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Background: breast cancer and the need for 
reconstruction 

As the second most common cancer worldwide (11.9%), each 
year 1.7 million women receive a new diagnosis of breast 
cancer (1,2). While advances in treatment have meant an 
overall reduction in mortality [522,000 deaths per year (1)], 
the global burden of this disease continues to be significant (3).  
In Britain, the age standardised incidence and mortality 
remains one of the highest in the world with around 14,000 
women losing their lives every year to this disease (4). For 
those that survive, the morbidity is life changing, with 
physical, emotional and psychological aspects requiring 
multidisciplinary management (3,5-8). The treatment of 
breast cancer has evolved significantly; our understanding of 
the pathophysiology and molecular aetiology has advanced 

the way in which primary and adjuvant therapy is designed 
and delivered (9,10). Personalised treatment is playing an 
essential role in improving life expectancy, which has doubled 
in the last 50 years (9). 

In the UK, of the approximately 46,000 women 
diagnosed annually with breast cancer, around 40% 
undergo mastectomy as their primary therapeutic procedure 
(11,12) and 30% of these have either immediate or 
delayed reconstruction. NICE guidance recommends that 
all women undergoing breast cancer surgery should be 
offered immediate reconstruction at their initial operation 
(12,13). The caveat being that where patients are primarily 
undergoing adjuvant treatment, this can be delayed to such 
time that reconstruction becomes an option. The guidance 
goes on to recommend that even if reconstruction is not 
available locally, patients should be provided with all the 
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options in order to make an informed choice (13). It may 
be surprising then, that of all women eligible; only 21% 
undergo immediate reconstruction (11). Patients who opt 
for reconstruction (either immediate or delayed) have been 
shown to have higher levels of well-being (emotionally and 
sexually) when compared to those undergoing mastectomy 
alone (12). It is important, therefore, as reconstructive 
techniques advance, to not only offer patients a choice of 
reconstructive options, but involve them in the decision 
making surrounding their treatment (Figure 1). 

The earliest documented cases of breast cancer is The 
Edwin Smith papyrus (3,000 BC) which details eight patients 
with tumours of the breast that were clearly distinct from 
the surrounding tissue (14). Seen for many centuries as 
an incurable disease, early surgical intervention was often 
difficult and postponed for fear of shortening the life of the 
patient (14); Galen [120-200 AD] was one of the first to 
promote clear margins, identifying the ‘crab-like’ projections 
of the invading tumour (2,14). Work done by French 
surgeons Pare [1510-1590] and Cabrol [1549-1610] greatly 
informed surgical techniques by recognising the involvement 
of axillary nodes in the spread of disease (15). The 
advancements in anatomical understanding and development 
of mastectomy instruments in the 1500-1700s were limited 
until the invention and popularisation of anaesthesia by 
Morton in 1846 and asepsis by Lister in 1867 (2,9,14,16). 
The radical mastectomy developed by Halstead in the 1880s 
became the gold standard in breast cancer surgery for the 
next seven decades (9,14,17). Despite 75% of his patients 

having axillary node disease at the time of operation, Halstead 
was able to demonstrate a 40% cure rate at 5 years (14). The 
fear of leaving disease behind with less aggressive approaches 
meant that it wasn’t until the 1970s that alternatives to radical 
surgery were considered. Trials in Europe and the US were 
beginning to demonstrate comparable outcomes to Halstead 
could be achieved with breast conserving surgery (BCS) and 
radiotherapy (18-20). 

The shifting attitude meant that reconstruction, which 
had been previously thought of as a ‘luxury operation’ 
became a more integrated part of the surgical management 
of these patients (2,21). Czerny is credited as the first to 
demonstrate mound reconstruction in a patient with benign 
disease by re-purposing a lipoma from their flank (22). The 
work done by Tazini and Ombredanne in the early 1900s 
demonstrated new techniques using local myocutaneous 
flaps to recreate the breast (23,24). This evolution 
continued throughout the 1900s; with the previously 
described tubed abdominal flap by Sir Harold Gilles, used 
in 1942 to reconstruct the breast following mastectomy (2). 
The modern era of breast reconstruction was heralded by 
the use of tissue expanders (25,26) and the development of 
the silicone implant in 1963 (2,9,14,23) making single stage 
reconstruction a reality. 

