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Introduction

Breast cancer is the most prevalent cancer diagnosis 
for women. According to the latest Global Cancer 
(GLOBOCAN) stat ist ics  from the World Health 
Organization (WHO) in December 2020, there were 

2,261,419 new cases of breast cancer in women worldwide 
in 2020, accounting for 11.7% of the incidence and 15.5% 
of the mortality, ranking first of all cancers (1).

Pathology is the gold standard criteria for breast cancer 
diagnosis (2), which can not only identify the nature 
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of lesions but also provide detailed information for the 
treatment and prognosis of invasive cancer, such as tumor 
size, histological type and grade, presence or absence of 
ductal carcinoma in situ (DCIS), lymphovascular invasion 
(LVI) and lymph node metastasis, and resection margins 
status (3-5). In the meantime, individualized medical 
treatment and precision medical care have been constantly 
modified (6-8). For breast cancer, the main focus is on 
endocrine therapy for hormone receptor positivity and anti-
human epidermal growth factor receptor 2 (HER2) targeted 
treatment (8-11). Therefore, accurate biomarker assessment 
has become particularly vital in the clinical laboratory (12-14).

However, conventional manual microscopy procedures 
are usually time-consuming and laborious, and the lack of 
pathologists is an evident issue in most parts of the world 
(15-17), preventing the large amount of clinically relevant 
information contained in histopathology images from being 
deeply explored and effectively utilized.

In recent years, with the establishment of public 
databases and the development of artificial intelligence (AI) 
technology, the digital pathology workflow is emerging 
(16,18,19). Digital microscopy technology based on whole 
slide imaging enables the preservation of the entire glass 
slides in the form of digital images as well as provides a 
platform for the application of AI (20-22). In particular, 
deep learning (DL) methods, using biologically-inspired 
networks to represent data, have made groundbreaking 
improvements in computer-aided diagnosis (23,24). This 
paper introduced the development of digital pathology 
and reviewed the current research status of DL-based AI 
models in the diagnosis, classification, grading, staging, 
and prognostic prediction of breast cancer, and analyzed 
the advantages and challenges of digital pathology in 
routine clinical applications. We present the following 
article in accordance with the Narrative Review reporting 
checklist (available at https://gs.amegroups.com/article/
view/10.21037/gs-22-11/rc).

Methods

A PubMed search with keywords (“breast neoplasm” or 
“breast cancer”) and (“pathology” or “histopathology”) and 
(“artificial intelligence” or “deep learning”) was conducted. 
Relevant publications in English published from January 
2000 to October 2021 were screened manually for their 
title, abstract, and even full text to determine their true 
relevance. Articles proposed for the development of 
digital pathology image-based AI models to assist in the 

diagnosis and prognostic assessment of breast cancer were 
identified. References from the searched articles and other 
supplementary articles were also studied. Final database 
search was conducted on October 20th, 2021 (Table 1).

Digital pathology

Digital pathology refers to the process of acquiring high-
resolution images of stained tissue slides using whole-slide 
scanner equipment and then training AI models based on 
different algorithms to perform objective analysis of the 
digitized images, which can assist pathologists in their 
routine work (19,25,26).

There are four main processes in whole slide imaging 
to produce a complete digital image: image acquisition, 
storage, splicing processing, and visualization (27). Several 
studies have shown that diagnoses derived from digital 
images of frozen sections or paraffin sections are highly 
consistent with those from microscopic field interpretation 
(28-32). However, each whole slide image (WSI) contains 
enormous amount of information, relying only on the 
pathologist’s visual inspections for cancer detection, tumor 
staging and grading, and other analyses would take a lot 
of time and effort. Especially for quantitative metrics, the 
subjective measurements and the low reproducibility lead 
to a huge demand for automated systems (33,34). The 
advancement of AI technology provides an efficient tool 
to automate or assist in the diagnosis of pathology and to 
improve the current dilemma of the lack of pathologists.

AI models in digital pathology have evolved from expert 
systems to traditional machine learning (ML) to DL 
(35,36). Both expert systems and traditional ML models 
rely on the rules or features defined by experts on the basis 
of their experience. They take data and explicitly program 
logical rules to generate narrow, specialized outcomes, 
thereby outperforming humans (37). In contrast, a key 
differentiating feature of DL is its autodidactic quality (15). 
DL enables to input image data directly and learn feature 
representations automatically without feature engineering, 
achieving end-to-end result output (35,38). It follows that 
the unique characteristics of deep neural networks allow 
them to extract information from highly dense and complex 
histopathological images more straightforwardly and 
suitably (39). Several studies have proved that DL methods 
have higher accuracy than traditional methods (40-42).

