
© Gland Surgery. All rights reserved.   Gland Surg 2021;10(12):3334-3341 | https://dx.doi.org/10.21037/gs-21-745

Introduction

Breast cancer (BC) is the most common form of cancer in 
women, accounting for almost one-third of cancer cases 
among US women (1). With considerable increases in 
diagnosis rates, mostly due to better imaging and screening, 
the rate of cancer deaths has steadily declined since 1975. BC 
brain metastasis (BM), which occurs 34 months (on average) 

after diagnosis of BC, is a sign of poor prognosis, with a 
mean survival time of 15 months. A random sampling of BC 
patients shows that approximately 15% have diagnosed BM. 
Owing to better detection methods, there has been a trend 
of increasing BM rates over time, with BM being detected in 
up to 30% of all BC patients in autopsies. Human epidermal 
growth factor receptor 2 positive (HER2+) BC patients have 
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an up to 50% chance of being diagnosed with BM, while 
triple-negative patients have a 25–46% chance (2,3). 

The risk of BCBM is correlated with certain mutations. 
A gene panel from 2015 with a sample size of 60 has shown 
that mutations in TP53 (59.5%), MLH1 (14.3%), and 
PIK3CA (14.3%) were relatively common, and that there 
were no significant genetic differences between BM and 
non-BM BC cells (4). A DNA panel of over 10,000 cancer 
patients from 2017 demonstrated similar mutation rates 
for TP53 and PIK3CA in unrelated cancer cells (5). More 
recent analyses have shown considerable genetic differences 
between primary BC cells and BM cells, with BM cells 
having more mutations and copy-number-alterations (6). 
A 2007 study of 44 BC cases with 23 BMs showed that 
while only 15–20% of BC in general are estrogen receptor 
negative (ER−) and progesterone receptor negative (PR−), 
more than 64% of BCBMs are steroid hormone receptor 
negative (7). Triple negative breast cancer (TNBC) is 
defined as BC that is ER−, PR−, and HER2−, and has a 
survival rate between those of steroid receptor-positive 
and HER2+ BC; although, it is the most likely to have 
recurrent metastases (8). The HER2 gene is closely related 
to HER1 (also known as epidermal growth factor receptor, 
EGFR) and is targeted for treatment in roughly 30% of BC  
patients (9). Both are known oncogenes and activate 
mechanisms for cell survival, proliferation, migration, and 
angiogenesis, all of which are factors that contribute to 
oncogenesis and metastasis (10). An analysis of 20 BCBM 
patient genomes has shown gain-of-function in FGFR4 
(30%) and loss of function in ESR1 (45%). In addition, the 
expression of ERBB2/HER2 were found increased greater 
than two-fold in 35% of patients (11).

Overall, many effective treatments for BC are less 
effective for BCBM (12). A monoclonal-antibody-based 
treatment, trastuzumab, targets the HER2 receptor and is 
considered one of the most effective treatments for HER2+ 
BC. However, it is less effective in BCBM compared to 
combination chemotherapy (13). Despite brain tumors 
secreting angiogenic factors, which result in a blood-tumor 
barrier (BTB) that is more porous than the blood-brain 
barrier (BBB), antibodies are still too large to effectively 
cross the BTB (14). In addition, the exact molecular 
mechanisms for BCBM are uncertain, although signal 
proteins like C-X-C Motif chemokine receptor 4 (CXCR4) 
and Vascular Endothelial Growth Factor (VEGF) are known 
to play a role (12). However, the use of trastuzumab and 
other antibody therapies prior to BM have been shown 
to decrease the probability of BM in cases of metastatic 

