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Background

Pancreatic ductal adenocarcinoma (PDAC) consists 
of 85–90% of pancreatic neoplasms and is the most 
common histologic subtype. Globally, there has been an 

increasing burden of PDAC (1) over the years—this is 
expected to continue with a shift in lifestyle habits, ageing 
populations, and improved diagnostic tools. Despite 
medical advancements, PDAC is often diagnosed late with 
locally advanced, unresectable, or metastatic disease with 
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poor clinical outcomes. It remains the seventh leading 
cause of worldwide cancer-related deaths (2) in 2020. An 
understanding of risk factors for PDAC is crucial for early 
detection and treatment.

Predisposition to PDAC can be attributed to modifiable 
and non-modifiable risk factors, including genetic 
factors. Ethnicity and geography affect the prevalence 
and significance of each risk factor and should be taken 
into consideration for effective screening and prevention 
programmes.

This review aims to describe the differences in ethnic 
and geographical distribution of PDAC and provide 
a comprehensive overview of the modifiable and non-
modifiable risk factors and genetic predisposition syndromes 
for PDAC. It will highlight recent findings of interest, point 
out gaps in understanding, and suggest potential ways forward 
to improve screening and outcomes for patients with PDAC.

Incidence and mortality

Geography

Worldwide, high-income regions such as Europe, North 
America, Australia/New Zealand and Japan have higher 
incidence of PDAC ranging from 7.9 to 9.9 per 100,000 
people (Figures 1,2). Conversely, low-income regions of 

Africa, Central America and South Asia have the lowest 
incidence at 1.5 to 4.6 per 100,000 people (2). This 
difference can be due to increased prevalence of risk factors 
associated with higher incomes such as alcohol use, obesity 
and diabetes, as well as ageing populations (1). This could 
also be confounded by the scarcity of high-quality data 
in low-income regions due to reduced access to advanced 
diagnostic tools and imaging, thus potentially causing a 
discrepancy in actual epidemiology.

Ethnicity

Within a geographic region, there is a difference in the 
incidence of PDAC amongst different ethnic groups. In 
the United States, many studies have identified a higher 
incidence of PDAC in non-Hispanic African populations 
compared to non-Hispanic European populations (3,4). 
Despite lower income levels amongst non-Hispanic Africans 
compared to non-Hispanic Europeans, differences in diet 
and lifestyle lead to higher rates of PDAC risk factors such 
as smoking, diabetes and obesity (5) in the non-Hispanic 
African group. However, a study done by Huang et al. (6) 
showed that non-Hispanic Africans had a 20% greater risk 
of PDAC compared to non-Hispanic Europeans even after 
adjusting for dietary and lifestyle differences, thus alluding 
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Figure 1 Estimated age-standardised incidence rates of PDAC in 2020 according to regions [data retrieved from GLOBOCAN 2020 (2)]. 
PDAC, pancreatic ductal adenocarcinoma.
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Estimated age-standardised incidence rates of PDAC in 2020, according to income levels  
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Figure 2 Estimated age-standardised incidence rate of PDAC in 2020 according to income levels [data retrieved from GLOBOCAN 2020 
(2)]. PDAC, pancreatic ductal adenocarcinoma.

to other factors at play. One such factor could be that of 
biological differences that cause varying susceptibility 
to developing PDAC—research suggests that the non-
Hispanic Africans are slower at metabolizing carcinogens 
from tobacco (7), and that PDAC in non-Hispanic Africans 
have increased K-ras mutations (8).

Socioeconomic factors also result in poorer overall 
survival for non-Hispanic Africans—a recent study has also 
showed that non-Hispanic Africans with PDAC had lower 
education and income level compared to non-Hispanic 
Europeans, and this correlated with more advanced stage at 
diagnosis, a lower likelihood of receiving treatment, and a 
longer time to commencement of treatment (9).