Autologous reconstruction sought to provide a more 
aesthetic and natural alternative whilst avoiding the 
drawbacks of early breast implants such as capsular 
contracture, increased risk of infection and rupture and 
their incompatibility with radiotherapy (27-29). Following 

Figure 1 Breast cancer and reconstruction timeline.
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refinement of the abdominoplasty technique in the 1950s, 
the rectus abdominous myocutaneous flap became one 
of the workhorse flaps in breast reconstruction (30). The 
pioneering work by Hartrampf et al. in the early 1980s 
saw the refinement of the transverse rectus abdominous 
myocutaneous (TRAM) flap (23,31-34), which along with 
advances in microsurgical technique meant the development 
of tissue donor sites and advanced flap variations (35). As 
techniques progressed, so to did the focus; minimising 
donor site morbidity and functional loss. In the late 1980s 
and early 1990s the musculocutaneous perforator flap 
(DIEP) described by Kroll, Rosenfield, Koshima and Soeda 
offered the benefits of TRAM and latissimus dorsi flaps with 
significantly reduced donor-site morbidity (23,36-38). The 
refinement of free flaps continued and as understanding 
of vascular territories, imaging technology and surgical 
expertise advanced, surgeons were demonstrating successful 
autologous reconstruction with minimal donor site 
morbidity using a variety of free flaps including superficial 
inferior epigastric artery (SIEA) (39,40), inferior gluteal 
artery perforator (IGAP) (41-47) and transverse upper 
gracilis (TUG) (48-50). The shift away from radical 
mastectomy to BCS (51) reflects in part the advancement 
of detection and effectiveness of chemo-radiotherapy, but 
also the changing perspective and expectation of patients. 
Although free-flap reconstruction remains the gold 
standard; donor site morbidity, lengthy operative time and 
microsurgical expertise means it remains costly and drives 
research into tissue-engineered autologous solutions. In 
Melbourne for example, researchers are working to achieve 
an autologous reconstructive option that eliminates the need 
for donor site morbidity by using a biodegradable chamber 
with vascularised adipose tissue at its core (NEOPEC) (52). 

There is increasing interest worldwide in the use of 
adipose tissue as an autologous filler for breast defects 
following oncologic resection (53,54). Fat transfer has the 
advantage of using the patient’s own tissue with minimal 
donor-site morbidity and eliminating the issues of foreign 
body reaction or rejection associated with synthetic 
implants. In recent years, fat transfer has been gaining 
interest in the fields of breast and plastic surgery, not only 
due to volume replacement, but also the beneficial effects 
on irradiated tissue (55). Despite expansion of fat transfer 
techniques, understanding of the underlying mechanisms 
remains lacking. The ASAPS/ASPS position statement in 
2012 (56) gives a succinct overview of the issues surrounding 
contemporary fat transfer and stem cell therapies, and 
acknowledges the need for increased efforts into both basic 

science investigations and translation into evidence based 
clinical therapies. When replacing volume, fat graft survival 
is one of the major problems, with long term follow up 
studies revealing 20–70% volume loss (57). The lack of 
revascularisation of grafts commonly underpins resorption, 
which is particularly problematic in breast reconstruction, 
where larger volumes of fat are required. The result is that 
multiple procedures are required, with increased direct 
and hidden financial and emotional costs. Several groups 
are looking into ways to overcome this problem (58). In 
this article we provide an overview of relevant adipose 
physiology, discuss aspects of cell biology and biomaterials 
relevant to adipose tissue regeneration, and highlight the 
potential risks and future potential avenues for research.