At present, the commonly used types of DL include 
convolutional neural network (CNN), recurrent neural 
network (RNN), deep belief nets (DBN), generative 
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adversarial networks (GAN), and autoencoders (24,37,39). 
Of these, CNN is the most widely used network in digital 
pathology, and UNet, VGGNet, GoogleNet, ResNet and 
DenseNet are all common basic models of CNNs. A typical 
CNN contains three types of network layers: convolutional 
layer, pooling layer, and fully connected layer (43,44). 
The convolution layer is used to convolve the image to 
extract features, the pooling layer to minimize the quantity 
of convolved features to lower the amount of computing 
power required, and the fully-connected layer to give the 
classification results (45). Furthermore, some scholars have 
selected other networks or integrated multiple networks to 
improve diagnostic performance (24).

AI in breast cancer pathology

Qualitative diagnosis

Morphological observation on histopathological sections 
to distinguish tumors from other types of lesions and to 
differentiate benign from malignant tumors can directly 
guide the clinical treatment strategies (39,46). Since the 
publication of the BreaKHis dataset, several methods have 
been proposed for the classification of breast histopathology 
images. Spanhol et al. (47) and Bayramoglu et al. (48) 
used CNN to classify breast cancer pathology images for 
both benign and malignant categories, respectively. The 
experimental evaluation, tested on the BreaKHis dataset 

and evaluated in comparison with previous studies, showed 
that the CNN-based models achieved better results than the 
traditional ML classification algorithms, with a classification 
accuracy higher than 80%. However, developing such a 
DL-based system from scratch requires the developer to 
have extensive pathology expertise, sufficient samples, and 
a long model training time to tune the system for good 
performance. 

Transfer learning has been demonstrated that can achieve 
comparable or superior performance to the neural networks 
trained from scratch in a relatively short training period (49). 
Based on this perspective, Spanhol et al. (50) used DeCAF 
as an alternative scheme, which made use of a pre-trained 
CNN as a feature extractor to extract the feature vector 
from different layers of the network, and the output was 
used as the input to another classifier to train on problem-
specific data. This method developed a high-accuracy 
system very fast, which obtained a comparable identification 
rate compared with the above-proposed method of training 
CNNs from scratch. In addition, the method allowed the 
comparison of the features learned from the CNN with 
hand-crafted features, verifying that CNN can extract 
image features effectively.

Later, Araújo et al. (51) refined the classification 
in further detail and classified the images into four 
categories: normal tissue, benign lesions, carcinoma in situ,  
and invasive carcinoma, with an accuracy of 77.8%. It 
should be noticed that, unlike invasive carcinoma, the 

Table 1 Search strategies of this study

Items Specification

Date of search 2021.10.20

Databases and other sources searched PubMed

Search terms used 

#1 (“breast neoplasm” [Mesh] OR “breast cancer” [Mesh])
#2 (“pathology” [Mesh] OR “histopathology” [tiab])
#3 (“artificial intelligence” [Mesh] OR “deep learning” [Mesh])
#1 AND #2 AND #3

Timeframe 2000.01–2021.10

Inclusion and exclusion criteria Not in English

Selection process All retrieved articles will be uploaded to the database management software Endnote X9 with 
the duplicate studies deleted

Two authors will independently screen the literature based on its title and abstract and initially 
remove literature that is not relevant to the topic

Finally, the full text will be read in detail to confirm the included studies. The disagreement 
between the two authors in the process of selection will be resolved through discussion or 
discussion with the third author
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identification of carcinoma in situ is dependent on tumor 
location. Therefore, this CNN architecture was designed 
to retrieve information at different scales, including both 
nuclei and overall tissue organization, making it suitable 
for histological classification not only at the patch level but 
also at the slide image level. Furthermore, with the goal of 
advancing the state-of-the-art in automatic classification, the 
grand challenge on breast cancer histology images (BACH) 
was organized in conjunction with the 15th International 
Conference on Image Analysis and Recognition (ICIAR 
2018). The majority of submitted methods are based on 
DL, demonstrating its dominant tendency in computer-
aided analysis (52). Among them, the model combining 
Resnet-101 and Densenet-161 proposed by Chennamsetty 
et al. (53) and the Inception-Resnet-v2 model proposed 
by Kwok et al. (54) alleviated the feature redundancy 
and gradient vanishing problems due to the increasing 
depth of the network, increasing the overall four-category 
classification accuracy to 87%. Besides, the methods of Yan 
et al. (55) integrated the advantages of CNN and RNN 
to preserve the short-term and long-term dependencies 
between the patches to retain contextual information. This 
method achieved state-of-the-art results with an average 
accuracy of 91.3% for a 4-category classification task. 