HER2+ BC, from a 1-year BCBM probability of 87.7% 
for the control group to 66.9% for the test group (15). 
Interestingly, the resistance of HER2+ BCBM to HER2+ 
targeted therapy seems to extend to some small-molecule 
treatments, although combination therapies have shown a 
significant effect (16,17). A 2010 study reported considerable 
differences in BCBM patient survival times by type and 
treatment. For example, the mean survival time of TNBC 
BM patients was 4 months, HER2+ patients was 9 months, 
and luminal HER2+ patients was 15 months. HER2+ 
BCBM had an untreated mean survival time of 3 months, 
which increased to 8 months with chemotherapy, and 11 
months with chemotherapy + radiation (18). Recently, cell 
proliferation, immune response and cell migration as critical 
pathways in a prognostic signature for HER2+:ERα− breast 
cancer using Gene Set Enrichment Analysis (GSEA) (19). 
Cancer immunologic pathways were found related to clinical 
outcomes in basal-like breast cancer (20). Immune response 
pathways were speculated as potential novel drivers in brain 
metastatic samples of TNBC samples with homologous 
recombination (HR) signature conserved (21). Whether 
immune pathway affects TNBC brain metastases needs to be 
checked in transcriptome data. To test this assumption, this 
study conducted a transcriptome-wide analysis of TNBC 
BCBM. Our findings can help to improve the outcomes of 
TNBC BCBM patients. We present the following article in 
accordance with the MDAR reporting checklist (available at 
https://dx.doi.org/10.21037/gs-21-745).

Methods

Data collection

Messenger RNA (mRNA) expression data for 204 
samples from the GSE12276 dataset (22) was downloaded 
from the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/) using R package  
GEOquery (23). This was the total BCBM expression 
available from the GEO database. The probe with the 
highest expression was used as the gene expression value for 
each gene. Probes failing to map and outlier samples were 
discarded. In total 15,222 genes in 198 samples were used in 
following analysis. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Bioinformatics analysis

Differential analysis of gene expression between primary 
samples with/without metastasis was conducted using 

https://www.ncbi.nlm.nih.gov/geo/
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R-package DESeq2 (24). Samples without metastasis were 
used as control group. Significant genes were selected 
using an adjusted P value cutoff of 0.05 and absolute value 
of log2FC >1. Functional enrichment was investigated 
using the R Clusterprofiler package (25). R-package  
ggplot2 (26) was used to visualize the top enriched terms 
of the Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) databases, using P<0.05 as 
the significance threshold. The TNBC-related gene list 
and external verification gene list were extracted from The 
Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-
BRCA) using R-package GEOquery. The code for this 
paper is available upon request.

Survival analysis

In addition, R package survminer (27) was used to conduct 
3-year survival and BM analyses, using P value <0.05 as the 
significance threshold.

Statistical analysis

All statistical analysis were conducted in R 3.8.

Results

The GSE12276 dataset were used to conduct BCBM 

analysis. The expression levels were normalized and 
transformed through log2+1. The differential expression 
(DE) analysis results showed up-regulation in 120 genes and 
down-regulation in 56 genes (Figure 1) for BM in TNBC, 
as opposed to non-metastatic TNBC.

GO enrichment

GO enrichment analysis of the differentially-expressed 
genes showed that 97 DE genes were classified as biological 
processes (BP), two as cellular components (CC), and 20 as 
molecular functions (MF) (Figure 2A). The most statistically 
significant and differentially expressed GO group was 
GO:000695, which was the group for immune response. 
A more detailed analysis of GO enrichment indicated 
that the enriched immune response contained categories 
with a humoral immune response, immune signaling, 
immune chemotaxis, immune chemokine, and calcium ion 
hemostasis (Figure 2B). 

KEGG enrichment

KEGG enrichment results showed enrichment in multiple 
immune pathways (Figure 3). Notably, cytokines are involved 
with immune-cell-induced apoptosis, and dysfunction in 
cytokine pathways are associated with oncogenesis and 
proliferation (28). Primary immunodeficiency is similarly 
associated with cancer, and the interleukin-17 (IL-17) 
signaling pathway has been shown to directly cause BC 
through granulocyte colony-stimulating factor (29). Overall, 
KEGG analysis results showed a systematic enrichment of 
genes related to oncogenesis and cancer progression, with 
anti-apoptotic and immune system pathways increasing 
the survival of mutated cells and inflammation pathways, 
resulting in increased cancer proliferation and metastasis.

Survival analysis

Our survival analysis of gene expression identified estrogen 
receptor alpha (ESR1) as the only statistically significant 
gene (Table 1). ESR1 mutations are frequently found in 
metastatic BC, and are often acquired after aromatase 
inhibitor treatments for metastatic BC (30).

