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Background: Mutations in the BRCA1/2 (BRCA) genes are associated with response to poly(ADP-
ribose) polymerase (PARP) inhibitors (PARPi). In addition, there are different homologous recombination 
deficiency (HRD) biomarkers available in clinical practice [e.g., genome-wide loss-of-heterozygosity (gLOH) 
and myChoice® score] that identify patients who can benefit from PARPi. Inconsistencies in biomarkers used 
in PARPi clinical trials make it challenging to identify clinically relevant predictive biomarkers. This study 
aims to compare clinically available HRD biomarkers in terms of benefits from PARPi.
Methods: We performed database search for phase II or III randomized clinical trials comparing PARPi 
versus chemotherapy, and meta-analysis using generic inverse variance and a Random Effects model. Patients 
were classified according to their HRD status: (I) BRCAm (patients with BRCA mutation of germline or 
somatic origin); (II) non-BRCA HRD [patients BRCA wild-type (wt) with another HRD biomarker—
gLOH or myChoice®]; and (III) homologous recombination proficiency (HRP) (BRCAwt and without HRD 
biomarkers). From those that were BRCAwt, we compared myChoice®+ with gLOH-high.
Results: Five studies (3,225 patients) analyzing PARPi in first line setting were included. Patients with 
BRCAmut had progression-free survival (PFS) with hazard ratio (HR) 0.33 [95% confidence interval (CI): 
0.30–0.43]; patients with non-BRCA HRD had a PFS HR 0.49 (95% CI: 0.37–0.65), and patients with HRP 
had a PFS HR 0.78 (95% CI: 0.58–1.03). Eight studies (5,529 patients) with PARPi including first line and 
recurrence settings were included. BRCAmut had PFS HR 0.37 (95% CI: 0.30–0.48), BRCAwt & HRD 0.45 
(95% CI: 0.37–0.55) and HRP 0.70 (95% CI: 0.57–0.85). Patients with BRCAwt & myChoice® ≥42 had PFS 
HR 0.43 (95% CI: 0.34–0.56), similar to patients with BRCAwt & gLOH-high with PFS HR 0.42 (95% CI: 
0.28–0.62).
Conclusions: Patients with HRD derived significantly more benefit from PARPi when compared 
to patients with HRP. The benefit of PARPi in patients with HRP tumors was limited. Careful cost-
effectiveness analysis, and alternative therapies or clinical trial enrollment should strongly be considered 
for patients with HRP tumors. Among patients with BRCAwt, a similar benefit was found in patients with 
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Introduction

Ovarian cancer is the third most common gynecological 
malignancy encompassing 313,959 new cases and  
207,252 deaths worldwide in 2020 (1). High-grade serous 
ovarian cancer (HGSOC) is the most common (90%) and 
aggressive subtype, which retains a poor prognosis. However, 
epithelial ovarian cancer is a heterogeneous disease that 
includes several histotypes such as non-epithelial ovarian 
cancer (10%) based on molecular changes, clinical behavior 
and treatment (2,3). The cost of treatment per patient with 
ovarian cancer remains the highest among all cancer types, 
with an average initial cost in the first year of around USD 
80,000 and the final year cost potentially increasing to 
USD 100,000. Despite efforts to develop effective tools for 
general population screening, patients with these tumors 
are commonly diagnosed at stages III (51%) or IV (29%) 
and their 5-year survival rates in the of 42% and 26% in 

the United States (US), respectively (4,5). Homologous 
recombination repair (HRR) is a critical mechanism for high-
fidelity repair of double-strand DNA breaks (6). Mutations—
defined here as pathogenic or likely pathogenic variants—in 
genes related to this repair pathway may lead to homologous 
recombination deficiency (HRD) (7).