Subclass identification
Identifying the pathological subclasses of benign and 
malignant breast lesions is of equal significance to assist 
in assessing the potential risk of deterioration of benign 
lesions and guiding the selection of surgical procedures (56), 
as well as predicting the postoperative recurrence rate of 
malignant lesions (57). For breast pathology, the changes 
in tissue structure range from non-proliferative changes 
to proliferative changes, such as usual ductal hyperplasia 
(UDH), atypical ductal hyperplasia (ADH), DCIS, and 
invasive ductal carcinoma (IDC) (58). 

ADH is a low-grade neoplastic intraductal hyperplasia 
with the same histologic and immunophenotypic features 
as low-grade DCIS and the differential diagnosis between 
them is based on size only. According to the consensus 
recommendation, for benign proliferative lesions with ADH, 
open surgical excision (OE) is preferred rather than a vacuum-
assisted biopsy (VAB) and followed up for 5 years (56).  
Thus, automated multi-class breast cancer classification has 
higher clinical values than binary classification.

Gecer et al. (59) presented a CNN system that classifies 
WSIs of breast biopsies into five diagnostic categories, 
including non-proliferative changes, proliferative changes, 

ADH, DCIS, and IDC. The overall slide-level classification 
accuracy of 55% was comparable to the performances of 
the 45 pathologists that practice breast pathology in their 
daily routines. Han et al. (60) proposed a class structure-
based deep convolutional neural network (CSDCNN) 
to classify BACH from the BreakHis dataset into eight 
sub-classes, including adenosis, fibroadenoma, phyllodes 
tumor, tabular adenoma, ductal carcinoma, lobular 
carcinoma, mucinous carcinoma, and papillary carcinoma 
for the first time. Notably, different classes have subtle 
differences and cancerous cells have high coherency 
(61,62). Thus the researchers took into account the relation 
of feature space among intra-class and inter-class and 
formulated some feature space distance constraints for 
controlling the feature similarities of different classes of 
the histopathological images in the design process. The 
average accuracy is 93.2% at the patient level and 93.8% at 
the image level for all magnification factors (60). Likewise, 
Alom et al. (63) proposed a classification model based 
on the Initial Recurrent Residual Convolutional Neural 
Network (IRRCNN). To facilitate comparison of results, 
they applied the same experimental setup as in (60). The 
IRRCNN model showed 97.95% average testing accuracy 
for ×40 magnification that is 2.15% better compared to the 
CSDCNN. And for the patient-level performance analysis, 
IRRCNN has achieved 96.84% average highest testing 
accuracy for eight classes breast cancer classification which 
is around 2.14% higher testing accuracy compared to the 
CSDCNN (63).

The proposed eight-classification models were all trained 
and tested on publicly available datasets, and it is necessary 
to verify whether their performance would remain robust 
when applied in a real clinical environment. In addition, it 
should be taken into account that a complete histological 
slide often contains multiple types of lesions which cannot 
be simply categorized into one type, diagnosing only the 
most obvious subtype would lead to a loss of information. 
Therefore, the results obtained from the above researches 
can be used as a baseline for future researches to design 
models that can quantify the percentage of pathological 
subtypes of each breast lesion and develop more practical 
assisted diagnostic systems.

Invasive region division
Assessment of tumor size is typically confined to areas 
containing invasive cancer (64). For the resected breast 
tissue, an initial distinction is made between the areas 
corresponding to invasive and non-invasive lesions or 
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normal tissues. The accurate description of their region 
is a prerequisite for the correct staging of the tumor (65). 
Cruz-Roa et al. (66) used the CNN-based classifier to 
automatically detect the presence and extent of invasive 
breast cancer at WSIs. The results showed that the cancer 
regions detected by the model in positive cases overlapped 
with the manually labeled cancer regions by pathologists 
at least 80%. Following that, to improve the efficiency, 
they proposed a High-throughput Adaptive Sampling 
for whole-slide Histopathology Image analysis (HASHI), 
which can estimate the probability of the presence of 
invasive breast cancer within a WSI. Compared to applying 
the tile classifier densely over the entire WSI, the newly 
proposed method takes less than 1 min to run on each WSI 
and achieves an average Dice coefficient of 0.76, showing 
great potential to be a clinical decision support tool (67). 
For the same dataset, Romero et al. (68) proposed a DL 
model derived from inception architecture. They placed 
a multi-level batch normalization module between each 
convolutional step for feature extraction and obtained a 
balanced accuracy of 89% and an F1 score of 90%. 

