit from adjuvant 
therapy for hormone-receptor-positive breast cancers, while 
no recognition of advanced DM has been observed (54). 
Although its use has been standardized and incorporated 
into a variety of international clinical guidelines, the high 
cost of the test still limited the prevalence of 21-GA. The 
pros and cons of 21-GA and other gene expression assays 
are presented in the Table 1. 

70-gene prognostic signature
van’t Veer et al. (55) used DNA microarray analysis and 
hierarchical clustering algorithm to identify a gene expression 
signature strongly predictive of a short interval to distant 
metastases in node-negative patients. The biosignature 
called 70-GS, was composed of 70 genes related to cell cycle, 
invasion, metastasis, and angiogenesis, distinguished patients 
with “good prognosis” and those with “poor prognosis”. 
Besides, 70-GS effectively identified high-risk populations 
that might benefit from adjuvant therapy and outperformed 
clinical variables such as tumor size, histological grade, 
vascular invasion, age, and ER status in predicting the 
likelihood of DM within 5 years. Further research confirmed 
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Table 1 The applicable crowd, advantages and disadvantages and NCCN Guidelines Recommendation of gene expression assays

Model
Applicable 
crowd

Advantages Disadvantages
NCCN guideline 
recommendations 

21-GA ER (+),  
node (+/−) 

(I) Predict the 10-year risk of DR 
and LRR; 
(II) Predict the benefit of 
chemotherapy and guide patients’ 
chemotherapy decision

(I) No recognition of the risk of late-
stage events; 
(II) Lack of guiding significance 
for the chemotherapy decision in 
patients with intermediate-RS; 
(III) Lack of effective evidence 
to guide regional radiotherapy 
decision-making; 
(IV) High cost

(I) Class 1 evidence for patients 
with node (−) and postmenopausal 
patients with node (1–3+); 
(II) Class 2A evidence for 
premenopausal patients with 
node (1–3+)

70-GS ER (+/−), 
node (+/−) 

(I) Predict the 5-year risk of DM 
and LRR; 
(II) Guide chemotherapy decisions 
in patients with intermediate-RS; 
(III) Instruct chemotherapy 
decisions in patients with high-risk 
clinical features and low-risk  
gene-expression profiles

(I) Fail to effectively predict late 
tumor events; 
(II) The cost-effectiveness was 
observed in patients with high-risk 
clinical features, but fail in those 
with negative nodes; 
(III) Fresh frozen tissue samples 
require higher quality;  
(IV) High cost

(I) Class 1 evidence for patients 
with node (−) and patients with 
node (1–3+)

PAM50 All patients (I) Assign an intrinsic subtype to 
patients; 
(II) Predict the 10-year risk of DR 
and LR; 
(III) Instruct the prolonged 
endocrine therapy for 5–10 years 
after diagnosis; 
(IV) Better distinguish intermediate- 
and high-risk groups than 21-GA; 
(V) Can be performed in any 
qualified pathology laboratory

(I) Lack of effective evidence to 
guide chemotherapy decision; 
(II) Cannot predict the benefit of 
radiotherapy, and need further 
verification; 
(III) High cost

(I) Class 2A evidence for patients 
with node (−) and patients with 
node (1–3+)

Endopredict ER (+), 
HER2(−)

(I) Combine genomics and 
clinicopathological information; 
(II) Predict the early- and late-stage 
risk of DR and LR; 
(III) Instruct the decision-making of 
prolonged endocrine therapy and 
combining chemotherapy; 
(IV) Portable prognostic platform 
and sample type 

(I) Lack of effective evidence 
on predicting the benefit of 
chemotherapy; 
(II) Not suitable for customized local 
treatment regimens

(I) Class 2A evidence for patients 
with node (−) and patients with 
node (1–3+)

BCI ER (+), 
node (+/−) 

(I) Unique advantages in late-stage 
prognostic prediction; 
(II) Important guiding significance 
for prolonged adjuvant endocrine 
therapy

(I) Lack of effective evidence 
on predicting the benefit of 
chemotherapy

(I) Class 2A evidence for patients 
with node (−) and patients with 
node (1–3+)