Poly(ADP-ribose) polymerase (PARP) are enzymes 
involved in base-excision and are critical for DNA repair of 
single-strand breaks (8). Hence, PARP inhibitors (PARPi) 
lead to further chromosomal instability and cell death and 
are particularly toxic to HRD tumors (9). Over the past 
decade, PARPi have dramatically changed the treatment 
landscape of ovarian cancer. They were initially approved for 
patients with advanced disease as second-line monotherapy 
maintenance, based on improvement in progression-free 
survival (PFS) for patients with sustained partial or complete 
response to platinum-based chemotherapy (10,11). In this 
context, olaparib was the first PARPi to become available in 
clinical practice, followed by rucaparib and niraparib (12). 
Subsequent trials also confirmed the benefit of olaparib, 
niraparib, veliparib, and rucaparib in the first line setting 
as maintenance for patients who achieve a complete or 
partial response to platinum-based chemotherapy (13-17).  
However, the Food and Drug Administration (FDA) has 
restricted its approval to olaparib and niraparib in the front-
line setting (18), while veliparib and rucaparib remain 
investigational. Despite differences in patient characteristics, 
treatment setting, and design, trials consistently show 
that patients with BRCA mutations have a more favorable 
response to PARPi, with similar hazard ratios (HRs) across 
studies. Consequently, BRCA mutations are a robust 
predictor of positive response. PARPi therapy may benefit 
some patients with wild-type (wt) BRCA, which raises the 
question of identifying HRD biomarkers beyond BRCA 
mutations. In addition, synthetic lethality can be used in 
tumors with similar molecular characteristics to BRCA-
muted tumors, referred to as “BRCAness”. Mutations in 
genes outside of BRCA in the homologous recombination 
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pathway may expand the indication for the use of a PARP 
inhibitor, although this is still being studied (19).

There is rationale to believe that patients with mutations 
in a HRR gene leading to functional HRD will have 
genomic instability and will therefore be sensitive to PARPi. 
In fact, PARPi have been approved with a similar indication 
for patients with prostate cancer who carry a mutation in a 
HRR gene (20). For example, early events in prostate cancer 
development, such as CDH1 gene loss or inactivation of the 
SPOP gene, may also increase sensitivity to PARPi (21). In 
breast cancer, olaparib and talazoparib are approved for 
metastatic HER2-negative breast cancer, but these are 
restricted to patients with germline BRCA mutations (22,23). 
The TBCRC-048 study investigated olaparib in patients 
with other HRR genes but responses have been limited to 
PALB2 or BRCA (24,25).

Alternatively, another approach is to identify patients 
based on the genomic aberrat ions thought to be 
consequence of HRD. The genomic scars commonly found 
in BRCA carriers include loss of heterozygosity (LOH), 
telomeric allelic imbalance (TAI), and large-scale transitions 
(LST) (26). The two main composite HRD tests available 
in clinical practice apply next-generation sequencing (NGS) 
or microarray assays to simultaneously search for BRCA 
mutations and genomic scars. The Foundation Medicine 
T5 utilizes a genome-wide LOH (gLOH) (27), whereas the 
Myriad MyChoice employs the genomic instability score 
(GIS-score), which incorporates LOH, TAI, and LST (28).

In the present study, we aimed to perform an up-to-date 
meta-analysis of the various HRD biomarkers studied in 
the first and second line randomized clinical trials and their 
association with survival in patients with ovarian cancers 
treated with PARPi. We present this article in accordance 
with the PRISMA reporting checklist (available at https://
cco.amegroups.com/article/view/10.21037/cco-22-114/rc).

Methods

We performed this meta-analysis under the Preferred 
Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (29,30). A prospective 
protocol was formulated and uploaded to PROSPERO 
(CRD42021248112).

Eligibility criteria

Eligible studies were phase II or phase III randomized 
c l inical  tr ia ls  comparing PARPi with placebo or 

chemotherapy. Retrospective biomarker analyses from 
the same studies were also eligible. Single-arm studies or 
studies that had PARPi in both arms were ineligible. In the 
presence of multiple references for the same study, we chose 
the most recent and complete publication.

Data sources and extraction

We conducted a comprehensive database search (PubMed, 
Embase, and Cochrane Central) for entries from inception 
to June 18, 2022. We further analyzed abstracts from the 
American Society of Clinical Oncology (ASCO) and the 
European Society for Medical Oncology (ESMO) libraries 
during the equivalent period. The detailed search strategy is 
available (Table S1).

We uploaded titles and abstracts to Rayyan QCRI, a 
web-based platform for systematic review management (31). 
Two authors independently performed the screening. Data 
extraction from the included studies was performed by two 
authors, in tandem, and using a pre-piloted spreadsheet 
containing trial identification, including and exclusion 
criteria, treatment arms, and HRD definition, including the 
test manufacturer. 

The outcome of interest was the HR for PFS according 
to different patient subgroups. The BRCA mutations 
(BRCAmut) subgroup included germline mutations 
(gBRCAm), somatic mutations (sBRCAm), or tumor 
mutations (tBRCAm), which refers to a composite of 
gBRCAm or sBRCAm. Conversely, the BRCAwt group had 
to be all gBRCAwt, sBRCAwt, and tBRCAwt. The BRCAwt 
& other HRD included those without BRCA mutation that 
had either GIS-high or gLOH-high. The BRCAm & other 
HRD included those with a BRCA mutation plus either 
GIS-high or gLOH-high. The BRCAm or other HRD 
included those that had a BRCA mutation or either GIS-
high or gLOH-high. The HRP group comprised those 
without any evidence of HRD. 