There have been fewer studies examining the rate of 
PDAC in other ethnic minorities, such as in Hispanic 
and Asian populations (6). In one US-based study, 
Asian populations had lower rates of smoking and obesity 
compared with other ethnic groups, which may contribute 
to their lower pancreatic cancer rates. Asian populations 
also have a higher survival rate compared to non-Asian 
populations (10), and there can be genetic factors behind 
this. Secreted protein acidic and rich in cysteine (SPARC), 
a protein that has been found to independently predict for 
poor disease-free survival and overall survival for patients 
with PDAC, was found by a recent study to have a lower 
stromal expression in Japanese patients and could be a 
potential factor contributing to better outcomes in this 
Asian population (11,12).

Trends

Incidence of PDAC has been on a gradual uptrend, with 
cases rising from 460,000 worldwide in 2018 to 496,000 in 
2020 (2). Both the incidence and mortality of PDAC are 

expected to rise, and this likely has to do with its associated 
risk factors—ageing populations, lifestyle changes such 
as smoking, reduced physical activity and consumption 
of calorie-rich food (13). Improved diagnostic tools and 
technology, especially in developing regions, are also 
detecting more cases that would have otherwise been 
missed. PDAC has been projected to surpass breast cancer 
as the third leading cause of cancer death by 2025 (14). 
Comparing the incidence of PDAC from 2018 to 2020, the 
global distribution of proportion of newly diagnosed PDAC 
remains similar.

Risk factors (Table 1)

Smoking

Smoking is a notable risk factor for PDAC. Multiple studies 
have shown that there is an association between smoking and 
increased risk of death from PDAC, up to two times higher 
in smokers compared to non-smokers (15,16). The estimated 
attributable fraction of PDAC deaths due to smoking is 
11–32% (25). Of note, the risk of PDAC decreases upon 
cessation of smoking—with a 30% risk reduction for 
pancreatic cancer with more than 10 years of cessation.

A systematic analysis in 2019 found that regions with 
the highest prevalence of smoking were that of Europe, 
Asia and Oceania, while the lowest prevalence of smoking 
were in Latin America and Sub-Saharan Africa (26). This 
distribution correlates well with the geographic distribution 
of PDAC, suggesting that smoking is indeed a strong 
independent risk factor.

Obesity and physical inactivity

There is a robust causal association between increasing 
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Table 1 Risk factors associated with increased risk of PDAC

Risk factor Relative risk of PDAC Geographical regions and ethnic groups with higher prevalence

Smoking 2 (15,16) Central Europe, Western Europe and Southern Latin America amongst females, and 
Southeast/East Asian and Oceania amongst males

Obesity and physical 
inactivity

1.72 (17) Americas, Europe

Heavy alcohol consumption 1.15–1.6 (18-20) Russia, Europe; East Asia: ALDH2*2 allele*

Ageing population – Europe, North America, East Asia

Male gender 1.39 (2) –

Diabetes mellitus 1.82 (21) North America, Russia, Asia (China, India, South-east Asia)

Chronic pancreatitis Up to 16.16 (22) Non-Hispanic Africans

* East Asians have a higher prevalence of the ALDH2*2 allele, which is associated with inefficient enzyme metabolism of acetaldehyde, a 
metabolite of ethanol, and is associated with a higher risk of developing PDAC (23,24). PDAC, pancreatic ductal adenocarcinoma.

body mass index (BMI) and PDAC risk [relative risk (RR) 
1.72] (17). Overweight or obese individuals develop PDAC 
at a younger age, and have a lower overall survival rate (27). 
On the other hand, physical activity is inversely associated 
with risk of PDAC among individuals with a BMI of more 
than 25 kg/m2 (RR 0.59) (28). The global prevalence 
of obesity has doubled since 1980 (29)—as society gets 
increasingly re-engineered to minimize movement, 
sedentary lifestyles become easier to adopt and this poses 
an increasing health risk (30).

In a study that analyzed the epidemiology of obesity from 
1980 to 2015 (29), the Americas and Europe emerged with 
the highest rates of obesity and Southeast Asia and West 
Pacific with the lowest, correlating closely with the pattern 
of incidence of PDAC. However, there were discrepancies 
such as countries like Austria and Japan, which had below-
average obesity rates but high PDAC rates (2,31). These 
discrepancies could be due to other contributing risk factors 
such as higher alcohol consumption (32,33) and an ageing 
population (34) in these countries.