ER (+), estrogen receptor positive; ER (+/−), estrogen receptor positive or negative; HER2 (−), human epidermal growth factor receptor 2;  
node (+/−), lymph node positive or negative; node (1–3+), 1 to 3 positive lymph nodes; 21-GA, 21-gene assay; 70-GS, 70-gene signature; 
DR, distant recurrence; LRR, local regional recurrence; LR, local recurrence; BCI, breast cancer index; NCCN, National Comprehensive 
Cancer Network.
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that 70-GS was also a strong predictor of DM in patients 
with positive nodes (HR =4.5, P<0.001) (56). In addition,  
70-GS was significantly correlated with the risk of 
locoregional recurrence (LRR) (P<0.001) as well. However, 
the effect of RS on LRR did depend on the time since 
diagnosis, with a strong effect in the first 5 years (HR =2.59), 
and no significant relation at longer follow-up. What’s more, 
several retrospective analyses (57-59) and a community-based 
feasibility study (Raster) (60) have verified the prediction 
performance of 70-GS. Similar to 21-GA, 70-GS predicted 
recurrence risk only within 5 years after diagnosis and failed 
to identify late-stage events effectively (54).

The  MINDACT Tr i a l  p rov ided  p ro spec t i ve , 
randomized evidence of clinical efficacy of 70-GS, 
identifying a significant proportion of patients with 
discordant risk results between clinical features and gene-
expression profiles in early-stage breast cancer (3). Cardoso 
et al. (61) confirmed that for patients with high-risk clinical 
features and low-risk gene-expression profiles, there was 
no significant difference in 5-year distant metastasis-free 
survival (DMFS) between patients treated with or without 
chemotherapy (P=0.27). In this subgroup, patients who did 
not receive chemotherapy could also got an extremely high 
rate of 5-year DMFS (94.4%), which was only 1.5% lower 
than those treated with chemotherapy. Approximately 46% 
of patients with high-risk clinical characterizes tumor may 
not need chemotherapy. Notably, even for patients with 
positive nodes [1–3], there was no statistical difference 
in DMFS between the two treatment groups. However, 
there was also no meaningful difference in the 5-year 
DMFS between patients with high-risk clinical features 
and low-risk gene-expression profiles when they received 
chemotherapy or not (P=0.66). Therefore, for patients 
with high clinical risk, the addition of 70-GS information 
based on traditional clinical and pathological factors can 
provide valuable information for the selection of patients 
who may benefit from adjuvant chemotherapy, while the 
results of 70-GS do not provide evidence for chemotherapy 
recommendations chemotherapy for patients with low 
clinical risk. In the exploratory analysis of the potential age 
effect, the benefit of chemotherapy on high clinical risk 
and low genetic risk was only observed in women under 
50 years of age, which may be related to chemotherapy-
induced ovarian function inhibition. Further study is 
required for younger (62). 

In a prospective, observational, multicenter study, 
Kuijer et al.  (63) assessed the impact of 70-GS on 
chemotherapy decisions in patients with early-stage, ER-

positive breast cancer. After disclosure of the 70-GS result, 
the preliminary advice was changed in 51% of patients 
who received a recommendation before testing, and the 
final chemotherapy recommendation of the physician was 
consistent with the 70-GS result in 96% of patients. In 
addition, the PROMIS trial (64) evaluated the effect of 70-
GS on the chemotherapy decision in a patient population 
with an intermediate-RS [18–30] derived from 21-GA. 
It showed that 70-GS classification was significantly 
associated with chemotherapy decisions of clinicians 
(P<0.001). The adjuvant treatment recommendations 
for 36% of patients were changed after receiving 
the results of 70-GS, and physicians reported having 
greater confidence in their treatment recommendations. 
Therefore, the 70-GS provided clinicians with clinically 
actionable information and increased their confidence in  
degraded care. 

It’s worth noting that the cost-effectiveness of 70-GS 
was observed to be superior to clinical evaluation only in 
patients with ER-positive, HER2-negative, and high-risk 
clinical features (65), while no significant advantage was 
seen in patients with negative nodes (66).