Risk of bias assessment

Risk of bias in randomized trials was assessed using RoB 
(version 2.0). This included five domains (randomization 
process, deviation from intended interventions, missing 
outcome data, measurement of the outcome, and selection 
of reported results) and resulted in judgments of “low risk 
of bias”, “some concerns”, or “high risk of bias” (32). Two 
authors independently applied the tool to each included 
trial. Inconsistencies were solved through discussions 

https://cco.amegroups.com/article/view/10.21037/cco-22-114/rc
https://cco.amegroups.com/article/view/10.21037/cco-22-114/rc
https://cdn.amegroups.cn/static/public/CCO-22-114-supplementary.pdf
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among all authors.

Statistical analysis

Meta-analysis was performed using generic inverse variance 
and a random-effects model described by Borenstein and 
Higgins (33). We conducted analyses comparing the effect 
of the presence of the HRD biomarker on the efficacy 
of PARPi. Patients were classified into three categories 
according to their HRD status: (I) BRCAm (patients 
with BRCA mutation of germline or somatic origin); (II) 
non-BRCA HRD (patients BRCAwt with another HRD 
biomarker—gLOH or myChoice®); and (III) homologous 
recombination proficiency (HRP) (BRCAwt and HRD 
biomarker negative). From those that were BRCAwt, we 
compared myChoice®+ with gLOH-high. Sub-analyses 
included patients treated in the first-line setting, and 
another with all patients (including first line and recurrence 
settings). We did not conduct a separate analysis restricted 
to the recurrence setting as this was recently reported by 
another group (34). Statistical analysis was executed in 
RevMan (version 5.4). We generated forest plots for back-
transformed effect estimates, expressing PFS as HRs with 

the respective 95% confidence interval (CI). We assessed 
heterogeneity between and within designs using Cochran’s 
Q statistics and quantified using I2 statistics. I2 can be 
used to describe the proportion of the variability in effect 
estimates due to heterogeneity within three thresholds 25% 
(low), 50% (moderate) and, 75% (high) (35,36).

Results

Study selection

A total of 1,575 unique entries were found, and 968 studies 
were screened after excluding duplicates. Sixty-seven full-
text publications were reviewed. A PRISMA flow diagram is 
shown on Figure 1. Thirteen trials (n=5,529) were included 
in the quantitative synthesis: five trials in the first-line 
setting (n=3,225), and eight trials in the recurrence setting 
(n=2,304) (Table S2) (37-42). We used a recent meta-
analysis to pool previously additional subgroup data that 
was unavailable in the recurrent-setting publications. All 
studies were deemed “low risk of bias” (Figure S1). Funnel 
plots for publication bias in each subgroup evaluated in the 
main analysis are shown in (Figure S2).

Records identified from:
• Databases (n=1,575)

Records removed before 
screening:

• Duplicate records removed 
(n=540)
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(n=1,035)

Identification of studies via databases and registers
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(n=968)

Reports not retrieved 
(n=0)

Reports excluded:
• PARP in control arm (n=6)
• Combination therapy (n=19)
• No full text (n=20)
• Other (n=9)

Reports sought for retrieval
(n=67)

Reports assessed for eligibility
(n=67)

Studies included in review
(n=13)

Figure 1 PRISMA flow diagram of the literature search and study selection. PRISMA, Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses; PARP, poly(ADP-ribose) polymerase.

https://cdn.amegroups.cn/static/public/CCO-22-114-supplementary.pdf
https://cdn.amegroups.cn/static/public/CCO-22-114-supplementary.pdf
https://cdn.amegroups.cn/static/public/CCO-22-114-supplementary.pdf
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Study characteristics

All first-line studies were phase III and compared the 
efficacy of PARPi monotherapy maintenance against 
placebo maintenance. SOLO-1 and PAOLA-1 evaluated 
olaparib, PRIMA evaluated niraparib, ATHENA-MONO 
evaluated rucaparib, while VELIA studied two combinations 
of carboplatin/taxane with either veliparib or placebo  
(13-17). All studies in the recurrent setting compared 
PARPi with placebo or chemotherapy or anti-vascular 
endothelial growth factor (anti-VEGF). The PAOLA-1 
study, unlike all other studies, treated both intervention and 
placebo groups with bevacizumab association (17). Study19 
and Stan B. Kaye, 2011, were the only phase II and used 
olaparib (10,11). The remaining were phase III, SOLO-
2 and SOLO-3 with olaparib, ARIEL-3 and ARIEL-4 
with rucaparib, and NOVA and NORA with niraparib  
(37-42). Most of the studies used either the Myriad 
myChoice genomic instability score (GIS) or the Foundation 
Medicine T5 NGS loss of heterozygosity (gLOH) as 
surrogates. The VELIA trial used GIS ≥33 as a cutoff for 
HRD; the remainder of studies using Myriad myChoice 
adopted GIS ≥42 as a cutoff.