Alcohol

There is conflicting evidence regarding the association 
of alcohol intake and risk of PDAC. Several studies have 
shown that heavy alcohol consumption was associated 
with a 1.15 to 1.6 times increased risk of PDAC (18-20), 
but there is a lack of evidence to determine the association 
between low-to-moderate alcohol intake and PDAC. 
Liquor has been associated with PDAC more so than other 
types of alcohol. Increased alcohol consumption is also an 

established risk factor of pancreatitis (35), which in turn is a 
risk factor for PDAC.

Globally, the average per capita alcohol consumption has 
increased over the past two decades, with the lowest amount 
occurring in the Middle East and Northern Africa, and 
the highest in Russia and Europe. Interestingly, there is a 
decreasing trend of overall alcohol consumption in Europe 
and Russia and an increasing one in the Western Pacific 
and Southeast Asia regions, which is not in tandem with 
the trend in incidence of PDAC, suggesting again other 
confounding factors. In East Asian countries, 30–50% of the 
population carry the ALDH2*2 allele, which is associated 
with inefficient enzyme metabolism of acetaldehyde, a 
metabolite of ethanol. Individuals carrying the ALDH2*2 
allele were found to have a higher risk of developing 
alcohol-related cancers such as pancreatic, oesophageal and 
liver cancer (23,24), suggesting that alcohol consumption 
may play a more significant role in PDAC development in 
the East Asian population.

Age

Pancreatic cancer incidence increases with age, with 90% 
of newly diagnosed patients aged 55 years and above (36),  
and the highest incidence of PDAC reported in people 
over 70 years old (37). It is estimated that the proportion 
of the world’s population over 60 years will double 
from 11% in 2015 to 22% in 2050 (38). Many aging 
populations around the world also have high PDAC 
rates—for example, Japan had the highest proportion of 
elderly aged 65 and above (28%), and the third highest 
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Estimated age-standardised incidence rates of PDAC in various regions in 2020, according to gender 
Age standardised rate per 100,000
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Figure 3 Estimated age-standardised incidence rate of PDAC in various regions in 2020, according to gender [data retrieved from 
GLOBOCAN 2020 (2)]. PDAC, pancreatic ductal adenocarcinoma.

incidence of PDAC (9.9 per 100,000 people) in 2020. 
Other countries like Germany, Malta and Hungary, with 
fast aging populations (20% and above) also had a high 
incidence of PDAC (8.8 per 100,000 people and above). 
Geographically, aging populations are concentrated in 
the regions of Europe, North America and Eastern Asia, 
which coincides with the geographical distribution of high 
PDAC incidence (2,39).

Gender

PDAC is more commonly found in males than females—
this is consistent across various regions (Figure 3). The 
worldwide incidence of PDAC in 2020 is 5.7 per 100,000 

for males and 4.1 per 100,000 for females (2). While the 
disparity could be attributed to differences in lifestyle 
factors, especially that of higher rates of smoking in 
men compared to women, there are intrinsic biological 
differences between the genders. Several studies suggest 
that the female sex hormone estrogen decreases pancreatic 
cancer growth (40-42), and a study using The Cancer 
Genome Atlas (TCGA) data has also revealed that there 
are distinct molecular differences between male and female 
patients across a broad range of cancer types (43). Another 
study found that Kaiso, a bi-modal transcription factor 
regulating gene expression, predicts for more aggressive 
pancreatic cancer when found in male versus female 
patients’ tumor samples (44).
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Diabetes mellitus (DM)

DM is a well-established risk factor for PDAC. There is a 
bidirectional relationship between DM and PDAC. One 
meta-analysis revealed an odds ratio (OR) of 1.82 for PDAC 
in individuals with type 2 DM (21). Newly diagnosed 
diabetics are also at 50% higher risk of developing PDAC 
compared to those with long-standing diabetes (45), 
possibly due to DM being one of the early manifestations of 
PDAC. Furthermore, the mortality rate of diabetics is twice 
as high compared to non-diabetics. DM can be the first 
presentation, and complication of PDAC (46).

North America, South-east Asia, Russia and some Asian 
countries like China and India have the highest prevalence 
of DM correlating with lifestyle and dietary factors, whereas 
Europe and Oceania have a lower prevalence (47). This 
distribution differs from that of global PDAC incidence, in 
which Europe and Oceania had higher incidence of PDAC 
than South-east Asia, China and India.