The above methods all sample large-sized WSI into 
smaller patches for analysis, which leads to an exponential 
increase in the processing required. Patil et al. (69) also used 
the HASHI strategy to take down-sampled low-resolution 
WSI in combination with a skip connection-based auto-
encoder model of U-Net for image segmentation. Instead of 
passing the samples through CNN for all the samples, the 
proposed architecture can perform computations directly 
on a scaled WSI and decrease the number of computations 
exponentially. In the study of Celik et al. (70), two popular 
network architectures, ResNet-50 and DenseNet-161, 
trained on large image datasets, were employed using the 
transfer learning technique. Without the need to redesign 
the deep network architecture, only the last layers of these 
networks are trained for IDC detection. Compared to the 
state-of-art techniques, their developed system obtained the 
highest classification performance with an F-sore of 92.38% 
for DenseNet-161 and 94.11% for ResNet-50 (70).

These algorithms have demonstrated reliable automated 
detection of infiltrating cancers and could serve as a 
basis for future research to implement a reliable system 
for immunophenotypic characterization as quantitative 
measurements of biomarkers should only be analyzed 
for invasive malignant epithelial cells. However, current 
methods mostly use manually defined regions of interest 
(ROI), which generally contain different proportions 
of mesenchymal fibroblasts and inflammatory cells and 

these cells cannot be completely removed through the 
digital image analysis. In addition, according to the 
segmentation area of invasive cancer, it is possible to assess 
tumor responsiveness to neoadjuvant therapy through 
the determination of the relative percentage of tumor 
epithelium and stroma in tumor volume before and after 
chemotherapy.

Histological grading

In 2003, the WHO adopted the Nottingham grading system 
as the standard histological grading system for invasive 
breast cancer. According to this system, the following three 
factors should be evaluated: (I) degree of tubular formation, 
(II) nuclear pleomorphism, (III) mitotic activity (71,72). 
The differences and misunderstandings among pathologists 
in their interpretations of the criteria will definitely weaken 
the guidance of histological grading for clinical prognostic 
assessment (73,74).

Dalle et al. (75) developed the first grading system that 
combines the three criteria, detecting tubule formation 
in low-resolution images, selecting individual cells and 
classifying them in high-resolution images for nuclear 
pleomorphism and mitotic count scoring. Although 
this system tended to score at a slightly lower level than 
pathologists, it can remind pathologists of widely varying 
cases by providing a second opinion. Wan et al. (76) 
conjuncted the semantic-level features extracted by CNN 
with pixel-level (texture) and object-level (architecture) 
features to create an integrated set of image attributes and 
utilized a cascaded approach to train a multiple support 
vector machine (SVM) in distinguishing between low, 
intermediate, and high Nottingham grade images from 
breast histopathology with an overall accuracy of 0.69. 
Couture et al. (77) used the VGG16 architecture that 
was pre-trained on the ImageNet dataset to classify low-
intermediate vs. high tumor grade images, obtained an 
accuracy of 82%.

In addition, several DL-based methods are showing good 
performance in the assessment of single criteria for the 
histological grading of breast cancer: 

(I) In the assessment of degree of tubular formation: 
Romo-Bucheli et al. (78) dropped the traditional 
assessment method of identifying ductal lumen. 
Instead, they used a deep neural network for the 
identification of tubule cell nuclei in WSIs and used 
the ratio of tubule nuclei to the overall number 
of nuclei as an indicator for the assessment of 
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glandular duct formation, with an optimal F-score 
of 71%. Similarly, Whitney et al. (79) also focused 
on identifying tubule nuclei, with the difference 
that they used a larger number of nuclear-specific 
features to assess tubule-forming structures.

(II) In the assessment of nuclear pleomorphism: 
Das et al. (80) performed a comparative analysis 
of four breast cancer grading techniques based 
on a common dataset of breast cancer nuclear 
heterogeneity scoring algorithms. Wherein, 
Rezaeilouyeh et al. (81) used phase values of 
shearlet coefficients as a key feature for breast 
cancer grading and CNN to learn the most 
relevant feature representations with a classification 
accuracy of 75%. In contrast, the Multi-Resolution 
Convolutional Network (MR-CN) with Plurality 
Voting (MR-CN-PV) model proposed by Xu  
et al. (82) gave a better result for nuclear atypia 
scoring with a classification accuracy of 80%. 