Statistical analysis

In the comparison of PARPi efficacy according to HRD 
biomarker, we find that patients with BRCA mutations 
derived the most pronounced benefit from PARPi with 
PFS HR 0.37 (95% CI: 0.30–0.48, P<0.00001) (Figure 2), 
followed by patients BRCAwt and other HRD with PFS 
HR 0.45 (95% CI: 0.37–0.55, P<0.00001) (Figure 3). HRP 

patients derived much less benefit from PARPi with PFS 
HR 0.70 (95% CI: 0.57–0.85, P=0.0004) (Figure 4). The 
benefit of PARPi according to HRD status in the first and 
recurrent line settings were comparable, except that the 
benefit of PARPi were not statistically significant in the 
first line setting for HRP patients (Figure 5). The benefit 
is similar across BRCA mutation subtype (Figure S3) and 
HRD biomarker (Figure 3). Specifically, patients with 
BRCAwt and GIS ≥42 via Myriad myChoice® had HR 
0.43 (95% CI: 0.34–0.56, P<0.00001), similar to patients 
with BRCAwt and gLOH-high via Foundation Medicine 
T5 NGS with HR 0.46 (95% CI: 0.33–0.64, P<0.00001) 
(Figures 6,7). One study used GIS ≥33 as cutoff value and 
was not included in this subgroup analysis.

Discussion

Our results confirm that both patients with BRCAm or 
either of the commercially available HRD biomarker derive 
a clinically meaningful benefit from PARPi, and the benefit 
in patients that are HRP is much less pronounced overall 
and was not statistically significant for patients in the first-
line setting. 

For the efficacy of PARPi in the HRP population, 
the results were different between the first-line studies: 
Athena-Mono showed better outcomes than PAOLA-1 
and PRIMA. Differences were not only present in the 
PARPi used but also in the HRD test—Athena-Mono used 
Foundation whereas PRIMA and PAOLA-1 used Myriad—
and patient population. This could be in part attributed to 
the differences in the patient populations in those studies. 

Figure 2 Forest plot from the meta-analysis of the efficacy of PARPi in patients with BRCA mutations (10,11,13-17,37-42). SE, standard 
error; CI, confidence interval; PARPi, poly(ADP-ribose) polymerase inhibitor.

https://cdn.amegroups.cn/static/public/CCO-22-114-supplementary.pdf
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Figure 3 Forest plot from the meta-analysis of the efficacy of PARPi in patients with non-BRCA HRD (10,15-17,39,41). HRD, homologous 
recombination deficiency; SE, standard error; CI, confidence interval; PARPi, poly(ADP-ribose) polymerase inhibitor.

Figure 4 Forest plot from the meta-analysis of the efficacy of PARPi in patients with HRP tumors (10,15-17,39,41). HRP, homologous 
recombination proficiency; SE, standard error; CI, confidence interval; PARPi, poly(ADP-ribose) polymerase inhibitor.

Figure 5 Forest plot from the meta-analysis of the efficacy of PARPi in patients with HRP tumors in the first-line setting (15-17). HRP, 
homologous recombination proficiency; SE, standard error; CI, confidence interval; PARPi, poly(ADP-ribose) polymerase inhibitor.

Figure 6 Forest plot from the meta-analysis of the efficacy of PARPi in patients with BRCAwt and GIS ≥42 via Myriad myChoice® 

(10,15,17,41). BRCAwt, BRCA wild-type. GIS, genomic instability score; SE, standard error; CI, confidence interval; PARPi, poly(ADP-
ribose) polymerase inhibitor.
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Athena-Mono included patients with lower risk disease 
when compared with other studies. Patients with inoperable 
disease were excluded, 80% of patients underwent optimal 
debulking, only 10% had measurable disease after surgery 
and/or chemotherapy, and approximately, 50% of patients 
were HRP. PAOLA-1 studied olaparib in combination with 
bevacizumab, 8% of patients had inoperable disease, only 
40% had optimal debulking, and only 35% were HRP. 
Lastly, PRIMA evaluated niraparib and only included 
patients at a higher risk, including patients with inoperable 
disease, stage III with suboptimal cytoreduction, and stage 
IV. Approximately half of the patients in PRIMA were HRP.