Pancreatitis

Chronic pancreatitis is a strong risk factor for PDAC, 
due to progressive inflammation and fibrosis. Rijkers et al. 
reported that whilst patients with a first episode of acute 
pancreatitis had a 0.4% risk of developing PDAC, this 
risk increased 9-fold for patients who progress to chronic 
pancreatitis (48). This risk increases in the first 5 years 
after diagnosis of chronic pancreatitis, thereafter decreases, 
suggesting that the initial few years of diagnosis are crucial 
for close follow up (49).

Lew et al. (50) found that 0.78% of patients admitted for 
chronic pancreatitis in a United States-based population also 
had PDAC. Blacks, men, age 40–59, and being overweight 
were significantly associated with chronic pancreatitis. 
Interesting, non-Hispanic Africans had a higher risk for 
chronic pancreatitis which did not translate into having 
a higher association of chronic pancreatitis with PDAC. 
Patients who were found to have both chronic pancreatitis 
and PDAC were predominantly non-Hispanic Europeans 
who were overweight and of older age. This correlated 
with higher incomes, better chances of getting insured 
and higher rates of being admitted to large urban teaching 
hospitals in the non-Hispanic European population.

With regards to the etiology of chronic pancreatitis, 
Wilcox et al. (51) reported that non-Hispanic Africans were 
twice as likely as non-Hispanic Europeans to be diagnosed 
with chronic pancreatitis attributed to alcohol or smoking, 

while genetic, idiopathic and autoimmune etiologies were 
more significant in non-Hispanic Europeans. Non-Hispanic 
Africans also had a longer duration of disease (8.6 versus 
6.97 years) and significantly higher frequencies of severe 
and consistent pain, disability, and advanced pancreatic 
morphological changes, demonstrating different degrees of 
access to healthcare according to ethnicity.

Genetics

Approximately 10% to 15% of PDAC has a familial and/
or underlying genetic predisposition, of which familial 
pancreatic cancer (FPC) constitutes 7% and those with 
known genetic predisposition syndromes constitute 3% (52)  
(Table 2). The most frequent genetic alterations are of 
BRCA2, PALB2, ATM, and CDKN2A, with less common 
alterations including BRCA1, APC, MLH1, MSH2, MSH6, 
PMS2 and PRSS1. Of the patients with PDAC without 
significant family history, 5–8% are carriers of a germline 
mutation that predisposes to PDAC (64,65), explaining the 
trend and importance of multigene panel testing in patients 
diagnosed with FPC regardless of age or family history (22). 
In contrast, FPC is defined by PDAC developing in the 
context of a strong family history without a known causative 
germline pathogenic variant (PV) (66).

With time, germline PV may result in carcinogenesis 
due to the mechanisms of cell injury, dysregulation of cell 
growth, dysfunctional DNA repair, and disruption of cell 
mobility and adhesion.

Cell injury

Hereditary pancreatitis accounts for a very small fraction of 
PDAC but is associated with a markedly increased risk of 
PDAC (53), as chronic inflammation leads to accelerated 
mutation accumulation and clonal expansion. Increasingly 
more germline PV have been implicated in hereditary 
pancreatitis that progress into PDAC, the most well-studied 
being PRSS1, SPINK1, and CFTR alterations. Affected 
individuals develop chronic pancreatitis before the age of 20 
and lifetime risk of PDAC is 25% to 44%, with a RR of 87 
for developing PDAC (53,67).

PRSS1
PRSS1 on chromosome 7q35 is encoded by the cationic 
trypsinogen gene. Gain-of-function PRSS1 variants are 
associated with autosomal dominant (AD) hereditary 
pancreatitis, with variable penetrance rates of 40–93% 
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Table 2 Hereditary syndromes associated with increased risk of PDAC

Gene
Relative risk of 

PDAC
Chromosome

Syndrome associated with 
increased risk of PDAC

Typical inheritance 
pattern

Phenotype

PRSS1 87 (53) 7q35 Hereditary pancreatitis Autosomal dominant Pancreatitis

SPINK1 5q32 Hereditary pancreatitis Autosomal dominant Pancreatitis

CFTR 7q31.2 Cystic fibrosis Autosomal recessive Pancreatitis, sinopulmonary disease, 
cirrhosis, infertility