PAM50 risk of recurrence (ROR) score
Parker et al. (67) used microarray and quantitative RT-
PCR to identify significant clusters representing different 
“intrinsic” subtypes and develop a 50-gene subtype 
predictor (PAM50), and then calculated a ROR score. 
For patients with node-negative tumors, the intrinsic 
subtype model (ROR-S) showed significantly better 
prediction performance than the clinical variable model 
but worse than the combined model (ROR-C), including 
subtype and clinical variables. ROR-C score was linearly 
associated with the 5-year recurrence rate. In addition, 
the ROR-S predicted NACT efficacy effectively with a 
negative predictive value for pCR of 97%. The pCR rate 
was positively correlated with ROR-S score, but there 
is a platform in the high-ROR-S groups, suggesting 
chemotherapy resistance in high-risk tumors. Nielsen  
et al. (68) demonstrated that PAM50 reassigned some 
clinical ER-positive patients to non-luminal subtypes 
and provided more prognostic information for long-term 
survival in tamoxifen-treated ER-positive patients than 
standard clinical variables.

In the TransATAC trial (69), the ROR score added 
significant prognostic information for 10-year DR beyond 
that of RS and clinical treatment score (CTS), and showed 
better discrimination performance between moderate-risk 
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and high-risk groups than RS. Similarly, in the ABCSG-8 
trial (70), for patients with early-stage, ER-positive tumors 
and received 5 years endocrine therapy, the continuous 
ROR score and the ROR-based risk groups significantly 
added prognostic information for distant recurrence-
free survival (DRFS) to the clinical predictors (P<0.0001). 
What’s more, PAM50 assigned an intrinsic subtype to 
all patients based on the nearest centroid. DRFS was 
significantly higher in LumA patients compared with LumB 
(P<0.0001), and LumA/LumB subtypes add a significant 
amount of additional prognostic information to the clinical 
predictors (P<0.0001), regardless of lymph node status. The 
ABCSG-8 trial together with the ATAC trial constituted 
the first-level evidence of the clinical effectiveness of the 
PAM50 in predicting the risk of DR in postmenopausal 
women with ER-positive early-stage tumors (70). The 
combined analysis of these two trials showed that the ROR 
score also had clinically meaningful prognostic significance 
in the late follow-up period (5–10 years), and helped select 
the risk population who potentially benefit from prolonged 
hormone therapy beyond 5 years (71). 

In the DBCG-77B trial (72), a highly significant 
association was observed between intrinsic subtypes and 
cyclophosphamide (C) or CMF treatment for DFS in 
premenopausal high-risk patients. The risk of DFS was 
significantly reduced in basal-like and LumB subtypes, 
while no benefit was seen in HER2-enriched or LumA 
subtypes. In addition, DBCG-89D trial (73) showed that 
patients with HER2-enriched or basal-like tumors benefit 
from adding anthracyclines (CEF) to CMF chemotherapy, 
which was associated with the increase of ROR score. In 
patients with LumA or LumB subtypes, the persistent 
ROR score did not show any association with anthracycline 
chemotherapy benefit. In addition, in the MONALEESA 
trial (74), all subtypes except basal-like demonstrated 
significant progression-free survival (PFS) benefit with 
ribociclib.

ROR score also provided prognostic information for 
local recurrence (LR). In the ABCSG-8 trial (75), the 
PAM50 ROR score and intrinsic subtypes effectively 
identified a genomic low-risk population within the group 
of patients with clinically low-risk of LR (super low risk 
of LR). However, no prognostic difference was observed 
between patients with and without radiotherapy, suggesting 
that PAM50 could not predict the benefit of radiotherapy. 
Due to the limited number of patients and LR events, the 
effect on LR of PAM50 still needs to be further verified in 
larger cohorts with more events. 

The PAM50 ROR score and subtype classifier predicted 
the survival and chemotherapy benefits of breast cancer 
patients better than 21-GA RS and clinical variables. 
Despite its high cost, PAM50 can be performed in any 
qualified pathology laboratory, laying the foundation for its 
widespread application.