(III) In the assessment of mitotic activity: Ciresan 
et al. (83) applied DL to mitosis detection for 
the first time and won the ICPR 2012 mitosis 
detection competition with an F1 value of 0.78%. 
Subsequently, in the assessment of mitosis detection 
algorithms 2013 (AMIDA13) challenge, the IDSIA 
model based on Maximum Pool Convolutional 
Neural Network (MMPCNN) showed comparable 
agreement with pathologists, reaffirming that 
DL has good performance in image recognition. 
Moreover, relabeling experiments showed that a 
large part of the “false positives” generated by the 
IDSIA model can be considered as true mitosis (84).  
It can be inferred that the complexity of the task 
and observer variability could lead to missed 
mitotic detection, while AI has a greater advantage 
over visual assessment.

Biomarker quantification

Investigating subtypes of breast cancer at the molecular 
level  i s  rout inely  analyzed for  planning speci f ic 
treatments and exploring new therapeutic techniques. 
Due to the impracticality of clinical diagnosis of breast 
cancer by genetic phenotyping in the current stage, 
immunohistochemistry (IHC) for protein expression is 
often used as an alternative (85). According to expert 
consensus, four biomarkers should be analyzed by IHC 
in pathological examination of breast cancer specimens: 

estrogen receptor (ER), progesterone receptor (PR), HER2, 
and Ki67 (12,86,87). However, international standardization 
for the quantitative indicators is still missing and the 
measured inter-laboratory variability is rather high (88). 
The traditional method of visual assessment by pathologists 
and manual calculation of the percentage of positively 
stained nuclei has significant sampling and counting bias. 
It is estimated that these biases resulted in about 10% of 
patients not being treated adequately (89,90). Several studies 
have demonstrated that digital image analysis is superior to 
manual biomarker assessment in breast cancer (91,92).

Vandenberghe et al. (93) developed a computational 
approach based on the CNN that automatically scores 
HER2. In a  cohort  of  71 breast  tumor resect ion 
samples stained by IHC, the automated method showed 
a concordance of 83% with a pathologist. The 12 
discordant cases were independently reviewed, leading 
to a modification of diagnosis from initial pathologist 
assessment for 8 cases, 7 of which were consistent with 
the AI diagnostic opinion (93). Saha et al. (94) proposed 
a deep neural network (HscoreNet) to compute the 
score of ER and PR based on the staining intensity, the 
color expression, and the number of immunopositive and 
immunonegative nuclei of IHC stained images, achieving 
excellent performance, with 95.87% precision and 94.53% 
classification accuracy. 

In addition, considering the difference in localization of 
the positive signal of IHC staining in different biological 
markers, Feng et al. (95) proposed a novel model based 
on the DenseNet to recognize both nuclear staining and 
cell membrane staining and grade the staining intensity 
as a sequential learning task. The scoring consistency 
of ER/PR, Ki67 and HER2 between this model and 
expert interpretation was 92.79%, 97.12% and 80.46%  
respectively (95). Other scholars have improved the UNet 
model and used staining intensity as well as membrane 
connectivity for hyperpixel-based tissue region classification 
and cell membrane segmentation to achieve HER2 
assessment at the WSI level, more in line with the guideline 
scoring criteria (96,97).

Since the labeling index should only analyze invasive 
malignant epithelial cells, other tumor markers, such as 
cytokeratin, are used to help define tumor regions and 
accurate proliferation index calculations. But the overlapping 
pigments make visual analysis more difficult (98).  
Valkonen et al. (99) developed a DL-based digital mask 
for automated epithelial cell detection using fluoro-
chromogenic cytokeratin-Ki67 double staining and 



Gland Surgery, Vol 11, No 4 April 2022 757

© Gland Surgery. All rights reserved.   Gland Surg 2022;11(4):751-766 | https://dx.doi.org/10.21037/gs-22-11

sequential hematoxylin-IHC staining as training material. 
The results showed that the effect of epithelial cell masking 
on the Ki67 labeling index was substantial; 52 tumor 
images initially classified as low proliferation (Ki67 <14%) 
without epithelial cell masking were re-classified as high 
proliferation (Ki67 ≥14%) after applying the DL mask (99).  
Shamai et al. (100) applied CNN to a process they termed 
morphological-based molecular profiling (MBMP) for 
robust determination of molecular expression based on 
hematoxylin and eosin (H&E) stained tissue section 
images. MBMP escapes technical issues such as fixation or 
antigen retrieval, obsoletes the need for subjective human 
interpretation, and avoids false-negative findings due to splice 
variants missing the antibody binding site and the accuracy 
in prediction of ER expression is more than 90% (100).  
He et al. (101) proposed ST-Net, combining DL with spatial 
transcriptomics to predict the spatial expression differences 
of 102 genes including the above four biomarkers from the 
H&E stained images directly.