TP53 7.3 (54) 17p13.1 Li-Fraumeni syndrome Autosomal dominant Breast cancer, soft tissue sarcomas, 
osteosarcomas, adrenocortical carcinoma, 
central nervous system tumors

ATM 2.41 (55) 11q22 Hereditary breast and 
ovarian cancer syndrome

Autosomal dominant Multiple and early-onset breast and ovarian 
cancers 
Pancreas, prostate, melanoma and gastric 
cancer

CDKN2A  38 (56) 9p21 Familial atypical multiple 
mole melanoma

Autosomal dominant Multiple atypical naevi progressing to 
melanoma 
Breast, lung and endometrial cancer

STK11 132 (57) 19p13.3 Peutz-Jeghers syndrome Autosomal dominant Gastrointestinal hamartomatous polyps, 
mucocutaneous pigmentation 
Breast, colon, pancreatic, stomach, ovarian 
cancer

BRCA1, 
BRCA2

3.1 (58),  
3.51–4.1 (59,60),  
up to 21.7 (61)

17q12-21; 
13q12-13

Hereditary breast and 
ovarian cancer syndrome

Autosomal dominant Multiple and early-onset breast and ovarian 
cancers 
Pancreas, prostate, melanoma and gastric 
cancer

PALB2 6 (62) 16p12.2 Hereditary breast and 
ovarian cancer syndrome

Autosomal dominant Multiple and early-onset breast and ovarian 
cancers 
Pancreas, prostate, melanoma and gastric 
cancer

MLH1, 
MSH2, 
MSH6, 
PMS2

8.6 (63) 3p21.3, 
2p22-p21, 
2p16, 7p22

Hereditary non-polyposis 
colorectal cancer aka Lynch 
syndrome

Autosomal dominant Colorectal cancer, extra-colorectal 
cancers—pancreatic, endometrial, 
ovarian, stomach, bile duct, small bowel, 
pancreatic, ureter and renal pelvis cancer 
Muir-Torre syndrome: skin cancer 
(sebaceous tumors) 
Turcot syndrome: central nervous system 
tumors

PDAC, pancreatic ductal adenocarcinoma.

depending on variant (68-70). PRSS1-related hereditary 
pancreatitis has a prevalence of up to 12.4% in populations 
with chronic pancreatitis (71).

SPINK1
SPINK1 on chromosome 5q32 codes for serine peptidase 
inhibitor Kazal type 1. It is upregulated with inflammation 
to protect the pancreas from autodigestion by trypsin and 
other pancreatic enzymes. SPINK1 germline mutation 

related-pancreatitis is associated with 12 times higher rate 
of PDAC than patients with idiopathic pancreatitis (72).

CFTR
CFTR on chromosome 7q31.2 codes for the cystic fibrosis 
transmembrane conductance regulator protein. Mutations 
in CFTR cause classic cystic fibrosis, an autosomal recessive 
disorder in which chloride and bicarbonate conductance 
is impaired, resulting in viscous fluid secretion in organs 
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leading to sinopulmonary disease, cirrhosis, and infertility. 
In the pancreas, this causes retained trypsin and hence 
pancreatic inflammation. Heterozygous CFTR carriers 
also have an increased risk of recurrent acute and chronic 
pancreatitis. A study by Hamoir et al. (73) reported that 
those with CFTR-related chronic pancreatitis had a 
standardized incidence ratio (SIR) of 26.5 for PDAC.

The CFTR PVs occur most commonly in Europe, North 
America and Australia amongst European populations, but 
is rare amongst Asian populations (74). Its incidence likely 
remains underreported in regions such as Latin and South 
America, India and Africa due to lack of registries.

Cell growth

TP53
Tumor protein p53 (TP53) on chromosome 17p13.1 codes 
for a tumor suppressor that regulates cell proliferation, 
DNA repair and apoptosis in response to cellular stress. 
Mutations in TP53 cause Li-Fraumeni syndrome, an AD 
disorder characterized by high risk for cancer—often 
multiple and at early age (75). The most common tumors in 
children are osteosarcoma, adrenocortical carcinoma, central 
nervous system tumors, and soft tissue sarcoma, and in 
adults breast cancer in women and soft tissue sarcoma (76).  
Ruijs et al. estimated that the TP53 mutation concurs a RR 
of 7.3 for PDAC (54).