Adipose physiology

As a specialised thermogenic organ responsible for the 
regulation of metabolism and energy, adipose tissue forms 
an essential part of normal homeostasis (59). Originating 
from the mesoderm (60), the ratio of each adipose tissue 
type varies with age; brown adipose tissue (BAT), which is 
highly metabolically active, is found in greater quantities 
in infants and has an important role in maintaining core 
body temperature (59,61,62). Responsible for adaptive non-
shivering thermogenesis, the expression of uncoupling 
protein 1 (UCP1) allows BAT to dissipate energy as heat 
in order to maintain temperature balance (60,63,64). 
The decline of BAT continues throughout infancy and 
adolescence; in adults it is virtually undetectable having been 
almost entirely replaced with white adipose tissue (WAT) (61).  
WAT, which develops in multiple anatomical sites, acts 
as a store for energy in the form of triglycerides (64),  
and as an endocrine organ releasing adipokines in response 
to physiological stimuli (65,66). White mature adipocytes, 
which are round or oval in shape, have a diameter of 
between 25–200 μm depending on location and, along 
with a few elongated mitochondria, contain a single lipid 
droplet (62,65). Occurring in two stages; the transition from 
an immature to a mature adipocyte starts initially by the 
determination and differentiation of a multipotent stem cell 
into an adipoblast and pre-adipocyte, followed by its terminal 
differentiation into a mature adipocyte (60). It is these mature 
white adipocytes that surgeons use to create autologous 
reconstructions either as lipoaspirate in a free-fat graft or as 
the volume component of a muscle free flap. Found within 
the stromal vascular fraction (SVF) are heterogeneous 
subpopulations of cells, growth factors and cytokines which 
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contribute to the secretory function of adipose tissue (67-69). 
Enzymatic digestion of SVF liberates cells with multilineage 
potential; pericytes and supra-adventitial cells (CD34+ 
CD146+/−CD45−) otherwise classified as adipose derived 
stem cells (ADSCs) (70). 

Cell sources for adipose regeneration

As aforementioned, tissue engineering and stem cell 
research have the potential to revolutionise the future of 
reconstructive surgery by replacing tissue obviating need 
for donor site morbidity (71-73). Mesenchymal stem cells 
(MSC) are non-hematopoietic cells with multi-lineage 
potential and have been isolated from an increasingly 
varied number of tissues over the past 20 years (74). 
Having previously been isolated from umbilical cord blood, 
embryos and bone marrow, cells came at a high price and 
were often difficult to harvest and manipulate, and had 
variable quality as the cells aged (75-87). Balancing ease 
of harvest with yield and efficacy has been a delicate, and 
often difficult trade off which has prompted the scientific 
community to investigate alternative sources. In 2006, 
induced pluripotent stem cells (iPSC) were heralded as 
one potential solution; terminally differentiated cells were 
successfully regressed back into a state of pluripotency 
and demonstrated multilineage potential (88). Initially 
promising an abundance of easily accessible cells, the 
process of reprogramming the cells resulted in observed 
DNA errors, raising the question about the process and its 
effect on epigenetics (89,90). Focusing on the end tissue 
type, in 2002, researchers identified distinct stem cell 
populations within adult adipose tissue (91). ADSCs are 
multipotent MSC which exhibit characteristics similar to 
stem cells isolated from bone marrow stem cells (BMSC) 
(86,92-94). Compared to BMSCs however they are more 
readily accessible, easier to isolate and carry a significantly 
lower morbidity. Obtained from either excised fat or 
lipoaspirate (under local or general anaesthetic), adipose 
tissue yields between 100–1,000 times more stem cells per 
cubic centimetre than their bone marrow counterparts (95). 
The apparent abundance of these stem cell populations 
means relatively small reservoirs may have potentially 
significant yields of cells and therefore offer a reliable 
and easily accessible source of cells for tissue engineering 
(91,96,97). Moreover, ADSCs have a longer lifespan in 
culture than BMSCs prior to becoming senescent (94,98) 
which gives greater flexibility in the lab environment. 
ADSCs are naturally inclined to replenish lost volume by 