Lymph node status assessment

Lymphatic metastasis is the most common way for breast 
cancer metastasis and the sentinel lymph node (SLN) is the 
first site of lymphatic metastasis from the tumor in situ (102).  
In recent years, the conception of SLN biopsy has 
significantly changed the way of treating axillary lymph 
nodes during surgery. Patients with SLN of 1–2 metastases 
and axillary descending stage after neoadjuvant therapy 
can be conditionally exempt from axillary lymph node 
dissection (ALND), which can reduce the patient’s risk of 
upper extremity limitation, pain, and edema after surgery 
(103,104). Thus, the correct assessment of SLN status is 
not only an important part of the clinical staging of breast 
cancer but also an essential basis for the selection of patient 
treatment strategies (103). However, the accuracy of SLN 
assessment by pathologists is not satisfactory, especially in 
the diagnosis of micro-metastatic lesions with an average 
sensitivity of 38.3% only (105). DL has been demonstrated 
to identify metastases in SLN slides with 100% sensitivity 
and rectify nearly 40% of the underdiagnosed cases (106).

Aiming to investigate the potential of AI for the 
detection of metastases in SLN slides, Ehteshami Bejnordi 
et al. (107) organized the Cancer Metastases in Lymph 
Nodes Challenge 2016 (CAMELYON16) competition. 
In the submitted methods, the GoogleNet-based deep 
neural network outperformed the pathologist with the best 
AUC of 0.994. Later, Steiner et al. (108) proposed a more 

optimized algorithm, Lymph Node Assistant (LYNA), 
which can obtain higher sensitivity for lesion detection by 
filtering image artifacts, and demonstrated that algorithm-
assisted pathologists have higher accuracy than pathologists 
alone.

According to the results of the NSABP B-32 trial, patients 
with SLN biopsies suggestive of occult metastases, including 
micro-metastases and isolated tumor cells (ITC), showed 
significant differences in overall survival and disease free 
survival compared to patients without occult metastases (109).  
Therefore, in the CAMELYON17 competition, ITC and 
the smallest type of metastasis had been included for the 
classification setting of SLN metastases. Moreover, to 
improve clinical relevance, the CAMELYON17 competition 
focused on patient-level pN-stage prediction including 
multiple WSIs per patient (110). Overall, the kappa metric 
ranged from 0.89 to −0.13 across all submissions. The 
best results were obtained with pre-trained architectures 
such as ResNet. It performed well on slides containing 
macroscopic metastases and metastasis-free tumors but 
poorly in identifying ITC with an accuracy of 11.4%. In 
addition, most of the methods took hundreds of minutes 
to run, which created a barrier to clinical application. To 
improve computational efficiency, Kong et al. (111) and 
Zhao et al. (112) used transfer learning to accelerate model 
convergence, reducing the time for a single WSI review 
to 5.6 and 7.2 min. Afterwards, Campanella et al. (113) 
trained a weakly supervised learning model based on 44,732 
full-slice scanned images, avoiding the manual process of 
extensive annotation, and obtained an AUC value of 0.965 
in a test of identifying axillary lymph node metastases in 
breast cancer. Their results showed the clinical application 
of the proposed model would allow pathologists to exclude 
65–75% of slides while retaining 100% sensitivity, laying 
the foundation for the deployment of computational 
decision support systems in clinical practice (113).

Surgical margin assessment

Breast-conserving surgery (BCS) followed by radiation 
therapy (RT) is the standard procedure of early-stage breast 
cancer treatment. If clear margins are obtained, it could 
provide similar survival rates as total mastectomy while 
better cosmetic results (114,115).