Metastasis analysis identified FYB2  as the only 
statistically significant gene, which is part of T-cell 
receptor-mediated signaling pathway activation (Table 2). 
Validation results showed similar trends, with no gene DE 
levels related to BM events. Furthermore, there was no 
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Figure 1 Volcano plot of differential gene expression. The vertical 
axis represents statistical significance while the horizontal axis 
represents the size of expression difference. The red dots represent 
genes that meet the significance thresholds for both.
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Table 1 Differentially expressed genes in 3-year survival

Term HR (95% CI) Statistics P value

ESR1 −0.21 (−0.32 to −0.09) −3.65 <0.01

PRR15 −0.13 (−0.27–0.02) −1.73 0.08

ERBB4 0.09 (−0.01–0.2) 1.72 0.09

BCL11A −0.08 (−0.22–0.05) −1.27 0.2

VGLL1 −0.04 (−0.11–0.03) −1.11 0.26

MMP1 0.04 (−0.03–0.1) 1.09 0.27

HORMAD1 −0.03 (−0.11–0.04) −0.85 0.4

FYB2 −0.04 (−0.14–0.05) −0.84 0.4

LINC00993 −0.03 (−0.11–0.06) −0.61 0.54

CA12 −0.04 (−0.18–0.11) −0.52 0.6

TSPAN1 −0.02 (−0.12–0.09) −0.35 0.73

ANXA9 −0.01 (−0.13–0.12) −0.11 0.91

Table 2 Differentially expressed genes in brain metastasis

Term Estimate SE Statistics

Intercept −8.48 6.09 −1.39

FYB2 −0.53 0.19 −2.73

ERBB4 −0.15 0.18 −0.86

CA12 −0.04 0.26 −0.16

VGLL1 0 0.12 −0.03

ESR1 0.01 0.19 0.06

TSPAN1 0.11 0.19 0.58

LINC00993 0.09 0.16 0.59

BCL11A 0.18 0.25 0.71

PRR15 0.26 0.26 1

MMP1 0.21 0.15 1.44

HORMAD1 0.19 0.13 1.49

SE, standard error.

difference in primary and meta-samples in our dataset for 
TNBC-related genes.

Discussion

In this study, we attempted to identify the differential gene 
expression differences between TNBC and non-TNBC. 
Multiple genes were found to be associated with BCBM, 

with 120 up-regulated and 56 down-regulated genes. These 
genes were enriched in the following categories: humoral 
immune response, immune signaling, immune chemotaxis, 
immune chemokine, and calcium ion hemostasis. The 
humoral immune response directly attacks and helps to 
induce apoptosis in cancer cells, and has been shown to have 
predictive value for BC survival (31). Immune signaling 
is a vital aspect of inflammation pathways and contributes 
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directly to cancer proliferation (32). Immune chemotaxis 
and immune chemokine are both functions that help guide 
immune cells to cancerous and pre-cancerous cells for 
destruction, and disruption helps cancer cells evade the 
immune system (33). High levels of cellular calcium are 
known to play a role in the calcification of breast tissue, 
which is associated with BC progression (34). Primary 
immunodeficiency is similarly associated with cancer, and the 
IL-17 signaling pathway has been shown to directly cause 
BC through the granulocyte colony-stimulating factor (29). 
Through multivariate analysis, we also found that ESR1 and 
FYB2 were independently linked to survival and metastasis. 
ESR1 is a well-known metastatic and drug-resistance gene in 
BC (35,36). Recent real-word data and cell line studies have 
found infiltrating immune cell status reveals therapeutic 
vulnerabilities of ESR1-mutant breast cancer (37,38). FYB2 
is part of the T-cell receptor-mediated activation of signaling 
pathways and T-cell activation (39); however, its relationship 
to cancer has not been specifically investigated. 

Compared to other forms of BC, TNBC has different 
survival  and metastasis  patterns,  and is  generally 
associated with lower survival and a higher likelihood of  
metastasis (8). There have been few reports regarding gene 
expression characteristics specific to metastatic TNBC (40). 
Much of this has been due to a limited number of samples 
available for comparative analysis (41). Our re-analysis 
found that FYB2 may act as a key differentially-expressed 
gene in TNBC BM. T-cell activation plays a vital role in 
regulating cancer proliferation and metastasis (42). FYB2 
might provide a novel target of drug discovery.

In conclusion, this study confirmed that metastasis is 
closely correlated to the expression of inflammation- and 
immune-related genes. Notably, immunotherapy, which 
affects both, is known to decrease both the likelihood of 
further BMs and increase survival in patients with metastatic 
melanoma (43).
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