proliferation and maturation into adipocytes, which makes 
them ideally suited for adipose regeneration (99). However, 
identification of this stem cell population can pose a 
challenge; they are phenotypically very similar to MSCs 
of other origins and as such a combination of phenotype, 
morphology and secretory functions are required to 
distinguish this cell population as ADSCs (86,93,100,101). 
ADSCs have been shown to secrete several growth factors 
including vascular endothelial growth factor (VEG-f), 
hepatocyte growth factor, FGF-2, and insulin-like growth 
factor 1 (IGF-1) which play a key role in angiogenesis and 
adipose tissue regeneration. This highlights the potential 
importance of ADSCs in maintenance of transplanted 
tissue volume, an important consideration in adipose tissue 
engineering (102). Identifying the appropriate cell type 
for the creation of de novo breast tissue is only part of the 
challenge; the cells will ultimately need a scaffold in order 
to create structure and stability while they mature and 
provide support when they are first implanted. 

Scaffolds for adipose regeneration 

Current approaches to soft tissue regeneration include 
the use of fat grafts, natural or synthetic biomaterials to 
act as a filler material, and scaffolds to enable 2D and 
3D cell culture and engineering of tissue. Biomaterials 
act as the biochemical and biophysical environment to 
tune the cell response for the specific tissue engineering 
requirements (103). Whether derived from human, 
animal or naturally occurring sources, biomaterials by 
design have a tendency towards low immunogenicity and 
degradation or incorporation into recipient tissue (104). 
Focusing on ADSCs as a potential cell source for adipose 
tissue engineering; a number of studies have examined 
their interaction with natural and synthetic scaffolds, but 
there remains a paucity of literature on clinical application 
(103,105). The aim of the ideal scaffold is universal 
regardless of tissue type; to produce ‘native like tissue’ 
with equivalent physiological and biochemical structure 
(biomimetic). Minimising structural and functional deviation 
is key, so scaffolds must balance the structural integrity 
to withstand physiological forces while remaining flexible 
enough to allow ingrowth of new tissue and constructive 
remodelling (106). Immunological characteristics of 
scaffolds must also be considered, to prevent pro-
inflammatory responses where possible (106,107). Natural 
biomaterials show good biocompatibility, degradability 
and the ability to support tissue regeneration; and while 
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synthetic materials are theorised to be more immunogenic, 
they have been shown to maintain mechanical integrity and 
assimilate over time (103,105). 

Stem cell differentiation signalled by the extracellular 
microenvironment is a complex interplay of interactions, 
which is challenging to replicate (108). The material 
properties of potential scaffolds can influence lineage and 
differentiation as a result of their mechanical properties, 
mineralisation and chemical functionality (109). With 
the potential to function as extracellular matrix (ECM) in 
addition to supporting native ECM, biomaterials affect 
all facets of cell-scaffold interaction such as cell adhesion, 
proliferation and differentiation (110). The use of specific 
bioactive agents and material based delivery systems has 
developed the way in which scaffolds are viewed and 
our understanding regarding the control of stem cell 
differentiation and ultimate phenotype (111,112). 

Scaffold composition

Natural & biological scaffolds

Natural materials explored to support adipogenesis include 
collagen, gelatine, silk and alginate (103,105,113-120). The 
application of silk, which is essentially a protein scaffold, has 
been extensively investigated across a number of engineered 
tissues. Silk fibrin demonstrates low immunogenicity and 
slow, controlled degradation, while maintaining adequate 
mechanical properties to allow cell seeding and new tissue 
formation, and has been shown to support adipogenesis in 
vitro and in vivo (103,105). Similar results were achieved 
in a comparable study, which examined the potential of 
lyophilised silk sponges and found they supported the 
adhesion of MSC in culture (121). Furthermore, the 
scaffolds allowed proliferation and infiltration of stem cells 
and supported remodelling when implanted in vivo (121). In 
keeping with providing patients with minimally invasive and 
low morbidity procedures, injectable scaffolds are gathering 
a greater research interest. Several biomaterial systems 
have been investigated to meet this clinical need; alginate/
collagen microspheres, seeded with ASDCs are a promising 
injectable scaffold promoting the formation of fatty lobules 
after only 4 weeks in culture (122). A comparison of natural 
and synthetic hydrogels for use as an injectable scaffolds 
has been explored; alginate/o-carboxymethyl chitosan 
(O-CMC) and alginate/poly vinyl alcohol (PVA) with the 
inclusion of fibrin nanoparticles were compared (123). 
ADSCs demonstrated good adhesion, viability, proliferation 