EndoPredict (EP) score 
Filipits et al. (76) developed and defined a risk score EP 
for patients with ER-positive, HER2-negative, early-
stage tumors, consisting of eight tumor-related and three 
reference genes. Combined with nodal status and tumor 
size, EP was transformed into a comprehensive risk score, 
EPclin. In the ABCSG-6/8 trials, with the differential 
contribution of proliferation genes and ER signaling genes, 
continuous EP provides additional prognostic information 
for identifying early (5 years) and late (>5 years) DM, 
independent of Adjuvant! Online, ER, and Ki67 (76,77). 
Besides, the EPclin score outperformed all conventional 
clinicopathologic risk factors in predicting late-stage 
recurrence events, identifying high-risk patients who 
potentially benefit from extended hormone therapy or other 
adjuvant therapies (76). Further study of ABCSG-6/8 trials 
verified the value of the EPclin score for late DR (10- or 
15-year), regardless of lymph node status (78). 

The prognostic significance of EPclin in DR for 
premenopausal and postmenopausal patients with ER-
positive, HER2-negative tumors has been demonstrated 
(79,80). On this basis, Sestak et al. (81) found that patients 
with high EPclin score who received chemotherapy had 
a significantly lower 10-year DR rate than those received 
endocrine therapy alone, while no difference in the risk 
of DR was observed between the two treatment groups 
with a low EPclin score (<3.3). The positive interaction 
between the EPclin score and the treatment groups further 
emphasized the potential benefit of chemotherapy in 
patients with high EPclin score, independent of lymph 
node status. In addition, Bertucci et al. (82) confirmed that 
the EP classification was associated with pCR after NACT 
with anthracycline (P<0.001), with the high EP group 
more likely to obtain pCR. In the ABCSG-34 trial (83), 
EP score significantly predicted the benefits of NACT and 
neoadjuvant endocrine therapy (NET) in patients with ER-
positive, HER2-negative, early-stage tumors. Patients with 
low EP score treated with NACT were unlikely to benefit 
from NACT, while a high EP score predicted resistance to 
NET.

The EP score was also an independent predictor of local 
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relapse-free survival (LRFS). In the ABCSG-8 trial (84), the 
EP score identified genomic low-risk individuals in clinically 
low- to intermediate-risk groups for LR. However, the effect 
on LR of EP was only observed within the group of patients 
receiving RT, while in women who did not receive RT 
after BCT, the LR rate was similar between the EP high- 
as well as EP low-risk group. Moreover, in patients at high 
risk for EP, radiotherapy did not result in fewer LR events 
than mastectomy and BCS, suggesting that EP may not be 
suitable for customized local treatment regimens. 

The EP and EPclin scores provided prognostic 
information for early- and late- stage events in patients 
with ER-positive and HER2-negative tumors. The EPclin 
score combined with clinicopathological parameters 
was associated with better prognosis prediction and risk 
stratification. The portability of the prognostic platform and 
sample type is an essential feature of the clinical application 
of the EP. 

Breast cancer index (BCI)
Jerevall et al. (85) developed a continuous risk model based 
on molecular grade index (MGI) and HOXB13: IL17Br 
(H:I) ratio to estimate recurrence risk at the individual level 
for patients with ER-positive, node-negative tumors. The 
MGI is a five-gene predictor that recapitulates tumor grade 
and/or proliferation and is highly prognostic in patients 
with ER-positive tumors. H:I is prognostic for early and 
late DR and is predictive of adjuvant and extended adjuvant 
hormonal benefit in patients with early-stage hormone-
receptor-positive, node-negative tumors, independent of 
tumor grade and/or proliferation. The dichotomous index 
combined MGI and H: I outperformed either index alone 
in predicting the ROR (86). Similarly, continuous BCI 
also had significant prognostic efficacy in the untreated 
population, with a larger proportion of patients classified 
into the low-risk group for recurrence, suggesting that 
additional chemotherapy was unnecessary (85). NCIC 
CTG MA.14 Study (87) further confirmed that BCI has a 
strong prognostic effect on RFS in postmenopausal patients 
with early-stage tumors treated with tamoxifen alone or in 
combination with octreotide. Even in patients with positive 
lymph nodes, half were classified as low risk by the BCI.