The current standard for margin assessment is a 
histologic review provided by the pathologist of the tissue 
embedded in paraffin and stained with H&E. Unfortunately, 
time requirements for this process don’t allow for its use 
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intraoperatively (116). Frozen-section analysis (FSA) is an 
alternative method that can be performed in a relatively 
short time. Two common sampling methods for the frozen 
section are the surgeon taking small samples of tissue from 
the defect cavity after removal of tumor majority and the 
pathologist taking a sample directly from the primary 
resection specimen for evaluation (117,118). These methods 
have a low sampling percentage, resulting in a sensitivity of 
81% and a mean reoperation rate of 5.9%, ranging from 0% 
to 23.9% (115). Sampling and analyzing larger amounts of 
tissue may increase the sensitivity of detecting small tumor 
lesions, but practical issues such as surgical time and cost 
should also be taken into consideration.

Several researches demonstrated that the use of X-rays 
for specimen imaging can improve the targeting of 
sampling and lead to a significant reduction in positive 
margins (119-122). For example, Zhang et al. (122) used a 
breast pathology cabinet X-ray system (CXS) to assist in 
breast cancer tumor bed identification. Compared to visual 
observation, CXS can significantly improve the accuracy of 
measurement and the efficiency of tumor collection. 

Large format histopathology is another efficient way 
for visualization of the tumor and resection margins as it 
eliminates the process of slicing the tissue into multiple 
blocks, avoiding undersampling of cancer specimens 
(123-126). However, due to the limitations of the frozen 
technique, large sections are not available for intraoperative 
evaluation at present. It is expected that if the frozen large 
section technique can be implemented in the future, we can 
combine it with the AI algorithms for identifying cancer 
areas, enabling rapid intraoperative margin assessment. 

Prognosis prediction

Prognostic model refers to the use of statistical methods 
to determine the quantitative relationship between the risk 
factors and the probability of clinical outcomes based on 
the patient’s disease state. Breast cancer prognostic models 
can help clinicians and healthcare providers make more 
informed medical decisions on chemotherapy exemption (127).  
In recent decades, the most popular model is the COX 
proportional hazards model, which has been extensively 
studied in the fields of statistical learning (128). These 
methods based on the traditional COX proportional 
hazards model mostly utilized structural characteristics of 
the patient’s information, tumor staging and characteristics 
and combined these variables linearly (129-132). 

With the development of medical imaging technology, 

more and more unstructured medical images are available 
for diagnosis, treatment and survival analysis. Previous 
studies showed that some computational methods had been 
introduced to predict cancer clinical outcomes based on 
pathological images by assuming that pathological images 
may provide complementary information related to tumor 
characteristics and achieved good performance for lung cancer 
(133-135). However, there are few studies that use pathological 
images for clinical outcome analysis of breast cancer due to its 
high degree of complexity and heterogeneity.

Sun et al. (136) conducted a powerful method named 
GPMKL based on multiple kernel learning (MKL) for 
breast cancer survival prediction by integrating genomic 
data and features distilled from pathological images. 
The result showed that compared with the use of single-
dimensional data namely the genomic data, the joint 
use of genomic data and pathological images increased 
the AUC from 0.794 to 0.821, which demonstrated that 
the pathological image information plays a critical part 
in accurately predicting the survival time (136). Klimov 
et al. (137) also developed an ML approach to identify 
prognostically relevant features obtained from the texture 
of H&E slides to predict DCIS recurrence risk. It was 
verified that the model was able to identify a high-risk 
group of patients that had almost a 50% chance of recurring 
within 10 years and provide predictive value for the long-
term outcome of radiotherapy after BCS in patients with 
different risk groups (137). 

Recently, DL-based approaches for the integration of 
data from different modalities have been proposed and 
successfully applied in cancer prognosis prediction, which 
are highly flexible and can interpret the complexity of 
data in a non-linear manner (138-140). Wang et al. (141) 
presented a novel unified framework named genomic 
and pathological deep bilinear network (GPDBN) for 
prognosis prediction by integrating both genomic data and 
pathological images. Their findings also suggested that 
prognosis prediction methods based on data from different 
modalities outperformed those using single modality 
data. More importantly, GPDBN outperformed all non-
DL methods, indicating that sophisticated DL-based 
methods are advantageous in integrating data from different 
modalities.