and differentiation into adipocytes on these scaffolds. Cell 
differentiation studies of fibrin incorporated hydrogel 
scaffolds showed improved differentiation when compared 
to scaffolds without fibrin, which was confirmed by Oil Red 
O staining (123) (Table 1). 

Biological scaffolds comprised of decellularised ECM 
are now widely used in preclinical and clinical tissue 
engineering studies (106). The preservation of structurally 
organised entities has been shown to act as a natural 
template and accommodate tissue regeneration (106); 
subcutaneous implantation of the adipose ECM in rats 
provoked a minimal inflammatory response and guided 
tissue remodelling and regeneration (126). Research 
evaluating the creation of more complex structures 
demonstrated that decellularised strategy for adipose tissue 
would provide a three-dimensional (3D) scaffold with 
adequate extracellular architecture (127). Seeding ADSCs 
on decellularised adipose tissue (DAT) demonstrated 
adipogenic differentiation, supporting the expression of 
the master regulators peroxisome-proliferator-activated 
receptor gamma (PPAR-γ2) and CCAAT/enhancer binding 
protein-alpha (CEBP-α), without the need for exogenous 
differentiation factors (127) (Table 2). 

Synthetic scaffolds

Several synthetic polymers have been utilised for soft 
tissue regeneration including polygcolic acid (PLGA), 
polyethylene glycol (PEG), polycaprolactone (PCL) and 
poly-l-lactic acid (PLA) (129-132). Fibrous scaffolds are a 
particularly promising type of scaffold due to their ability to 
mimic the native ECM environment and guide de novo tissue 
formation (133). Freshly isolated ADSCs demonstrated 
adipogenic differentiation on polypropylene fibrous scaffolds 
within 19 days, with the expression of adipogenic marker 
PPARγ2 (133). Similarly electrospun nanofibrous scaffolds 
made of PLA maintained adipogenic differentiation of 
human BMSCs (133). PLGA fibres seeded with human 
MSC (hMSCs) encapsulated within alginate/chitosan 
hydrogel capsules showed adipogenic differentiation and 
maintenance of the adipogenic phenotype for 56 days in 
immunodeficient mice (129). When evaluating efficacy 
however, few studies have directly compared natural and 
synthetic materials for soft tissue regeneration. Examining 
the commercially available scaffolds currently on the 
market; type I collagen sponge, PLGA and hyaluronic acid 
gels were compared for their suitability for adipose tissue 
engineering (108). Each were harvested and examined 
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Table 1 Natural scaffolds 

Scaffold 

material
Derivation/synthesis Advantages Limitations

Silk Protein polymers 

spun by lepidoptera 

larvae

Low immunogenicity; 

Slow and controlled degradation; 

Licensed for clinical use; 

Support adipogenesis in vitro and in vivo (124)

No long term data on stability of 

degradation products; 

Further work needed to allow 

surface modification 

Collagen Protein which is the 

main extracellular 

matrix component of 

most tissues 

Can be modified e.g., addition of growth factors; 

Licensed for clinical use; 

Easily conjugated to other scaffolds;  

Improves ADSC differentiation and mature fat tissue formation  

in vivo (116)

Rapid degradation; 

Limited mechanical strength

Gelatin A mixture of protein 

and peptides derived 

from collagen

Non-toxic; 

Enable rapid delivery of growth factors; 