Stockholm randomized controlled cohorts (88) showed 
that continuous BCI was the most significant predictor 
to assess early- and late-DR risk in patients with ER-
positive, node-negative tumors, and treated with hormone 
therapy (P=0.0005), which assisted chemotherapy decisions 
at diagnosis and extended adjuvant endocrine therapy 

decisions beyond 5 years. Similarly, in the Trans-aTTom 
trial (89), the patients with high BCI score, who have a 
hormone-receptor-positive, node-positive tumor, also 
benefited significantly from 10- and 5-year tamoxifen 
treatment, with an absolute risk reduction of 10.2% based 
on relapse-free interval (RFI) (P=0.027). The interaction 
between prolonged tamoxifen treatment and BCI was 
statistically significant (P=0.012), further confirming the 
potential benefit of prolonged tamoxifen treatment. 

Other special gene-expression assays
Wang et al. (90) used the Affymetrix U133A gene chips to 
identify a 76-gene signature, consisting of 60 ER-positive 
and 16 ER-negative genes for patients with node-negative 
breast cancer who did not receive systemic adjuvant therapy. 
In the analysis of the function of 76 genes, although genes 
related to cell death, proliferation and transcriptional 
regulation were found in both groups of patients stratified 
by ER status, there was no overlap between the genes of the 
two group, indicating that the extent of heterogeneity and 
the underlying mechanisms for disease progression may be 
different for the two ER-based subgroups of breast cancer 
patients.

To solve the multicollinearity of genes and improve 
the generalization ability of the model, Hikichi et al. (91) 
applied the same dataset as which Wang et al. (90) used to 
build 76-Gene signature to develop a simple but robust 
feature selection method using a correlation-centered 
approach. They obtained a 12-gene set with both high 
predictive and generalization abilities and constructed a 
prediction model for 5-year DM in patients with early-stage 
breast cancer, of which the prediction efficiency was similar 
to that of Rotterdam 76-gene assay.

For TNBC patients who received adjuvant chemotherapy 
after curative surgery, Park et al. (92) found that there 
were 11, 7, 9 genes included in the final prediction models 
for RFS, DRFS, and OS, respectively, using NanoString 
expression assay and systematic gradient LASSO algorithm. 
These models divided patients into high-risk and low-risk 
groups, and provided significant prognostic ability together 
with the TNM staging system.

Most of the prognosis-predictive molecular scores 
for breast cancer are applicable to only limited disease 
subtypes. To address this issue, Shimizu et al. (93) obtained 
a minimal genome consisting of 23 genes by analyzing the 
entire group of human protein-coding genes. Molecular 
prognostic score (mPS) was calculated by a linear weighting 
of the 23 genes. mPS was not only suitable for both RNA-
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sequencing and microarray datasets, but also capable of 
stratifying OS and DFS simultaneously. In addition, mPS 
can further enlist patients into different risk groups for 
precise stratification for different PAM50 intrinsic subtypes, 
age, pathological subtypes, and TNM stages. 

ML model (image)

Radiomics signature
Park et al. (94) developed a radiomics signature based 
on preoperative magnetic resonance imaging (MRI) to 
estimate DFS in patients with invasive breast cancer. The 
radiomics nomogram incorporating the radiomics signature 
and clinicopathological findings showed better predictive 
performance for DFS than the clinicopathological or Rad-
score-only nomograms. Similarly, Yu et al. (95) developed a 
dynamic contrast-enhanced (DCE)-MRI radiomic signature 
for preoperative identification of axillary lymph node 
metastasis (ALNM) and assessed individual DFS in patients 
with early-stage breast cancer. It was found that for both 
ALNM and DFS, clinical-radiomic nomogram combining 
the clinical characteristics and radiomic signatures showed 
better clinical predictive power as well. Moreover, Koh 
et al. (96) confirmed that the Rad score derived from the 
three-dimensional radiomic features of breast MRI was also 
a prognostic factor for predicting systemic recurrence in 
patients with TNBC.