ATM
ATM on chromosome 11q22 codes for a protein kinase that 
regulates cell proliferation and detects DNA damage (77).  
Biallelic loss-of-function mutations of ATM result in 
Ataxia-telangiectasia (AT), a rare autosomal recessive 
disorder characterized by progressive ataxia, telangiectasias, 
immune deficiency, and increased risk of malignancies—
particularly leukemias and lymphomas (78). Instead of 
having classic manifestations of AT, heterozygote carriers of 
the ATM mutation are at increased risk for coronary heart 
disease and solid organ malignancies, particularly that of 
breast and pancreatic cancer (79). In a study of 4,607 ATM 
PV carriers, carriers were at moderate-to-high risk for 
PDAC (OR 4.21) (55). A United Kingdom study of 1,160 
individuals estimated that heterozygous carriers of ATM 
mutation have a RR of 2.41 for developing PDAC (80). 
ATM is a well-established breast cancer susceptibility gene, 
with heterozygote carriers having more than twice the risk 
of the average population of developing breast cancer and a 
cumulative lifetime breast cancer incidence of 20–40% (81). 

Mutations in ATM should be considered in patients with 
PDAC that have a family history of breast cancer.

CDKN2A
CDKN2A  on chromosome 9p21 codes for proteins 
p16INK4A and p14ARF. Germline CDKN2A mutations are 
usually missense or nonsense variants (82), permitting 
inappropriate progression through the cell  cycle. 
Prevalence of CDKN2A  mutations in the general 
population is low at about 0.05% (83). Familial atypical 
multiple mole melanoma (FAMMM) is an AD condition 
associated with CDKN2A mutations, but with incomplete 
penetrance and variable expressivity. It is characterized by 
multiple atypical naevi progressing to melanoma (84), and 
increased risk for internal malignancies such as head and 
neck and esophageal squamous cell carcinomas, non-small 
cell lung cancers and pancreatic cancer (85). CDKN2A-
associated FAMMM is associated with an elevated risk of 
developing PDAC, RR 13–22 (56), with variants affecting 
p16INK4A more frequently observed with pancreatic cancer 
compared to p14ARF (86).

Germline CDKN2A mutations are more prevalent in 
families in Europe, North America, and Australia (82), and 
in Dutch populations a CDKN2A mutation variant known 
as p16-Lieden is known to carry a particularly higher risk of 
PDAC, with a cumulative risk of 17% at 75 years of age (87).

STK11
STK11 (also known as LKB1) on chromosome 19p13.3 
codes for a kinase that regulates AMP-activated protein 
kinase family members, which control multiple cellular 
processes including cell polarity, metabolism, and  
apoptosis (88). Mutations in STK11 cause Peutz-Jeghers 
syndrome (PJS), an AD disorder characterized by 
gastrointestinal hamartomatous polyps and mucocutaneous 
pigmentation. Individuals with PJS have elevated cancer 
risks, most commonly that of breast and colon cancer, 
followed by pancreatic, stomach and ovarian cancer. The 
cumulative risk of developing any cancer and specifically 
PDAC at 70 years of age is 85% and 11% respectively, with 
a RR of 132 of developing PDAC (89).

DNA repair

BRCA1 and BRCA2
BRCA1 and BRCA2 on chromosome 17q12-21 and 13q12-
13 are DNA damage repair genes which code for proteins 
that function in homologous recombination repair 
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(90,91). BRCA1 also functions in DNA damage signalling, 
chromatin remodelling, and transcriptional regulation. 
Mutations in BRCA1/2 can cause hereditary breast and 
ovarian cancer syndrome (HBOC), one of the more 
common referrals for cancer genetic testing (92). HBOC is 
an AD syndrome characterized by multiple and early-onset 
breast and ovarian cancers, and increased risk for other 
cancers such as pancreas, prostate and melanoma. The 
incidence of germline BRCA1/2 PVs in PDAC is 5–9% (93).  
BRCA2 is the most frequently mutated gene (6–19%) in 
patients with PDAC associated with germline mutations 
even in the absence of breast cancer (59). BRCA2 mutation 
confers a RR of 3.51–4.1 (59,60) for PDAC, with Mersch 
et al. even reporting an increased risk of PDAC up to 21.7 
folds (61). On the other hand, BRCA1 mutation carriers 
have a lower predilection for pancreatic malignancy (59,61), 
with RR of 3.1 (58).