Comes in various forms including hydrogel and microspheres; 

In combination with hyaluronic acid/collagen supports adipose 

tissue engineering (125)

Rapid degradation;  

Limited mechanical strength;  

For optimal results requires use 

in combination with another 

scaffold

Alginate Polysaccharide  

derived from seaweed

Non-toxic; 

Licensed for clinical use in dressings;  

Can be a hydrogel or microsphere; 

Easy modification with growth factors or combination with other 

scaffolds; 

Alginate/collagen microsphere scaffolds allowed formation of 

fatty lobules by ADCS (122)

Rapid degradation;  

Limited mechanical strength

Table 2 Biological scaffold 

Scaffold material Derivation/synthesis Advantages Limitations

Biological 

(Decellularised 

matrix)

Generated through 

decellularization 

of tissue to obtain 

extracellular matrix

Widely used in preclinical and clinical tissue  

engineering studies;  

Minimal inflammatory response; 

Allows preservation of structurally organized entities; 

Acts as a natural template to guide tissue remodeling 

and regeneration; 

Used to form mature adipocyte groups resembling 

native fat tissue (128)

Lengthy decellularization process;  

Risk of immunogenicity if not 

completely decellularised;  

Not easily mass-scaled as  

requires donor tissue of the exact 

size and shape

histologically and immunohistochemically after 4 and 8 
weeks of implantation in athymic mice (108) (Table 3). 

Current scaffolds

Of the readily available scaffolds; collagen sponges were found 
to be more suitable, having a higher expression of PPAR-γ2 
and type I collagen than other two scaffolds. When combined 
with gelatin (collagen/gelatin mix), sponges modified with 

ADSCs and impregnated with basic fibroblast growth factor 
(bFGF) successfully demonstrated newly formed adipose 
tissue (125). Beyond promotion of adipogenesis, effects 
at the cellular level need to be taken into consideration; 
comparing natural fibrin glue with synthetic PCL as a 
framework demonstrates these differences in both cell yield 
and cell expression (136). After 6 weeks in vivo post seeding 
with ADSCs, adipose tissue and expression of adipogenic 
genes on the PCL scaffolds was significantly greater when 
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compared to the fibrin scaffolds (136). These smaller studies 
demonstrate there is a broad variation in scaffold composition 
and structure, which can have a significant impact on tissue 
growth and quality. Production of large volume engineered 
adipose tissue extends beyond the scaffold material; it is 
essential that the graft maintain its size, shape and volume 
over time post implantation. Vascularisation is a common 
barrier discussed in research papers and as the pro-angiogenic 
properties of ADSCs have been demonstrated, supporting 
new vessel formation will be an essential for any scaffold using 
this cell type (138,139) (Table 4). 

Scaffold free

The need for a scaffold has not been universal ly 
acknowledged however; research strategies examining 
scaffold free cell delivery is essentially an area that utilises one 
of three main techniques; use of single cells, cell sheet and 

micro tissues. Cell micro tissues have the advantage that they 
promote cell-to-cell and cell-to-matrix interactions (140)  
which is important in the formation of new tissue structure. 
Studies have demonstrated the ability of ADSCs to aggregate 
in cell culture and subsequently differentiate toward multiple 
cell lineage (140). It has been demonstrated that human 
ADSCs isolated from adipose tissue could be expanded and 
used to produce a 3D scaffold free micro tissue (141,142). 
The cells show uniformly positive expression for stem cell 
markers CD34, CD73, CD90, and CD105 are negative for 
CD19, CD14, and CD45, and were functionally inducible 
into adipocytes in appropriate medium (141). With the aim 
of enhancing adipogenesis by using a controlled delivery 
system; research has also explored the encapsulation of 
adipogenic factors within PLGA microspheres to deliver 
targeted growth within a transplanted fat graft (143,144). 
While this research is promising, translational barriers 
including scale-up limitations have led to an increasing 