Tadayyon et al. (97) developed a quantitative ultrasound 
(QUS)-based multiparametric classifier incorporating 
texture and image quality features that account for tumor 
core and a 5 mm thick surrounding margin. The classifier 
was demonstrated to be a sensitive (90%) and specific 
(79%) pre-treatment predictor of tumor response to 
NACT and 5-year RFS (P<0.05) in patients with locally 
advanced breast cancer (LABC). Furthermore, Dasgupta 
et al. (98) performed a second-pass texture analysis on 
QUS parameters to create high-order texture derivatives 
to predict the NAC response of LABC, and obtained 
better results than using texture features alone. In addition, 
Xiong et al. (99) extracted a multi-feature-based radiomics 
signature from preoperative ultrasound (US) images and 
calculated a radiomics score (Rad-score) to predict the DFS 
of invasive breast cancer. The Rad-score was significantly 
correlated with DFS and provided additional predictive 
performance independent of clinical pathology nomograph. 
Results of subgroup analysis showed that the Rad-score 
successfully discriminate prognoses in LumB (P=0.00006) 
and TNBC (P=0.00003), but failed in either LumA 

(P=0.563) or HER2-enriched (P=0.109), indicating that 
the ability of radiomics signature to assess DFS for invasive 
breast cancer vary by molecular subtype.

Pathological recurrence classifier
Klimov et al. (100) developed a novel ML pipeline to predict 
the risk of ipsilateral recurrence. For DCIS patients, at first, 
the patient’s whole surgical H&E slides were transformed 
into prognostically information tissue classes, through the 
random forest annotation classifier manually trained by 
pathologists. Then, tissue architecture features and features 
of the spatial relationship between these tissue classes are 
extracted and compiled into a “full sliding” feature set. 
Finally, a random forest recurrence risk classifier is trained 
by combining the patient’s digitized whole slide image 
(WSI) and clinical pathological long-term result data. As a 
result, the recurrence classifier significantly predicted the  
10-year recurrence risk of DCIS and provided predictive 
value for the long-term outcome of radiotherapy after BCS 
in patients with different risk groups.

Discussion 

Breast cancer is a group of heterogeneous diseases with a 
variety of molecular subtypes. Conventional clinicopathological 
factors and their combined models are often difficult to 
accurately predict the prognosis and treatment benefits 
of individual breast cancer patients. To better define risk 
stratification, whole-genome studies have created multiple 
prognostic genetic signatures for breast cancer. The first 
generation of polygenic testing tools, represented by 21-GA 
and 70-GS, provide early survival prognosis and treatment 
benefit prediction independent of clinicopathological 
factors for breast cancer patients. The second generation of 
multigene testing tools, represented by PAM50, EPclin, and 
BCI, combined genomic information and clinical variables 
to build a composite model. Their risk stratification and 
prediction performance were better than the first generation, 
and they could achieve the prediction of long-term survival 
events. AJCC, National Comprehensive Cancer Network 
(NCCN), and other guidelines have recommended that the 
above genetic testing tools could be applied in clinical practice. 
However, the application of polygenic testing is still limited 
due to high cost, insufficient technology, poor reproducibility 
and other reasons. Artificial intelligence technology facilitated 
the emerge of prognostic models relying on ML. High-
latitude data of imaging and pathological images have provided 
more information for prognosis prediction of breast cancer. 
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But such models are still in the development stage. At present, 
there is still a lack of economic and practical prognostic tools 
for clinical application, especially for ER-negative breast 
cancer patients. Further studies need to be conducted for 
the validation of existing models and the development of 
new efficient prognostic models including both clinical and 
genomic data. In this article, we merely searched the PubMed 
database and summarized the classic prognostic models of 
breast cancer. Researches on prognostic and verification 
models that combine multidisciplinary fields with new 
technologies like artificial intelligence need to be conducted.

In conclusion, patients with breast cancer should be 
stratified based on genomics information and clinical 
characteristics simultaneously to identify low-risk 
patients who may avoid unnecessary systemic treatment, 
especially for patients with high-risk clinical features 
and low-risk gene-expression profiles. The detailed 
interpretation of imaging or pathological image will provide 
more accurate information for the patient’s prognosis  
prediction.
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