In recurrent setting, reports of detrimental overall 
survival in patients with BRCAmut or HRD from the 
ARIEL 4 (rucaparib), SOLO 3 (olaparib), and NOVA 
(niraparib) have led to treatment recommendation updates. 
PARPi monotherapy should not routinely be offered to 
patients who have recurrent platinum-sensitive cancer. It 
may be offered to patients who have not already received 
PARPi and who have responded to platinum-based therapy 
regardless of BRCA mutation status. PARPi monotherapy 
is not recommended for patients with either BRCAwt or 
platinum-resistant recurrent (43).

This study summarizes the current evidence from 
randomized clinical trials in the first and later lines of 
therapy and stratifies patients according to different types 
of BRCA mutations and different HRD assays that are 
already commercially available. The trials in the recurrence 
setting reported BRCA status as germline or somatic, except 
for Study19, where patients received a classification of 
tumor BRCA (tBRCA), which encompassed both gBRCA 
and sBRCA. All front-line studies used tBRCA, except for 
SOLO1, that only included patients with gBRCAm. Our 
analysis confirms that patients with BRCA-related or non-
BRCA-related HRD—GIS or gLOH—derive the most 
benefit from PARPi. We underscore that the magnitude of 
benefit from patients selected based on GIS and gLOH was 

similar.
Our analysis also demonstrates that robust detection 

of HRD is still an unmet need. This is exemplified by the 
fact that some HRP patients also benefited from PARPi 
use, although to a significantly lower degree, and mostly 
restricted to the recurrent setting. A possible explanation is 
that PARPi can promote anti-tumor activity by mechanisms 
other than HRD, such as a microenvironment reshaping 
towards immune activation via macrophage activity 
(https://doi.org/10.1016/j.celrep.2022.111462). Moreover, 
preclinical models support a therapeutical synergism 
between PARPi and immune checkpoint inhibitors, notably 
anti-programmed cell death 1/PD-1 ligand 1 (anti-PD-1/
PD-L1) and anti-cytotoxic T lymphocyte-associated antigen 
4 (anti-CTLA-4) which induces a PARPi sensitization and 
provokes a major antitumor immune response than either 
drug alone (44,45). Recent advancements in proteomics, 
including mass spectrometry and protein array analysis, have 
significantly contributed to a deeper understanding of the 
molecular signaling events and proteomic characterization 
of ovarian cancer (46). Novel approaches such as the use 
of single-base substitutions or rearrangement signatures or 
their combination resulted in better HRD identification—
measured by PARPi efficacy—in patients with ovarian and 
breast cancer (47). It is also noteworthy that the present 
techniques detect genomic scars that accumulated over time 
instead of measuring real-time DNA repair capacity, which 
would better reflect the dynamic nature of the homologous 
recombination status. Immunohistochemistry (IHC)-based 
RAD51 assays showed promising pre-clinical results in 
small datasets and will require further validation and clinical 
utility testing (48).

Limitations of our study include indirect comparisons, 
which is inherent to meta-analyses. The use of trial-level 
data as opposed to individual patient data can reduce the 
power of our analysis. Subgroup analyses included patients 
treated with different drugs, a limitation that is minimized 

Figure 7 Forest plot from the meta-analysis of the efficacy of PARPi in patients with BRCAwt and gLOH-high Foundation Medicine T5 
NGS (10,16,39). BRCAwt, BRCA wild-type. gLOH-high, genome-wide loss-of-heterozygosity. SE, standard error; CI, confidence interval; 
NGS, next-generation sequencing.
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by the fact that they belong to the same class and presented 
similar results across trials when similar patients are 
compared. Our study was not designed to compare efficacy 
among the different PARPi since this was evaluated in 
a previous meta-analysis (49). Most trials have not yet 
published overall survival data, and therefore PFS was used 
as a surrogate endpoint, but the expectation is that the final 
analyses of these studies will demonstrate the translation of 
PFS into OS benefit, as seen in the SOLO2/ENGOT-Ov21 
trial (37).

Conclusions

Patients with BRCA mutations benefit the most from 
PARPi. From patients with BRCA1/2wt, a comparable 
benefit was found between patients with HRD detected 
via gLOH-high and those via myChoice®. HRP patients 
derived limited benefit. The clinical development of further 
HRD biomarkers (i.e., Sig3 and HRDetect) may help 
identify more patients who may benefit from PARPi.
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