Table 3 Synthetic scaffolds

Scaffold 

material

Derivation/ 

synthesis
Advantages Limitations

PLGA Polyster porous 

scaffold

Biodegradable; 

Easily mass produced; 

Reproducible fabrication protocols; 

Can be modified with addition of motifs/groups or altering  

topography to improve cell adhesions/proliferation/differentiation; 

Promotes adipogenic differentiation of ADSC in vivo (134)

Adverse effects of degradation  

products (inflammation); 

Requires surface modification to 

optimize cell growth and  

differentiation

PEG Polyether 

compound

Licensed for medical use in laxatives and commercially in  

cosmetic products;  

Reproducible fabrication protocols;  

Low toxicity; 

Water soluble and biodegradable; 

Enzymatically degradable PEG-based gels promote formation of 

adipose tissue-like structures (135)

Does not provide mechanical  

strength; 

Requires conjugation to improve 

properties as a scaffold; 

Rapid degradation

PCL Biodegradable 

polymer 

Reproducible fabrication protocols;  

Can be modified with addition of motifs/groups or altering topo-

graphy to improve cell adhesions/proliferation/differentiation; 

Adds mechanical strength; 

Promotes ADSC adipogenesis in vivo (136)

Potentially unstable degradation

PLA Biodegradable 

thermoplastic 

polymer

Reproducible fabrication protocols;  

Easy surface modification; 

Adds mechanical strength; 

Maintains adipogenic differentiation of human BMSCs (137)

Rapid degradation

PLGA, polygcolic acid; ADSC, adipose derived stem cell; PEG, polyethylene glycol; PCL, polycaprolactone; PLA, poly-l-lactic 

acid; BMSCs, bone marrow derived stem cells.
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interest in bioreactors and associated technologies to form 
controlled 3D assembly of stable adipose tissue (141). 

Potential risks of and future challenges

Seen now as a reliable technique for autologous correction 
of volume loss and contour defects (145), stem cell 
populations within WAT have been shown to hold 
significant regenerative potential (73,146-148). This has 
resulted in the refinement of techniques which aim to 
increase the concentration of ADSCs in order to optimise 
graft retention and maximise therapeutic benefit (146,148). 
However it is the properties that make ADSCs so desirable 
which present the greatest concern because the cell 
characteristics useful for tissue regeneration and wound 
healing are shared with those features capable of promoting 
tumour growth and progression (148,149). 

As the risk of dormant cells or remnant cancer post 
mastectomy or BCS cannot be entirely excluded, the 
oncological safety of tissue-engineered therapies must 
be appropriately considered. Recently there have been a 
number of clinical trials examining the safety and efficacy 
of ADSCs and related therapies in an attempt to evaluate 
their clinical potential (150,151). Cancer proliferation and 
progression relies on several factors to regulate and structure 
the tumour microenvironment (152). ADSCs demonstrate 
the production of factors that promote vascularisation, tissue 

growth, immune-modulation and cell recruitment (149). 
The expression of IL4, IL10, matrix metallopeptidase and 
SDF-1, in addition to pro-inflammatory mediators, has been 
shown to produce a microenvironment conducive to breast 
cancer recurrence (153). Additionally, the chemo-attraction 
of endothelial cells by production of VEGF and adipokines 
creates a microenvironment that can facilitate increased 
vascularisation, implicated in increased local recurrence  
risk (154). Conversely, the production of transforming 
growth factor (TGF) beta 1 and beta 2 has been shown 
to negatively affect cell differentiation and proliferation 
of breast cancer (155,156) demonstrating that ADSCs are 
only one part of a complex microenvironment. Increased 
metastatic potential has been further demonstrated in a 
study examining the co-culture of triple negative breast 
cancer and ADSCs; organ metastases were observed in the 
murine model in the ADSC group compared with none in 
the control (157). 