Challenges in the clinical application of digital 
pathology

With the development of AI technology, pathology analysis 
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is no longer limited to the traditional qualitative analysis 
but transitioned to quantitative analysis gradually (142). 
Obtaining the pathological diagnosis through conducting 
data statistics, establishing mathematical models, and 
calculating the parameters related to lesions can effectively 
reduce the mistakes caused by subjective factors and 
improve the overall level and efficiency of medical services. 
But there are challenges to fully realize the digitalization 
and automation of clinical pathology as follows: 

(I) Financial investment. In general, tissue sections 
are usually scanned at ×20 or ×40 objective 
magnification, and the images obtained from ×40 
objective scans are converted into files of 0.5 to  
4 GB in size, which would occupy a large amount of 
memory space (143). Hence, the storage of images 
requires high-specification hardware. To date, 
most computational programs are executed on the 
CPU of a computer, while DL is better performed 
on a graphics processing unit (GPU) (144,145). 
As a result, more expensive GPUs may need to be 
purchased to improve work performance.

(II) Data Sharing. Compared to traditional analysis 
methods where image features are selected 
manually, DL is highly data-dependent, as it must 
identify these features automatically. In order 
to make the model have good generalization 
characteristics, the training samples should be 
comprehensive and representative. In addition, 
most present AI methods still require pathologists 
to label the training set images manually when 
training the models, which is a tedious and time-
consuming task. Although weakly supervised 
learning methods can avoid the implementation 
of this step, they also require the support of large 
datasets. The classification accuracy of models 
trained on small data sets is not satisfactory (146).  
Therefore, data share worldwide to obtain 
numerous different datasets can improve model 
stability and be sufficient to deal with clinical 
complexity without fine labeling (113).

(III) Image preprocessing. In surgical pathology, there 
are no recognized standards for tissue processing, 
staining, and slide preparation (147,148). As a 
result, an AI models that performed well on a set 
of WSIs may not work well in generalization and 
utilization due to a series of biases. Applying an 
image pre-processing step for color normalization 
to reduce the effect of coloring and processing 

could maintain the model with good performance 
to some extent (149).

(IV) Standardized tra ining.  Hanna e t  a l .  (150) 
demonstrated that pathologists who lacked training 
or experience in the technical application of digital 
pathology platforms had an increase in average 
reading time per slide of 19 s and a 19% decrease 
in efficiency per case assessment. Consequently, 
additional courses or seminars to provide relevant 
training will improve the adaptation of pathologists 
to digital systems and the efficiency in their 
application, facilitating the safe and efficient use of 
digital pathology platforms (151).

(V) Responsibility and regulation. To accomplish tasks 
more stably, DL models are becoming more and 
more complex in structure, which leads to a loss of 
interpretability of the inner workings of the models, 
creating a “black box” problem (152). Activation 
maps, or heatmaps, are methods that attempt 
to address the “black box” issue by highlighting 
areas of images with the output classification label 
(153-155). However, these methods still require 
human interpretation to verify whether the features 
identified by DL models are the same as those used 
by physicians to diagnose the disease. The ultimate 
goal should be the information provided by the 
user about the decision-making process of the DL 
model to build trust and the facilitate adoption 
and deployment of DL technologies in clinical 
scenarios. In addition, it is crucial to clarify the 
status of AI in the healthcare system and to regulate 
the relevant laws to improve the liability and 
regulatory system. In this way, legal liability can be 
defined if medical disputes occur when applying AI 
for diagnosis.

Discussion

Digital image analysis methods have been widely used in 
many fields of modern medicine and the FDA has approved 
a variety of AI-based diagnostic systems for radiology 
clinical diagnosis, performing manual-like or even more 
than manual tasks, such as tumor region identification and 
segmentation (156-158). In contrast to imaging methods 
such as CT and MRI, histopathology images have much 
larger pixels. The morphology and spatial disposition of 
millions of cells in a slide contain much more dense and 
complex information that cannot be analyzed effectively by 
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visual recognition alone. The integration of DL technology 
into pathology diagnosis can not only compensate for the 
unpredictable factors due to the pathologist’s subjective 
experience but also improve diagnostic accuracy in less 
time, fundamentally changing the way detect and treat 
breast cancer in the near future. In addition, integrating 
pathology with other types of information, such as genomics 
and radiomics, contributes to a deeper exploration of image 
information and further understanding of the mechanisms 
of disease development. To date, all AI-assisted pathology 
diagnostic models are still in the experimental stage. How 
to improve the economic efficiency and clinical adaptability 
of the models is still the focus of research for the long-term 
future.

In conclusion, having searched PubMed and other 
databases and summarized the application of DL-based AI 
models in breast cancer pathology, we conclude that DL 
is undoubtedly a promising tool for assisting pathologists 
in routines, but further studies are needed to realize the 
digitization and automation of clinical pathology.
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