BRCA1/2 founder mutations have been identified in 
groups of Ashkenazi Jews, French Canadians, Hispanics, 
and African Americans, and in the geographical regions of 
Netherlands, Sweden, Hungary, Iceland, Italy, France, South 
Africa, Pakistan and Asia (94). An analysis of the POLO 
trial cohort revealed that 5.9% of people with previously 
unknown BRCA status had a newly identified BRCA 
mutation, with rates highest in the United States, France, 
and Israel at 9.5%, 7.6%, and 7.4%, respectively (95).  
The highest rate of newly identified BRCA mutation 
prevalence was observed in African American patients 
(10.7%), although this could have been confounded by a 
small population size and potential disparities in uptake 
of genetic testing. Biallelic mutations cause Fanconi  
anemia (96), a syndrome characterized by bone marrow 
failure, predisposition to malignancy particularly that 
of acute myeloid leukemia, and physical abnormalities 
including short stature, microcephaly, developmental delay, 
café-au-lait skin lesions, and malformations belonging to 
the VACTERL-H association.

PALB2
PALB2 on chromosome 16p12.2 encodes a protein that 
contributes to the cellular machinery for DNA repair by 
homologous recombination (97). Heterozygous mutations 
in carriers are significantly associated with breast cancers at 
an OR of 3.1 to 9.2 (98), which is comparable with that of 
BRCA1/2. Among the breast cancer susceptibility genes like 
BRCA1/2, PALB2 is also considered a high penetrance gene 
for breast cancer. Several studies have found that PALB2-
mutated breast cancers are associated with aggressive 

features, such as higher rates of triple-negative phenotype, 
advanced disease stage, and higher Ki67 level (99). While 
the prevalence of PALB2 variants is not high, there is 
emerging evidence supporting PALB2 as a susceptibility 
gene for PDAC (100). PALB2 mutation confers a 6-fold 
increased PDAC risk (62), with a significantly earlier mean 
age of onset (101).

MLH1, MSH2, MSH6, PMS2, EPCAM
Mismatch repair (MMR) genes MLH1, MSH2, MSH6, 
PMS2, EPCAM maintain genomic integrity by correcting 
base substitution and small insertion-deletion mismatches 
during DNA replication. Lynch syndrome, also known as 
hereditary non-polyposis colorectal cancer (HNPCC), is an 
AD condition caused by mutations in the MMR genes, or 
deletion in the EPCAM gene resulting in silencing of the 
downstream MSH2 (102). Cancer develops according to 
the two-hit hypothesis, when the first allele is affected by 
the germline mutation and the second allele is inactivated 
by a somatic mutation, resulting in defective DNA repair 
and microsatellite instability. Affected individuals have an 
increased risk of colorectal cancer and other malignancies 
such as pancreatic, endometrial, ovarian, gastric, bile duct, 
small bowel, ureter and genitourinary cancers. The variants 
Muir-Torre syndrome and Turcot syndrome predispose 
to sebaceous tumors and central nervous system tumors 
(glioblastomas and astrocytomas) respectively (63,103). 
Kastrinos et al. described an increased PDAC risk by 8.6-
fold and a cumulative PDAC risk of 3.7% at 70 years of age 
for individuals with HNPCC (63). There is recent evidence 
linking this increased risk of PDAC in HNPCC particularly 
with MLH1 PV carriers (104)—Møller et al. observed the 
cumulative incidence of PDAC to be 6.2% by 75 years of 
age in MLH1 PV carriers, compared to 0.5%, 1.4% and 0% 
for MSH2, MSH6 and PMS2 respectively.

Founder mutations of MMR genes have been found in 
Finland, Iceland, Ashkenazi Jews, French Canadian and 
Amish populations (105).