The risk of de novo breast cancer is even less clear; the 
inhibition of hydrogen peroxide-induced cell death may play 
a factor in cell resistance to apoptosis and their propensity 
to develop down a carcinogenic line, however this hasn’t 
yet been fully demonstrated (158). While in vivo and in 
vitro studies have previously demonstrated the proliferative 
potential of ADSCs in the breast cancer environment (159); 
a recent meta-analysis of 2,428 patients found no significant 
difference in recurrence rates in the patient group who 

Table 4 Hybrid/injectable scaffolds

Scaffold material Derivation/synthesis Advantages Limitations

O-CMC Injectable biodegradable 

cross-linked hydrogel

Reproducible fabrication protocols; 

Can mimic extracellular matrix; 

Uniform distribution when injected into tissues; 

ADSCs demonstrated good adhesion, viability, proliferation 

and differentiation into adipocytes(123)

Rapid degradation; 

Lack of mechanical 

strength

PLGA/hydrogel Biodegradable hydrogel/

polymer composite

Reproducible fabrication protocols; 

Increases mechanical strength whilst mimicking ECM; 

Encapsulating cells in fibrin/chitosan prior to seeding onto 

PLGA scaffold promotes adipogenic differentiation and 

maintenance of the adipogenesis (129)

Rapid degradation

Alginate/PVA with 

the inclusion of fibrin 

nanoparticles

Crosslinked scaffold Can be a hydrogel or hollowfibre porous scaffold; 

Reproducible fabrication protocols; 

Increases mechanical strength whilst mimicking ECM; 

Incorporation of Fibrin into biocomposite scaffold improves 

adipogenic differentiation of ADSCs (123)

Unstable/uncontrollable 

degradation

O-CMC, o-carboxymethyl chitosan; ADSC, adipose derived stem cell; ECM, extracellular matrix; PVA, poly vinyl alcohol.
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underwent fat grafting when compared to controls (160). 
Within this analysis however there was a single paper, 
which focused on in situ recurrence alone and found that 
the risk was 6 times greater in the group receiving fat 
grafts (161). Concerns regarding detection following breast 
surgery and fat grafting have been around since the late 
1980s, and a number of studies have shown that there is 
no significant effect on radiographic surveillance following 
use of fat grafting (162). A retrospective study performed 
in the US found that all surgical procedures of the breast 
carried an increased risk of mammographic changes (163) 
and radiographic changes should be viewed in the context 
of patient specific factors. 

Beyond the  potent ia l  carc inogenes i s  r i sk ,  the 
complications of breast reconstruction must be taken into 
account. Issues with graft survival, volume loss and fat 
necrosis need to be considered. A systematic review found 
that 15.6% of patients reported a complication unrelated 
to recurrence demonstrating that non-malignant adverse 
events were not to be underestimated (164). Given the 
importance of reconstruction and follow-up in this patient 
group, it is essential that further studies examining both, 
the safety and efficacy of tissue engineered solutions, as well 
as effects on long term radiological monitoring, are carried 
out. It is only with further thorough, systematic studies, 
at a cellular and clinical level, that the true role of ADSCs 
in adipose tissue regeneration and cancer biology will be 
understood. 

Summary

Surgeons and scientists face continued challenges in 
the coming years, to not only develop comparable and 
sustainable tissue engineered solutions with minimal donor 
site morbidity, but to prove their safety and efficacy. As 
the challenge to protect and improve patient quality of life 
continues to drive innovation forward, we cannot forget that 
these patients carry an inherent risk of potentially unseen 
or dormant breast cancer cells. The regenerative potential 
of ADSCs to generate de novo adipose tissue to replace lost 
breast volume has been well documented and is too good 
an opportunity to ignore. However, the use of stem cell 
therapies to expand and grow tissue for reconstruction must 
occur in the context of risk management. At each stage of 
clinical evaluation, patients must be fully informed of the 
benefits and potential risks. The autocrine and paracrine 
effects ADSCs must be fully investigated in rigorous 
clinical trials to evaluate their safety; and for those patients 

who have already undergone fat grafting following BCS, 
long-term follow up and careful monitoring is essential to 
examine the clinical impact of these therapies. 
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