Cell mobility and adhesion

APC
APC  on chromosome 5q21–22 codes for a  tumor 
suppressor that helps to control cell proliferation, 
stabilize microtubules, and mediate cell migration and  
adhesion (106). PVs cause Familial adenomatous polyposis 
(FAP), an AD syndrome classically characterized by the 
development of hundreds to thousands of colorectal 
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adenomas, typically by late adolescence, which inevitably 
progress to colon cancer without intervention. FAP 
is also associated with extracolonic tumors including 
hepatoblastoma, duodenal, thyroid, bile duct and brain 
adenocarcinoma. While FAP has historically been thought 
of as a predisposing condition for PDAC (107), the 
incidence of classical exocrine PDAC in this population 
has likely been overreported in literature and we now know 
that the association of APC mutations with PDAC is not  
strong (108).

FPC

FPC is defined as families with two or more first-degree 
relatives with PDAC in the absence of a known PDAC-
associated hereditary syndrome (22). It consists of 7% of 
PDACs (66), suggesting that there is much more to be 
discovered about the genetic, epigenetic, and environmental 
factors that contribute to the development of PDAC. 
European registries have observed an anticipation 
phenomenon in FPC (109), and every year there have been 
more discoveries of potential predisposing germline PVs for 
PDAC.

Large-scale population-based genome-wide association 
studies have identified common variants in several genomic 
regions associated with PDAC risk, particularly in the 
European (110-112), Chinese (113) and Japanese (114,115) 
populations. These variants individually have a small effect 
on PDAC risk, but each additional copy of a risk allele is 
associated with a 10–30% increase in the risk of PDAC 
and the cumulative effects can be significant. Studies are 
underway to better understand the mechanisms underlying 
carcinogenesis and to increase the diversity of genomic 
studies of PDAC.

The International Cancer of the Pancreas Screening 
(CAPS) Consortium (116) has put forth consensus 
guidelines recommending that in addition to individuals 
with known germline mutations in susceptibility genes, 
individuals who are FPC kindred should also undergo 
pancreatic surveillance to detect early pancreatic cancer and 
its high-grade precursors. This criterion is met by having 
at least one first-degree relative with pancreatic cancer 
who in turn also has a first-degree relative with pancreatic 
cancer. A 2015 systematic review by Lu et al. (117) found 
that PDAC screening in individuals with FPC resulted 
in a higher curative resection rate (60% versus 25%) 
and longer median survival time (14.5 versus 4 months) 
compared with the control group. Canto et al. observed 

that most PDACs detected during surveillance of high-
risk individuals with FPC were resectable (9 out of 10), and 
85% of these patients survived for 3 years (118). This is in 
contrast to the general population that typically present 
late, with only 15% to 20% of patients being candidates for 
pancreatectomy (119).

Conclusions

In this review, we have examined and summarized the 
geographical, ethnic and genetic factors that predispose 
to PDAC carcinogenesis. Incidence of PDAC has been on 
an uptrend worldwide, with high-income regions such as 
Europe, North America, Australia/New Zealand and Japan 
and ethnicities such as the African population experiencing 
higher incidence rates of PDAC. This is a result of an 
interplay between varying prevalence and trends of certain 
established risk factors—including diabetes, obesity, aging, 
smoking, alcohol consumption and chronic pancreatitis. 
Genetic factors also play an important role in PDAC 
predisposition, including germline PDAC, familial basis, and 
epigenetics involvement. With increasing uptake of large-
scale population-based genome-wide association studies, 
future efforts of research could be directed to identifying 
more predisposing genetic mutations and understanding 
their ethnic and geographical variations, as the knowledge 
base on this is at present still scarce. Early detection and 
treatment of PDAC results in significantly better outcomes 
yet the majority currently are only detected at a late and 
advanced stage. Future studies should consider detailed 
evaluation of interethnic, environmental, behavioural and 
genetic data to further elucidate discrepancies between 
different populations. From there, a better understanding 
of nuances pertaining to PDAC predisposition will allow 
more effective and efficient measures for individualised 
and prompt detection and treatment of PDAC, to improve 
outcomes for patients with PDAC.
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